
Architecture-based Performance Evaluation of Genetic Algorithms on
Multi/Many-core Systems

Long Zheng†§, Yanchao Lu‡, Mengwei Ding‡, Yao Shen‡, ∗Minyi Guo‡ and Song Guo§
†School of Computer Science and Technology

Huazhong University of Science and Technology, Wuhan, 430074, China
§School of Computer Science and Engineering

The University of Aizu, Aizu-wakamatsu, Fukushima-ken, 965-8580, Japan
‡Department of Computer Science and Engineering

Shanghai Jiao Tong University, Shanghai, 200240, China
∗Email:guo-my@cs.sjtu.edu.cn

Abstract—A Genetic Algorithm (GA) is a heuristic to find
exact or approximate solutions to optimization and search
problems within an acceptable time. We discuss GAs from an
architectural perspective, offering a general analysis of GAs
on multi-core CPUs and on GPUs, with solution quality con-
sidered. We describe widely-used parallel GA schemes based
on Master-Slave, Island and Cellular models. Then, based
on the multi-core and many-core architectures, especially the
thread organization, memory hierarchy, and core utilization,
we analyze the execution speed and solution quality of different
GA schemes theoretically. Finally, we can point to the best
approach to use on multi-core and many-core systems to
execute GAs, so that we can obtain the highest quality solution
at a cost of the shortest execution time.

Furthermore, there are three extra contributions. Firstly,
during our analysis and evaluation, we not only focus on the
execution speed of different schemes, but also take the solution
quality into account, so that our findings will be more useful in
practice. Secondly, during our optimization of an Island scheme
on GPUs, we find that the GPU architecture actually alters the
scheme, making it become the Cellular scheme, which leads to
big changes in solution quality and optimization results. Finally,
we calculate the GPU speedup based on a comparison between
the best scheme on a GPU and the best one on a CPU, rather
than between an optimized one on the GPU and the worst one
on a CPU, so that the speedup we calculate is more reasonable
and a better guide to practical decisions.

Keywords-Genetic Algorithm; multi-core; GPU; accuracy;
architecture; speedup;

I. INTRODUCTION

Nowadays, multi-core processors and GPUs have entered
the mainstream of microprocessor development. By putting
several cores on a chip, multi-core processors based on
Multiple Instruction Multiple Data (MIMD) parallelism can
easily improve the performance. Unlike a multi-core proces-
sor, a GPU or many-core co-processor organizes hundreds
of cores into Streaming Multiprocessors (SMs) to support
Single Instruction Multiple Data (SIMD), which is well-
suited to data-dense computing. The multi-core and many-
core architecture both successfully make use of Thread Level

Parallelism (TLP) to improve the performance rather than
just Instruction Level Parallelism (ILP).

When microprocessors use ILP to improve the perfor-
mance, all parallel mechanisms are hidden by compilers
and the architecture of microprocessors. However with TLP,
parallel mechanisms cannot be hidden any more. Users have
to know about the architecture of multi-core and many-core
systems, and implement their parallel programs explicitly.
For example, users need to write multi-threaded code to
improve the parallelism of their programs. For GPUs, users
even have to be familiar with the details of the architecture,
because they must assign threads to different SMs, use
hundreds of cores efficiently, and consider the choice of
different types of memory. With multi-core systems, several
existing or new programming models and environments
can help users. For example, Pthread, OpenMP, Cilk [1],
and even MapReduce [2] can be considered tools to help
users implement programs on multi-core systems. GPU-
based systems are newer than multi-core systems, but work
has been done in both industry and academia. Users can
use CUDA, OpenCL and MapReduce [3] to interact with
hundreds of cores. These systems do not try to hide the
parallelism; they expose it to users, which requires users to
know about architectural details and parallel mechanisms;
otherwise, the systems cannot perform efficiently.

A Genetic Algorithm (GA) is a heuristic to find exact
or approximate solutions to optimization and search prob-
lems within an acceptable time, which is widely used in
business, engineering and science [4], [5], [6], [7]. Because
GAs require a huge amount of computation, each time a
new parallel computing mechanism or new type of parallel
hardware emerges, GAs take advantage of it. Multi-core
processors and GPUs have attracted much interest from the
GA field, and many GA applications have been ported to
these systems [8], [9], [10], [11].

Although some transplanting of GAs from CPUs to GPUs
has been done, the lack of understanding of detailed multi-
core and many-core architectures leads to the following

shortcomings in the previous work:
(1) Many GAs on multi-core and many-core systems

are done on a case by case basis. These implementations
have more commonalities than differences but previous work
emphasizes the differences caused by the different GAs. The
commonalities have not been much discussed.

(2) Many implementations do not consider the architecture
issues deeply; some work even misunderstands the funda-
mentals of implementation on the new architectures.

(3) Most work focuses exclusively on the relationship
between the speedup and architecture, ignoring the solution
quality. Since GAs mostly find only approximate solutions,
more attention should be paid to the quality of solutions.
The relationship between speedup and architecture should
be discussed along with the solution quality.

(4) In most previous work, the speedup of GPUs is
calculated by comparing the execution speed on GPUs to
a serial implementation on CPUs. The Serial GA is the
worst scheme in execution speed, as it does not take any
advantage of a multi-core architecture. Multi-core processors
are now in the mainstream, so a speedup calculated in this
way neither practical nor reasonable.

The drawbacks above motivate us to discuss GAs from
an architecture perspective, to offer a general analysis of
GAs on multi-core and many-core architectures, considering
the quality of solutions. We first introduce several popular
parallel GA schemes: Master-Slave, Synchronous Island,
Asynchronous Island, and Cellular. We abstract the imple-
mentation of different parallel GA schemes to the thread
model. Then we can analyze the performance of different
schemes on multi-core and many-core architectures theoret-
ically, showing how the architecture impacts the different
schemes in different ways. During our analysis, we also
compare the performance of different schemes on different
architectures, so that we can find out which scheme can fully
take advantage of each architecture. Finally we choose a real
problem solved by GA to evaluate our analysis.

Unlike previous work on evaluating the performance of
Parallel GAs, we emphasize the solution quality. We evaluate
the execution time that GAs take to reach a fixed-accuracy
solution. With this evaluation, experimental results validate
our theoretical analysis.

Furthermore, we find that the GPU architecture changes
the Island scheme. The Island scheme on a many-core
architecture becomes a complicated Cellular scheme with
a migration mechanism. The change improves the solution
quality, and also makes the Island scheme on a many-core
architecture not follow the normal theory of Island schemes.

Although our discussion and analysis of multi-core and
many-core architecture are based on GAs, similar conclu-
sions also apply to Evolutionary Algorithms, Neural Net-
works and Machine learning on these systems. The general
considerations about these architectures also can be used in
other research fields using multi-core and many-core system.

Master

Slave Slave

The master node maintains
the population. It executes
the selection, cross over

and mutation steps.

The slave nodes only
execute the fitness

computing.

Slave Slave Slave

Figure 1. Diagram of Master-Slave scheme

The remainder of this paper is structured as follows.
Section II gives a short overview of GA. Sections III and IV
offer an architecture based analysis of GA on multi-core and
many-core systems, respectively. We evaluate our analysis in
V. Section VI summarizes our findings.

