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Abstract 

 
We consider an optimization problem in wireless 

sensor networks (WSNs) that is to find a multicast tree 
with maximum lifetime. While a recently proposed 
distributed algorithm for this problem guarantees to 
obtain optimal solutions, its high message complexity 
may prevent such contribution from being practically 
used in resource-constrained WSNs. In this paper, we 
proposed a new distributed algorithm that achieves a 
good balance on the algorithm optimality and message 
complexity. We use a graph theoretical approach, by 
the first time, to derive the bounds of both 
approximation ratio and message complexity in an 
analytical expression for this algorithm. The 
theoretical analysis on the tradeoff between these two 
performance metrics is also validated by our 
simulation studies. 
 
1. Introduction 
 

Wireless sensor networks (WSNs) have received 
significant attention in recent years due to their wide 
range of potential civil and military applications, e.g. 
in health monitoring and coordination among doctors 
and nurses, aircraft flight control, weather forecasting, 
home appliance control, and protection against 
bioterrorism. Since each node in such networks is 
usually powered by a battery with limited amount of 
energy, the WSNs will become unusable after the 
batteries are drained. Consequently, energy efficiency 
is an important design consideration for WSNs. The 
multicast communication is also an important issue as 
many routing protocols need this mechanism to 
maintain the routes between nodes. Therefore, one 
would be interested in finding an algorithm that would 
provide the maximum lifetime to the multicast session. 
The optimization metric is typically defined as the 
duration of the network operation time until the battery 
depletion of the first node in the network. 

Some work has considered maximizing the network 
lifetime in a wireless ad hoc network for a broadcast 
session, e.g. [1, 2, 3, 4], or a multicast session, e.g. [4, 
5, 6, 7, 8]. In [9, 10], the authors extend the minimum-
energy metric by incorporating residual battery energy 
based on the observation that long-lived multicast / 
broadcast trees should consume less energy and should 
avoid nodes with small residual energy as well. 
Recently, some work has proved this optimization 
problem belonging to P [6, 7, 8, 11, 12] by proposing 
various optimal solutions. 

We note that most of the existing solutions are 
centralized, e.g. [4 - 7], meaning that at least one node 
needs global network information in order to construct 
an energy efficient multicast tree. Sometimes, this 
centralized approach is impractical for resource-
constrained WSNs in which each node has limited 
energy, bandwidth, memory, and computation 
capabilities. The most desirable work has been 
presented in [12], in which two distributed maximum-
lifetime algorithms DMMT-OA (Distributed Min-Max 
Tree algorithm for Omnidirectional Antennas) and 
DMMT-DA (Distributed Min-Max Tree algorithm for 
Directional Antennas) have been proposed for 
directional communications. In particular, it has been 
proved that the degenerate version of both distributed 
algorithms, the DMMT algorithm, for omni-directional 
antennas is globally optimal. However, its theoretical 
performance in terms of message complexity is still 
unknown so far. 

We consider this optimization problem in a general 
network that is modeled as a weighted graph with n 
nodes and m arcs. In this paper, we first reinvestigate 
the message complexity of the DMMT algorithm and 
have found that it is at the order of Ω(n2), which 
motivates us to design new distributed algorithm with 
low message complexity.  We then propose a heuristic 
algorithm that runs in a distributed fashion with 
guaranteed performance. From a graph theoretical 