II. BACKGROUND OF GA

Before analyzing GA on multi-core and many-core archi-
tectures, we give a quick overview of GAs. In this section,
we begin with a review of species selection and evolution in
nature, which is a good way to understand the fundamentals
of GAs. Based on this, we present several GA schemes for
parallel and distributed computing environments.

In nature, individuals compete with each other and adapt
to the environment. Only the strongest ones can survive
in a tough environment. The survivors mate more-or-less
randomly and produce the next generation. During reproduc-
tion, mutation always occurs, which makes some individuals
of the next generation better fitted for the environment.

GAs are heuristic search algorithms that mimic natural
species selection and evolution as described above. The
problem that a GA intends to solve is the tough environment.
Each individual in the population of a GA is a candidate
solution for the problem.

A generation of a GA is composed of the following
steps-fitness computation, selection, crossover and mutation.
The fitness computation is the competition of individuals,
and can tell which individual is good for the problem; the
selection chooses good individuals to survive and eliminates
bad ones; the crossover mates two individuals to produce the
next generation individuals; and the mutation occurs after
crossover, so that the next generation can be more diverse.
With enough generations, GAs can evolve an individual that
is the optimal solution to the problem. This is the classic
serial GA scheme [12].

GAs can be effective for finding approximate solutions to
optimization and search problems in an acceptable amount
of time, so the technique is successfully used in business,
engineering and science. However, since a GA uses huge
numbers of individuals that compose a population to search
for probable solutions over many generations of evolution,
GA applications use a lot of computation. New parallel

Crossover

Mutation

Selection

Fitness

1000
Generation

?

Migration

Migration
Data

Crossover

Mutation

Selection

Fitness

1000
Generation

?

Migration

Migration
Data

Crossover

Mutation

Selection

Fitness

1000
Generation

?

Migration

Migration
Data

Island A Island B Island C

Read Migration Data Write Migration DataGA Steps

Figure 2. Diagram of Island scheme

and distributed computing systems can provide the com-
puting power GAs require. Several GA schemes have been
proposed to make GAs parallel, such as the Master-Slave
scheme, the Synchronous Island scheme, the Asynchronous
Island scheme and the Cellular scheme [12].

Fig. 1 illustrates how the Master-Slave scheme works.
First one node is chosen as the master node and the other
nodes become the slaves. The master node maintains the
population of a GA. The master node assign individuals to
slave nodes to parallelize the calculation of the fitness. After
the fitness of each individual is sent back to the master node,
the master node does the selection, crossover and mutation.

Unlike the Master-Slave scheme which is a tightly cou-
pled structure, the Synchronous and Asynchronous Island
schemes are loosely coupled. In the Island scheme, which
is illustrated in Fig. 2, the population of a GA is divided
into several sub-populations, called islands. The populations
in islands evolve in isolation from each other. After a fixed
number of generations, islands communicate and exchange
some of their best individuals; this is called migration. With
migration the local best solutions in islands can spread
to other islands, so that the population can evolve to bet-
ter solutions. The Island scheme is perfectly suitable for
the parallel and distributed environment. With the island
scheme, the computation load can be distributed to different
computing devices without huge overheads caused by the
communication between islands. Fig. 2 also illustrates a
widely used implementation of migration, based on a ring
topology. Islands are connected by migration in a ring
topology. Each island maintains a Migration Data structure
to support the migration. When an island does a migration,

Individual

Connection

Each individual evolves
separately.
It can only mate with its
connected neighbors.

Figure 3. Cellular scheme with mesh topology

it puts a fixed number of individuals into its neighbour’s
Migration Data structure. After that, each island gets the
individuals from its Migration Data structure. Then the
migration step is complete.

The difference between the Synchronous Island and Asyn-
chronous Island schemes lies only in the method of mi-
gration. In the Synchronous scheme, migration takes place
when all islands achieve a fixed number of generations,
usually 1000 generations. A faster island has to wait for
slower islands to evolve to the fixed number of generations.
The scheme guarantees that the migration occurs only when
all islands achieve the same generation, which means there
must be a synchronization operation for all islands in the
migration. In the Asynchronous Island scheme, although all
islands do the migration every fixed number of generations,
islands do not have to wait for each other. An island just
puts its best individuals into its neighbour’s Migration Data
structure, and gets the individuals from its own Migration
Data structure. In this scheme, an island may get individuals
that were sent by its neighbour in the previous migration,
or get the same individuals as the the ones in the last
migration, or even get no individuals. The Asynchronous
Island schemes avoids synchronization operations among
islands in the migration.

The Cellular scheme is another popular parallel imple-
mentation of GA, which is illustrated in Fig. 3. With the
Cellular scheme, each individual is executed by a comput-
ing device separately. When crossover and mutation occur,
individuals only mate with their connected neighbors. The
neighbors of individuals are decided by the connection
topology. In Fig. 3, the mesh topology is applied. Unlike the
Master-Slave and Island schemes which are coarse grained,
the Cellular scheme is a fine grained parallel scheme.

From the previous work on GAs, the solution qualities of
the three schemes should be different. The serial and Master-
Slave schemes do the selection, crossover and mutation steps
on the whole population. On the other hand, the Island
scheme does these steps in the island, that is, on a subset of
the population. The Serial and Master-slave schemes select

Core 1

L1/L2 Cache

Core 2

L1/L2 Cache

Core3

L1/L2 Cache

Core 4

L1/L2 Cache

L3 Cache

FSB/QPI

Figure 4. The multi-core architecture

the globally best individuals from the whole population,
but the Island scheme only gets the locally best individuals
in each island. Also, in other schemes an individual can
choose its mate globally, but in Island schemes the choice
is restricted to the island. Therefore, the solution qualities of
the Serial and Master-Slave schemes are better than those the
Island scheme, which is quite similar to the species selection
and evolution in nature. However which solution is better
between the Synchronous Island and Asynchronous Island
schemes is unknown, which is an issue we explore in this
paper.

III. ARCHITECTURE BASED ANALYSIS OF GA ON
MULTI-CORE SYSTEMS

Multi-core chips doing Symmetric Multi-Processing
(SMP) are now in the mainstream. They bring the parallelism
in microprocessors from Instruction Level Parallelism (ILP)
to Thread Level Parallelism (TLP). In a multi-core system,
when a hyper-thread is not enabled, each core executes
a thread simultaneously, which improves the performance.
However, the way to organize the threads is the key that
affects the performance of a multi-core system. Therefore, a
multi-core architecture puts constraints on the implementa-
tions of different GA schemes, and affects the performance
of GAs both in speed and in quality of solutions. In this
section we first give a short description of the multi-core
architecture and multi-threading on it, then we analyze how
that affects the different GA schemes.

A. Overview of Multi-core Processors

By placing several cores on a chip, multi-core pro-
cessors offer a new way to improve the performance of
microprocessors. In order to take advantage of multi-core
processors, programmers must implement multi-threaded
programs. With the help of the operating system, threads are
assigned to cores. The multi-core architecture is quite similar
to the previous multiprocessor architecture in which they are
both SMP, and the operating system treats them almost the
same. However, as a multi-core processor integrates cores

Thread 0 Thread 1 Thread 2 Thread N

Create threads
Phase I begins

Compute the
fitness

Threads Join in
Phase I ends

Create threads
Phase II begins

Threads Join in
Phase II ends

Proceed the
selection,

crossover and
mutation

......

......

Figure 5. The Master-Slave scheme on the multi-core architecture

into a chip, cores on the chip share the Level 3 cache
or even Level 2 cache. The communication between cores
is much faster than between processors in a multiproces-
sor architecture. The cache coherence mechanism is more
important, easy and efficient. Furthermore, since threads
share their virtual address space, they can get a performance
improvement from the shared caches between cores. A
multi-core architecture fits the multi-threaded programs and
those programs can get more performance benefit than on
previous multiprocessor architectures. A typical multi-core
architecture is illustrated as Fig. 4.

However, it is not easy to use the power of multi-core
processors. First of all, programmers have to write multi-
thraeded code. Then the communication between threads, for
example, synchronization, locks and so on, will influence the
performance. Also, how the threads are organized in a pro-
gram can affect the performance. Therefore, we will analyze
the performance of GAs from the multi-core architecture
view.

Several libraries can help programmers write multi-
threaded programs, for example Pthread, OpenMP, Cilk and
so on. In our work, we choose Pthread to implement different
schemes of the GA.

B. The Master-Slave Scheme on Multi-core Architecture

A Serial GA can run on the multi-core architecture
without any modification. However, since a Serial GA only
has one thread, such that only one core can be utilized,
there is no difference between Serial GAs on single-core
and multi-core processors.

The traditional Master-Slave scheme, which uses a cen-
tralized organization, needs to choose a node as the master
node, and others as the slaves. Therefore, in a straightfor-
ward implementation, we should use a thread as the master
thread, and create a number of threads as slave threads.
However, a multi-core CPU is symmetric; each core is
equal to any other. We should keep the load balance among

Thread 0

1

2

......

p

Thread 1

1

2

......

p

Thread 2

1

2

......
p

Thread N

1

2

......

p

......

1 1st Generation Migration

Island 0 Island 1 Island 2 Island N

...

Synchronization

Figure 6. The Synchronous Island scheme on a multi-core architecture

Thread 0

1

2

......

p

Thread 1

1

2

......

p

Thread 2

1

2

......
p

Thread N

1

2

......

p

......

1 1st Generation Migration

Island 0 Island 1 Island 2 Island N

... ...
...

...

...
...

Figure 7. The Asynchronous Island scheme on a multi-core architecture

cores, which means we need to decentralize the Master-Slave
scheme on the multi-core architecture.

With the multi-core architecture, all threads are symmet-
ric. We divide these threads into two phases. The threads
in Phase I act as slaves, and the threads in Phase II act as
the master. The detailed design and implementation of the
Master-Slave scheme on multi-core architecture is illustrated
in Fig. 5. In the figure, Thread 0 is the father thread, which
is a control thread, so that it creates other threads and waits
for other threads’ join-in. In Phase I, Thread 0 first creates
threads 1 to N, to compute the fitness. Then Threads 1
to N join in to Thread 0. After Phase I completes, Phase
II begins with Thread 0 creating N threads. They process
the selection, crossover and mutation, to produce the next
generation. Then Threads 1 to N join in to Thread 0. Phases
I and II are looped to make individuals evolve. During both
Phase I and II, except for Thread 0, each thread evolves an
equal number of individuals. With the help of the operating
system, threads are scheduled to cores to be executed.

The performance of the Master-Slave scheme on a multi-
core architecture is affected by the synchronization oper-
ations and the number of threads. The join-in operation
in Pthread can actually be considered as a synchronization
operation. Hence, there are two synchronization operations
in a generation. The GA usually needs thousands of gen-
erations to evolve a good solution so there are a huge
number of synchronization operations. When we create the
threads from Thread 0, we must consider the influence of
synchronization operations. The following rule should be
followed.

N%c ≡ 0 (1)

where N is number of threads that Thread 0 creates, and c
is the number of cores. If the N and c do not follow the
rule displayed in Equation (1), the performance decreases.
For example, if Thread 0 creates 5 threads on a 4-core
processor, four threads execute each time. There are two

synchronization operations during a generation, therefore the
first four threads that achieve the synchronization operation
have to wait for the last thread to reach it, which leads to
wasting three cores. It’s obvious that the execution time that
the 4-core processor takes to executes 5, 6, 7, or 8 threads
should be almost the same. The execution time T can be
expressed as

T = ((fmax
1 + fmax

2) ·N/c+2 ·S+mod(N, c) · r) ·G (2)

where fmax
1 and fmax

2 are the maximum sum of the exe-
cution times of Phases I and II of all threads, S is the time
that thread creation and join-in need, r is the time slice of
the operating system, G is the number of generations the
population evolves, and the function mod(N, c) returns 0 if
N and c follow Equation (1), or returns 1 otherwise.

If the size of the population stays unchanged, which
means (fmax

1 + fmax
2) is a constant value. When N%c is

not equal to 0, then when there are 5, 6, 7 or 8 threads in
the example above, extra execution time r is needed. We
call it thread align that the numbers of threads and cores
follow Equation (1). In practice, fmax

1 and fmax
2 are very

small, because the computation in Phases I and II is small.
Therefor the mod(N, c) · r part can affect the performance,
which requires us to keep threads aligned to avoid wasting
mutli-core computation capacity.

C. Island Scheme on Multi-core Architecture

The Island scheme is naturally suitable for the multi-core
architecture. An island can be implemented in a thread and
the migration operation is very efficient and easy in memory
with the help of shared caches. Although the communication
between threads is expensive, the communication caused by
the migration is not frequent in the Island scheme, since the
migration occurs every fixed number of generations.

It is straightforward to use one thread for the evolution
of each island. Figs. 6 and 7 illustrate the Synchronous and

Asynchronous Island schemes respectively. In the figures,
we set that the migration occurs every p generations.

When the population using a Synchronous Island scheme
evolves G generations on a processor with c cores and the
migration occurs every p generations, the execution time T
can be expressed as follows.

T =

G∑
i=1

(dmax
i ·N/c) + (m+mod(N, c) · r) ·G/p (3)

where dmax
i is the maximum execution time of all islands

to evolve to the i-th generation, and m is the overhead
of putting individuals in and getting individuals from the
Migration Data structure. However, the

∑G
i=1(d

max
i ·N/c)

part is far greater than the (mod(N, c) · r) ·G/p part, since
p is usually a big number to decrease the frequency of
migrations. Hence, the (mod(N, c) · r) can be ignored, and
Equation (3) can be rewritten as

T =

G∑
i=1

(dmax
i ·N/c) +m ·G/p (4)

With Equation (4), we find that we do not need to keep
threads aligned when the Synchronous Island scheme is
used.

In the Asynchronous Island scheme, we do not have to
synchronize the migration operation. This implies that the
faster threads do not have to wait for the slower threads for
migration, which is illustrated in Fig. 7. When a thread that
executes an island puts and gets individuals, it just needs
to lock the Migration Data structure to avoid a read/write
conflict. As for the Synchronous Island scheme, when a
population using the Asynchronous Island scheme evolves G
generations on a processor with c cores and the migration
occurs every p generations, the execution time T can be
calculated as

T =

G∑
i=1

(davgi ·N/c) +m ·G/p (5)

where davgi is the average execution time of all islands to
evolve to the i-th generation. It is obvious that dmax

i in
Equation (4) is bigger than davgi in Equation (5), so that
with the same size of population and number of generations,
the Asynchronous Island scheme should be faster than the
Synchronous Island one.

D. The Mixed Scheme on Multi-core Architecture

A Mixed scheme combines the Master-Slave and Island
schemes. It uses islands and the relationship between is-
lands follows the Island scheme. However, there are several
threads in each island following the Master-Slave scheme.

Fig. 8 shows the Mixed scheme. In the figure, there
are two islands and each island consists of two threads.
It is noted that Thread 0 is the control thread, which is

Island 0

1

2

......

p

Island 2

1

2

......

p

1 1st Generation Migration

... ...

Thread
0

Thread
1

Thread
2

Create
threads

Compute the
fitness

Threads
Join in

Create
threads

Threads
Join in

Proceed the
selection,

crossover and
mutation

Figure 8. The Mixed scheme on the multi-core architecture

omitted. We define the number of threads in a island as the
Parallelism Degree (PD).

The value of PD affects the solution quality. With a fixed
size of population and fixed number of threads, as the value
of PD increases, the size of each island increases and the
number of islands decreases. As we mentioned in Section II,
with the same size of population, more islands mean worse
solution quality. Therefore, as the PD increases the solution
quality gets worse and worse. Let’s consider the extreme
case. When PD is one, the Mixed scheme is the Master-
Slave scheme, which can get the best quality of solutions;
on the other hand, when PD is equal to the total number
of threads, the Mixed scheme is the Island scheme, which
leads to the worst quality of solutions.

The value of PD also affects the execution time. The
more threads are in an island, the more synchronization
operations are needed every generation. Although all threads
of all islands are parallel, the synchronization operations are
serial. We divide the implementation of the Mixed scheme
into two parts-serial (S) and parallel (P) parts. As the value
of PD increases, the serial part increases but the parallel
part stays the same, so the ratio of S to (S +P) increases.
According to Amdahl’s Law, the speedup of the multi-core
processor decreases, which implies the execution time of the
implementaton of the Mixed scheme gets longer. According
to this analysis, we can also conclude that the execution time
of the Master-Slave scheme is longer than that of the Island
scheme.

Summarizing, The Master-Slave scheme has the best
solution quality, but the worst execution speed and the Island
Scheme is the opposite; it has the best execution speed, but
the worst solution quality. For the Synchronous and Asyn-
chronous Island schemes, we are sure the Asynchronous one
is faster, but the solution quality cannot be decided by our
analysis above; this is left to our experiments. The Mixed
Scheme is a transitional form between the Master-Slave and
Island scheme. As the value of PD varies from one to the

SM SM SM SM SM SM SM SM

SM SM SM SM SM SM SM SM

L2 CacheGlobal
Memory

CPU

PC
I-E

 C
on

tro
lle

r

M
em

or
y

M
em

or
y

Shared Memory
L1 Cache

GPU

Figure 9. The GPU architecture with a CPU

number of threads, the execution speed of the Mixed Scheme
gets slower, however, the solution quality gets better. There
is a trade-off between execution speed and solution quality.
If the vaule of PD is set appropriately, the Mixed scheme
should get a best solution within the shortest time among
all schemes we analyzed above.

IV. ARCHITECTURE BASED ANALYSIS OF GA ON
MANY-CORE SYSTEMS

A GPU is composed of hundreds or even thousands of
cores, so it is also called a many-core system. Since the
GPU can offer a powerful computation capacity for data-
parallel computing, it has attracted much attention from GA
researchers. In this section, we will first introduce the im-
plementation of a GA on a many-core system, then analyze
the execution time and solution quality of GAs from the
viewpoint of many-core architecture. Since some analysis
issues about GAs are similar to the multi-core architecture,
we focus on the differences between many-core and multi-
core architecture, as well as the unique characteristics of
GAs on a many-core architecture.

A. Many-core Architecture and Constraints

Although the multi-core and many-core architectures both
advance the performance with parallel cores and are TLP,
the fundamentals are quite different. A multi-core CPU is
an MIMD (Multiple Instructions, Multiple Data) system,
while a many-core system is SIMD (Single Instruction,
Multiple Data). Therefore, the implementations of GAs on
the two kinds of architecture are quite different. Also, the
implementation has to consider the constraints of GPUs.

The GPU is considered as an accelerated co-processor in
the computer system, which implies that the GPU has to
be controlled by a CPU. The architecture of a GPU and its
corresponding controller CPU is illustrated in Fig. 9. In this
figure, we show the latest Fermi GPU architecture. The CPU
can access main memory via QPI or FSB, and communicate
with the GPU via a PCI-E controller. The GPU has its own
memory hierarchy. There are many cores in a GPU. Numbers
of cores are organized into a Streaming Multiprocessor (SM)
and a GPU is composed of several SMs.

The Fermi architecture has evolved considerably beyond
its predecessor. In Fermi architecture, there are 32 cores in
a SM. All SMs have shared Level 2 cache, and each SM
has a configurable shared memory and Level 1 cache whose
capacity is 64KB in total. The shared memory and Level 1
cache are actually implemented by the same hardware; and
they can organized into either 16KB/48KB or 48KB/16KB.
In the previous architecture, there are only 8 cores and 16KB
shared memory in a SM. Although the shared memory has
a very small access latency; however it is totally exposed to
programmer. An inappropriate use of shared memory leads
to a big performance penalty. The new Fermi architecture
alters part of shared memory into the Level 1 cache, so that
programmers can get the performance improvement even if
they do not use any shared memory at all. Besides, the Level
2 cache in the Fermi architecture can reduce the overhead
of access from GPU cores to the global memory.

A GPU task is called a kernel, and is launched by
the CPU. When a kernel is about to be launched, the
CPU transfers the data from main memory to GPU global
memory, then the kernel runs. After the kernel completes,
the CPU needs to copy the result data from GPU global
memory back to main memory. Because main memory and
GPU memory are independent of each other, the data transfer
is expensive, and should be avoided.

The organization of threads for a GPU is quite different.
Threads for the CPU are managed by the operating system,
but threads for a GPU are managed by the GPU driver.
Threads for GPUs are first grouped into wraps. A wrap is the
smallest scheduling unit of threads for a GPU. Threads in
a wrap execute the same instruction exactly concurrently.
Wraps are further grouped into blocks. A block is the
smallest resource unit of threads for a GPU. Threads in a
block can access the shared block data in the shared memory.
Blocks are assigned to a particular SM by the GPU driver.
Several blocks compose a grid. All threads in a grid will
run on the same GPU. When we are coding a program on
GPU, we must follow the basic rules below, otherwise the
performance of the GPU degrades badly.

(1) The shared memory of a SM should at least meet the

SM SM SM SM SM SM SM SM

SM SM SM SM SM SM SM SM

L2 Cache

Thread Block

Block Shared
Memory

A thread
maintains

an individual An island of
individuals

Each block maintains
an island to use the shared

memory and synchronization.

Migration
between
islands

Figure 10. The Island scheme on a GPU

requirement of one block, so that the kernel can be compiled
and executed.

(2) There should be at least 32 threads in a block, which
is the size of a wrap, so that all cores in a SM can be fully
utilized.

(3) The number of blocks should be at least equal to the
number of SMs in a GPU, so that all SMs in a GPU can be
fully utilized.

(4) If there are many accesses to global memory, the
total number of threads should be as large as possible with
constraint of (1), to overlap accesses to global memory and
therefore reduce latency.

(5) The communication between threads in a block should
be implemented in the shared memory. Otherwise, this uses
global memory by default, which leads to a big access
latency.

(6) The communication between blocks should be mini-
mized, since it must use the global memory.

(7) The data transfer between CPU and GPU should
be minimized during kernel execution, as moving data
from main memory to GPU global memory is always the
bottleneck of GPU computing.

B. Analysis of GA Implementations on Many-core System

As we analyzed above, the many-core architecture
presents several rules for us to implement different schemes.
In this subsection, we will analyze the implementations of
Master-Slave, Synchronous Island and Asynchronous Island
schemes on a many-core architecture.

It is very simple to implement the Master-Slave scheme
on a many-core system, as the relationship between CPU
and GPU is master and slave. In the Master-Slave scheme,
the CPU does the selection, crossover, and mutation; and
the GPU calculates the fitness. However, the Master-Slave

scheme would be very inefficient for two reasons. One is
that it needs to transfer the population data between main
memory and the GPU global memory every generation. And
the computation for each generation is very little, so the
communication between CPU and GPU takes most of the
execution time. The other is that the GPU only calculates the
fitness, but the CPU needs to do the other steps of GAs. The
CPU will probably be the bottleneck of the whole system,
since the GPU computation computation capacity is much
more powerful than that of the CPU, and the workload of
selection, crossover and mutation is even heavier than that
of fitness calculation in some cases. Therefore, although the
many-core system is naturally a master-slave model, it is not
a good choice to adopt the Master-Slave scheme.

According to our description and analysis in Section
IV-A, threads in a block can use the shared memory to
communicate with little overhead; threads in different blocks
can communicate but at cost of high overhead. Hence, from
the viewpoint of architecture, the GPU should use the Island
scheme, since individuals in an island communicate a lot and
the communication between islands is rare. With the Island
scheme on a GPU, each thread executes an individual, and
each block executes an island, which is illustrated in Fig.
10.

The communication between individuals in an island
can use the synchronization operation provided by CUDA.
However because there is no synchronization operation
among blocks in a GPU, the synchronization operation in
the Synchronous Island scheme must be implemented by
programmers using the global memory. Efficient synchro-
nization among blocks is discussed in detail in [13].

As on the multi-core architecture, the Asynchronous Is-
land scheme should be faster than the Synchronous Island
scheme. There are two reasons. One is that with an Asyn-

chronous Island scheme, the faster blocks do not need to
wait for the slower blocks, so that the faster blocks can
continue to evolve without any interruptions, but with the
Synchronous Island scheme, the faster ones need to wait
for the slower ones. The other is that the Synchronous
Island scheme needs to do synchronization among blocks
leading to extra accesses to the global memory. Compared
to the previous architecture, the Fermi architecture has Level
2 cache that can improve the performance of access to
the global memory. Besides, the synchronization operations
among blocks are not frequent, so the overhead caused by
synchronization among blocks in the Fermi architecture will
be much smaller than in the previous architecture.

As we mentioned above, in order to fully make use of
all SMs, we must set the number of islands to at least
the number of SMs. In order to fill the wrap, each island
must have at least 32 individuals. When the Island scheme
is implemented, the shared memory should be used, but
the size of shared memory required by our code can not
exceed 48KB. Furthermore, there are not many accesses to
the global memory, as the communication between blocks
only occurs when migration is done. Therefore, the imple-
mentation of the Island scheme does not have to use a large
number of threads to overlap the latency of access to the
global memory.

C. Argument for Island Scheme on Many-core Systems

In implementing the Island scheme on the many-core
architecture, the thread model of GPUs changes the scheme.

In every scheme of GAs, the random generation sequence
is a key factor that influences the solution quality, so it
can be considered a key feature of GAs. In the Master-
Slave scheme, all individuals of a population use the same
random generation sequence. In the Island scheme, each
island maintains a random generation sequence. The Master-
Slave and Island schemes on the multi-core architecture can
exactly obey the rules above using a lock mechanism to
get a safe parallel random generation sequence. When the
Master-Slave scheme is applied to many-core systems, all
operations that need random numbers run on the CPU, so
the system exactly follows the rules.

Whereas, when the Island scheme is implemented on a
many-core system, each thread executes the evolution of an
individual. The threads in a wrap execute each instruction
concurrently, if we use a lock mechanism to generate safe
random numbers, threads getting random numbers will be
forced to be serialized, which degrades the GPU perfor-
mance dramatically.

Some previous work just generates random sequences for
each island in advance, and puts them in the global memory
to follow the rule, which is call static random generation.
However, as we mentioned time and time again, access to
global memory needs a long latency. The number of random

Migration

Migration

M
igration

M
ig
ra
tio
n

Figure 11. The Island scheme on the many-core architecture is actually
a complicated Cellular scheme

numbers needed in the evolution is large, since each indi-
vidual needs at least ten random numbers every generation.
For 4096 individuals and 50,000 generations, it needs about
16GB memory capacity. The largest global memory capacity
of GPUs now is 6GB. Even if the global memory capacity
of GPUs were large enough, it is a performance disaster
for GPUs to read large data from global memory; this can
ruin the GPU performance entirely. Static random generation
cannot actually be used in practice.

Therefore, we have to make each thread maintain an
independent random generation sequence; this is called
dynamic random generation. It violates the Island scheme.
Each individual is independent, and all individuals in an
island communicate for selection, crossover and mutation.
It is similar to the Cellular scheme with a fully connected
topology. Therefore, a population that uses an Island scheme
on a many-core architecture is composed of several pop-
ulations each using the Cellular scheme. However these
populations do migration after a fixed number generations.
The Island scheme on a many-core architecture cannot be
considered a conventional Island scheme; it is a complicated
Cellular scheme, which is illustrated in Fig. 11.

In this section we began with an analysis of the many-
core architecture and presented several rules that should be
followed when GAs are implemented. Then we analyzed
the performance of the Master-Slave and Island schemes
on a many-core architecture. Most importantly, because of
the features of the many-core architecture, we found that
the Island scheme on the many-core architecture should
be a Cellular scheme with a migration mechanism. Our
experiments will explore the performance of the Island
scheme on a many-core architecture.

V. PERFORMANCE EVALUATION

With the analysis presented in Sections III and IV, we
get several theoretical results. In experiments, we choose a
real GA problem which is widely used in engineering as
our benchmark to validate our theoretical analysis. Besides,

although the speedup by GPUs has been exploited in the
previous work, the solution quality has not been taken into
account. In our work, we measure the speedup of GPUs
compared to the best parallelized GA implementation on
a multi-core processor, considering solution quality. Our
results on the speedup of GPUs are more practical and useful
for researchers and engineers.

A. Experiment Setup

The experiments in the previous work on GAs on GPUs
usually only measure the execution time, and then compare
it with that on the CPU. The accuracy of the solution, the
importance of solution quality, is always underestimated. In
our experiments, we not only measure the execution time,
but also the accuracy. We use the execution time to reach
a fixed solution as our main metric to evaluate both the
execution speed and solution quality. This metric can tell
us which scheme can get the best solution during the same
time.

Also, in most previous work, when comparing the per-
formance between GPU and CPU, the implementation of
GAs on the CPU is serial, without any parallelization or
optimization. This is not fair to the CPU, since multi-core
processors are now common. In our experiments, we choose
the best GA scheme on CPUs in our analysis above as the
baseline, so that the speedup of GPUs are more convincing
and reasonable.

In the evaluation, we use GA to solve a Nonlinear Pro-
gramming (NLP) problem, which is used as the benchmark
to evaluate the performance of different schemes on both the
multi-core and many-core architectures. NLP techniques are
widely used in industrial management, engineering design,
scientific computation, the military and so on [7]. The NLP
problem we used is as follows. This problem is widely
used as the test problem in optimization test collections.
The optimum solution is that f = 7049.330923 [14]. The
experimental environments are listed in Table I.

Minimize f(~x) = x1 + x2 + x3

Subject to

g1(~x) ≡ 1− 0.0025(x4 + x6) ≥ 0,

g2(~x) ≡ 1− 0.0025(x5 + x7 − x4) ≥ 0,

g3(~x) ≡ 1− 0.01(x8 − x5) ≥ 0,

g4(~x) ≡ x1x6 − 833.33252x4 − 100x1 + 83333.333 ≥ 0,

g5(~x) ≡ x2x7 − 1250x5 − x2x4 + 1250x4 ≥ 0,

g6(~x) ≡ x3x8 − x3x5 + 2500x5 − 1250000 ≥ 0,

100 ≤ x1 ≤ 10000,

1000 ≤ (x2, x3) ≤ 10000,

10 ≤ xi ≤ 1000, i = 4, . . . , 8.

Table I
THE EXPERIMENTAL ENVIRONMENT

CPU Intel i7-2600 Quard-core Processor
Hyper-Thread on CPU Disabled
Turbo Boost on CPU Disabled

Main Memory 6GB
GPU Nvidia GTX580, 1.5GB Global Memory
OS Ubuntu 10.04 Server 64bit

Kernel Version 2.6.38-8
GCC 4.5.2 with -O2 optimization option

CUDA Version SDK 3.2
GPU Driver 270.41.06-x86 64 for Linux

B. Experimental Results

We first compare the Master-Slave, Synchronous Island
and Asynchronous Island schemes on a multi-core architec-
ture. Fig. 12 shows the execution time, solution quality and
the execution time to reach the fixed solution. In experiments
in Fig. 12, each thread evolves 256 individuals. The size of
the population varies from 256 to 4096 as the number of
threads varies from 1 to 16. From Fig. 12(a), we find that the
Master-Slave scheme is the slowest, while the Asynchronous
Island scheme is the fastest. Also, the execution time of
the Master-Slave scheme shows the impact of thread align.
However, for solution quality, the Master-Slave scheme
is the best, while the Synchronous Island scheme is the
worst, which is depicted in Fig. 12(b). We find that the
Asynchronous Island scheme can reach the fixed solution
quality fastest from Fig. 12(c). We set the fixed solution
quality as within 0.2% of the optimum solution. Therefore,
the Asynchronous Island scheme is the best one on a multi-
core architecture. However, it is noted that when size of
population is smaller than 768, the Island scheme can not
reach the fixed solution but the Master-Slave one can.

Fig. 13 shows the performance of the Mixed scheme
on a multi-core architecture. Fig. 13(a) expresses that the
execution time increases as the value of PD increases. Fig.
13(b) shows that the solution is getting closer to the optimum
solution as the PD varies incrementally. So we need to
find an appropriate value of PD that use the least time to
reach the fixed solution. From Fig. 13(c), the appropriate
value of PD is 4. As we analyzed before, when PD is
equal to 1, it is the Asychronized Island scheme, so that
the Mixed scheme in which each island uses 4 threads is
the best scheme on the multi-core architecture. We also
evaluate the performance of the Master-Slave, Synchronous
Island and Asynchronous Island schemes on the many-core
architecture. Table II shows the execution time for different
sizes of population evolving to 50,000 generation using
different schemes. In this experiment, since GTX580 GPU
has 16 SMs, we use 16 blocks to implement 16 islands.
As the size of population increases, we make the number
of individuals in each island increase from 32 to 512. It is
clear that the Asynchronous Island scheme is the fastest. We
also see that the Asynchronous Island scheme gives the best

0 2 4 6 8 1 0 1 2 1 4 1 6

1 0

2 0

3 0

4 0

5 0

6 0

Ex
ec

uti
on

 Ti
me

 (s
)

T h e N u m b e r o f T h r e a d s

 M a s t e r - S l a v e S c h e m e
 S y n c h r o n i z e d I s l a n d S c h e m e
 A s y n c h r o n i z e d I s l a n d S c h e m e

(a) The execution time with different sizes of
population (50,000 Generations)

0 2 4 6 8 1 0 1 2 1 4 1 6
7 0 5 5

7 0 6 0

7 0 6 5

7 0 7 0

7 0 7 5

7 0 8 0

7 0 8 5

7 0 9 0

7 0 9 5

Th
e A

ccu
rac

y

T h e N u m b e r o f T h r e a d s

 M a s t e r - S l a v e S c h e m e
 S y n c h r o n i z e d I s l a n d S c h e m e
 A s y n c h r o n i z e d I s l a n d S c h e m e

(b) The accuracy of solutions with different sizes
of population (50,000 Generations)

0 2 4 6 8 1 0 1 2 1 4 1 6

5

1 0

1 5

2 0

2 5

3 0

Ex
ec

uti
on

 Ti
me

 (s
)

T h e N u m b e r o f T h r e a d s

 M a s t e r - S l a v e S c h e m e
 S y n c h r o n i z e d I s l a n d S c h e m e
 A s y n c h r o n i z e d I s l a n d S c h e m e

(c) The execution time to reach the fixed solution
(7064, 0.2% close to the optimum solution)

Figure 12. Comparison among Master-Slave, Synchronous Island and Asynchronous Island schemes on a multi-core architecture.

1 2 4 8 1 6

4 5

5 0

5 5

6 0

6 5

 M i x e d S c h e m e o n M u l t i - c o r e A r c h i t e c t u r e

Ex
ec

uti
on

 Ti
me

 (s
)

T h e V a l u e o f P D

(a) Execution time with different values of PD
(50,000 Generations)

1 2 4 8 1 6
7 0 5 9 . 0

7 0 6 0 . 5

7 0 6 2 . 0

7 0 6 3 . 5

7 0 6 5 . 0

7 0 6 6 . 5

Th

e A
ccu

arc
y

T h e V a l u e o f P D

 M i x e d S c h e m e o n M u l t i - c o r e A r c h i t e c t u r e

(b) Accuracy of solutions with different values of
PD (50,000 Generations)

1 2 4 8 1 6

3 4

3 6

3 8

4 0

4 2

4 4

4 6

 M i x e d S c h e m e o n M u l t i - c o r e A r c h i t e c t u r e

Ex
ec

uti
on

 Ti
me

T h e V a l u e o f P D

(c) Execution time to reach a fixed solution with
different values of PD (7064, 0.2% close to the
optimum solution)

Figure 13. Execution time, solution quality and time to a fixed solution with different values of PD, for Mixed scheme on multi-core architecture

solution among these GA schemes from Table III. Finally,
the execution time to reach the fixed solution of these GA
schemes shown in Table IV implies that the Asynchronous
Island scheme is the best considering solution quality and
execution speed.

In our analysis, we mentioned that the new Fermi ar-
chitecture can reduce the access to the global memory
because it adds Level 2 cache between SMs and the global
memory. In our experiments, we execute the Synchronous
and Asynchronous Island schemes on both GTX580 and
9800GT GPUs. The GTX580 is the Fermi architecture,
consisting of 16 SMs. On the other hand, the 9800GT is
the previous architecture, consisting of 14 SMs.

Compared to the Asynchronous Island scheme, the Syn-
chronous Island one need the extra access to the global
memory to implement the synchronization among islands.
In the experiment, each block maintains a island. We keep
the number of blocks less than the number SMs. There-
fore as the number of islands increases, the time that the
population takes to evolve should be the same, however the
Synchronous Island scheme needs to access more data in
global memory to synchronize islands.

The difference of execution time between the Syn-
chronous and Asynchronous Island schemes mainly repre-

sents the overhead of access to the global memory, which
is depicted in Fig. 14. The x-axis is the number of islands,
which is from 1 to 14. Each island has 256 individuals.
So as the number of islands increases along the x-axis, the
overhead of access to the global memory increases.

Fig. 14(a) shows the difference when a 9800GT GPU
is used. As the number of islands increases, the difference
between the Synchronous and Asynchronous Island schemes
goes up. This means the overhead of access to the global
memory becomes bigger and bigger. On the other hand,
the difference is very small and stays unchanged when a
GTX580 GPU is used, illustrated in Fig 14(b). In Fig. 14(c),
it is obvious that the difference for the GTX580 GPU is
much smaller than for the 9800GT. It is because GTX580
has Level 2 cache, so that most of overhead of access t the
global memory is eliminated by the Level 2 cache; while
9800GT does not have Level 2 cache, so that as the overhead
of access to the global memory increases, the execution time
increases dramatically.

As we mentioned in our analysis, the Island scheme on
the many-core architecture has some unique characteristics
different from the typical Island scheme.

In Fig. 15, we evaluate the execution time and solution
quality when the number of islands varies. The lines with

Table II
THE EXECUTION TIME OF DIFFERENT SCHEMES ON GPU WITH 50,000 GENERATIONS

Size of Population 512 1024 2048 4096 8192
Master-Slave Scheme 20.037 sec 39.227 sec 77.907 sec 154.248 sec 308.139 sec

Synchronous Island Scheme 7.433 sec 8.116 sec 10.29 sec 16.642 32.263 sec
Asynchronous Island Scheme 7.409 sec 8.086 sec 10.243 sec 16.602 sec 32.217 sec

Table III
THE SOLUTION QUALITY OF DIFFERENT SCHEMES ON GPU WITH 50,000 GENERATIONS

Size of Population 512 1024 2048 4096 8192
Master-Slave Scheme 7065.778293 7062.501734 7061.25624 7059.324437 7057.884367

Synchronous Island Scheme 7055.3655138 7054.8607042 7054.6954771 7054.1094868 7053.6442773
Asynchronous Island Scheme 7054.7561047 7054.3709347 7054.340533 7053.8333257 7053.406822

Table IV
EXECUTION TIME TO REACH THE FIXED ACCURACY (0.1%, 7056) OF DIFFERENT SCHEMES ON GPU

Size of Population 512 1024 2048 4096 8192
Master-Slave Scheme ∞ 125.49 sec 221.834 sec 239.582 sec 476.919 sec

Synchronous Island Scheme 4.517 sec 4.819 sec 7.300 sec 12.938 sec 24.712 sec
Asynchronous Island Scheme 4.320 sec 4.532 sec 7,120 sec 12.424 sec 21.173 sec

square symbols represent the execution time; the lines with
circle symbols represent the solutions. We keep the size
of the population and the number of generations the same.
According to the typical Island scheme, with the same size
of population, more islands give lower solution quality.

Figs. 15(a) and 15(b) show the Island scheme on the
multi-core and many-core architectures, respectively. The
variation of execution time in both figures occurs because by
the core utilization varies as the number of islands increases.
We focus on the solution quality. The solution quality in Fig.
15(a) gets worse as the number of island increases, which
perfectly obeys the typical theory of the Island scheme.
However, the solution quality in Fig. 15(b) improves when
the number of islands increases, which is totally opposite
to the typical theory of the Island scheme. This proves our
theoretical analysis that the Island scheme on a many-core
architecture is actually a complicated Cellular scheme, not
a pure Island scheme. This result also tells us that, although
the Asynchronous Island scheme is the best on the many-
core architecture, we can create more blocks to implement
more islands to further improve its performance.

So now we know, from theoretical analysis and experi-
ments, that the Mixed scheme works best on a multi-core
machine while the Asynchronous Island scheme is best on
a many-core device. We will choose the best scheme with
the best optimization configuration on each architecture to
calculate the speedup.

The conventional GPU speedup is calculated by com-
paring the execution time on the GPU with that on the
CPU without considering solution quality. Many papers use
the Serial scheme on the CPU to calculate the execution
time. The serial scheme cannot take advantage of multi-
core architecture. Therefore, the conventional calculation

of speedup is not reasonable. From Table V, we find that
the speedup can be over 10x if we use the conventional
calculation of speedup, while the speedup is actually around
4x if we fully take advantage of multi-core architecture.

Besides, the conventional calculation of speedup ignores
the solution quality. In our work, we use the execution
time to reach a fixed solution quality as the metric to
evaluate the performance of GAs on multi-core and many-
core architecture, so that we can get the GPU speedup
considering solution quality, which is illustrated in Table
VI. From the table, we find that speedup from using a
GPU is larger than without considering solution quality. It
implies that the Asynchronous Island scheme on the many-
core architecture has higher solution quality, because the
requirements of GPU architecture turn the Aynchornized
Island model into a Cellular model. Furthermore, as the
accuracy becomes higher, the GPU speedup increases, which
implies that we can use the GPU to gain more benefit of
execution speed when we need more accurate solutions.

VI. CONCLUSION

In this paper, we analyze the performance of GAs on
multi-core and many-core systems. We offer detailed the-
oretical analysis and use experiments to validate them. We
also take the solution quality into account to find which
GA scheme is the fastest for the multi-core and many-core
systems. We find that the Mixed scheme can fully take
advantage of the architecture to offer the best performance
on a multi-core system, and that the Asynchronous Island
scheme is the best scheme on many-core systems. We also
point our that the global access to the global memory is
effectively improved because of the Level 2 cache in the
Fermi architecture GPU.

0 2 4 6 8 1 0 1 2 1 4 1 6
9 0 0 0

9 2 5 0

9 5 0 0

9 7 5 0

1 0 0 0 0

1 0 2 5 0

1 0 5 0 0

Ex
ec

uti
on

 Ti
me

 (m
s)

T h e N u m b e r o f I s l a n d s

 S y n c h r o n i z e d I s l a n d S c h e m e o n 9 8 0 0 G T
 A s y n c h r o n i z e d I s l a n d S c h e m e o n 9 8 0 0 G T

(a) Comparison of the execution time using
Synchronous Island and Asynchronous Island
schemes on Nvidia 9800GT GPU (50,000 Gen-
erations)

0 2 4 6 8 1 0 1 2 1 4 1 6
9 0 0 0

9 2 5 0

9 5 0 0

9 7 5 0

1 0 0 0 0

1 0 2 5 0

1 0 5 0 0

Ex
ec

uti
on

 Ti
me

 (m
s)

T h e N u m b e r o f I s l a n d s

 S y n c h r o n i z e d I s l a n d S c h e m e o n G T X 5 8 0
 A s y n c h r o n i z e d I s l a n d S c h e m e o n G T X 5 8 0

(b) Comparison of the execution time using
Synchronous Island and Asynchronous Island
schemes on Nvidia GTX580 GPU (50,000 Gen-
erations)

0 2 4 6 8 1 0 1 2 1 4 1 6
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

Ex
ec

uti
on

 Ti
me

 In
ter

va
l (m

s)

T h e N u m b e r o f I s l a n d s

 G T X 5 8 0
 9 8 0 0 G T

(c) Difference of execution time using Syn-
chronous Island and Asynchronous Island
schemes (50,000 Generations)

Figure 14. Effect of L2 Cache in the newest Fermi architecture, reducing the penalty of access to the global memory compared to the old architecture

0 2 4 6 8 1 0 1 2 1 4 1 6

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

7 0 5 9 . 0

7 0 6 0 . 5

7 0 6 2 . 0

7 0 6 3 . 5

7 0 6 5 . 0

7 0 6 6 . 5

7 0 6 8 . 0

7 0 6 9 . 5

Ex
ec

uti
on

 Ti
me

 (s
)

T h e N u m b e r o f I s l a n d s

Th
e A

ccu
rac

y

(a) Execution time and solution accuracy with different number of
islands on a multi-core architecture (50,000 Generations)

1 6 3 2 6 4 1 2 8 2 5 6 5 1 2
2 4

2 8

3 2

3 6

4 0

4 4

7 0 5 1 . 5

7 0 5 2 . 0

7 0 5 2 . 5

7 0 5 3 . 0

7 0 5 3 . 5

7 0 5 4 . 0

7 0 5 4 . 5

Ex
ec

uti
on

 Ti
me

 (s
)

T h e N u m b e r o f I s l a n d s

 Th
e A

ccu
rac

y

(b) Execution time and solution accuracy with different number of
islands on the many-core architecture (50,000 Generations)

Figure 15. The Island scheme on the multi-core architecture exactly follows the classic Island scheme; while the Island scheme on the many-core
architecture does not, proving that it actually is a complicated Cellular scheme.

Furthermore, we find that the Island scheme on a many-
core architecture is not actually the Island model of GAs,
but the Cellular model. If we follow the typical Island model
theory, we should decrease the number of islands to improve
the solution quality. However, our findings tell us that what
we should do is exactly the opposite.

The speedup of the GPU compared to the CPU is also
evaluated in our work. We offer a reasonable comparison
method in which we choose the best implementations of
GAs on both multi-core and many-core architectures to com-
pare. Moreover, we take the solution quality into account.
The speedup of GPUs compared to CPUs increases because
the Island scheme on the many-core architecture can offer
the better solution quality. Our findings are not only useful
for GAs, but also for general optimizations on multi-core
and many-core systems, as we do much deep architecture
analysis.

ACKNOWLEDGMENT

This work was supported in part by NFSC (Grant No.
60811130528, 61003012), and the National 973 Basic Re-

search Program (No. 2007CB310900) of China. Minyi Guo
is the corresponding author.

REFERENCES

[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded
runtime system,” Journal of Parallel and Distributed Comput-
ing, vol. 37, no. 1, pp. 55 – 69, 1996.

[2] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating mapreduce for multi-core and
multiprocessor systems,” in Proceedings of the 2007 IEEE
13th International Symposium on High Performance Com-
puter Architecture. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 13–24.

[3] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang,
“Mars: a mapreduce framework on graphics processors,” in
Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, ser. PACT ’08.
New York, NY, USA: ACM, 2008, pp. 260–269.

[4] A. Beham, S. Winkler, S. Wagner, and M. Affenzeller, “A
genetic programming approach to solve scheduling problems
with parallel simulation,” in IEEE International Symposium

Table V
MANY-CORE ARCHITECTURE SPEEDUP COMPARED TO THE MULTI-CORE ARCHITECTURE, NOT CONSIDERING SOLUTION QUALITY

Generation 10,000 20,000 40,000 80,000 100,000
Serial on CPU 27.494 sec 54.851 sec 109.860 sec 219.613 sec 274.904 sec

Mixed Scheme on CPU 10.798 sec 21.022 sec 41.406 sec 82.137 sec 102.673 sec
Asynchronous Island Scheme on GPU 2.745 sec 5.454 sec 10.832 sec 21.503 sec 26.868 sec
Speedup (Compared to Serial on CPU) 10.02 10.06 10.14 10.21 10.23

Speedup (Compared to Mixed Scheme on CPU) 3.93 3.85 3.82 3.82 3.82

Table VI
MANY-CORE ARCHITECTURE SPEEDUP COMPARED TO THE MULTI-CORE ARCHITECTURE CONSIDERING SOLUTION QUALITY

Accuracy 7064.0 (0.2%) 7060.0 (0.15%) 7056.0 (0.1%)
Serial on CPU 88.058 sec 122.072 sec 222.115 sec

Mixed Scheme on CPU 36.351 sec 47.370 sec 160.423 sec
Asynchronous Island Scheme on GPU 2.994 sec 3.822 sec 5.933 sec

Speedup 13.50 13.66 15.72

on Parallel and Distributed Processing, 2008. IPDPS 2008.,
april 2008, pp. 1–5.

[5] A. Markham and N. Trigoni, “Discrete gene regulatory
networks dgrns: A novel approach to configuring sensor
networks,” in Proceedings IEEE INFOCOM, 2010, march
2010, pp. 1 –9.

[6] M. Lahiri and M. Cebrian, “The genetic algorithm as a general
diffusion model for social networks,” in Proc. of the 24th
AAAI Conference on Artificial Intelligence, 2010, pp. 494–
499.

[7] G. Renner and A. Ekart, “Genetic algorithms in computer
aided design,” Computer-Aided Design, vol. 35, no. 8, pp.
709–726, 2003.

[8] R. Arora, R. Tulshyan, and K. Deb, “Parallelization of binary
and real-coded genetic algorithms on gpu using cuda,” in
2010 IEEE Congress on Evolutionary Computation (CEC),
july 2010, pp. 1 –8.

[9] Z. Konfrt, “Parallel genetic algorithms: Advances, comput-
ing trends, applications and perspectives,” Parallel and Dis-
tributed Processing Symposium, International, vol. 7, p. 162b,
2004.

[10] T. Luong, N. Melab, and E. Talbi, “Gpu-based island model
for evolutionary algorithms,” in Proceedings of the 12th
annual conference on Genetic and evolutionary computation,
ser. GECCO ’10. New York, NY, USA: ACM, 2010, pp.
1089–1096.

[11] P. Vidal and E. Alba, “A multi-gpu implementation of a
cellular genetic algorithm,” in 2010 IEEE Congress on Evo-
lutionary Computation (CEC), july 2010, pp. 1 –7.

[12] E. Cantú-Paz, “A survey of parallel genetic algorithms,”
Calculateurs paralleles, reseaux et systems repartis, vol. 10,
no. 2, pp. 141–171, 1998.

[13] S. Xiao and W. Feng, “Inter-block gpu communication via fast
barrier synchronization,” in Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on. IEEE, pp.
1–12.

[14] Z. Michalewicz, “Genetic algorithmsnumerical optimizatio-
nand constraints,” in Proceedings of the 6th International
Conference on Genetic Algorithms. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1995, pp. 151–158.

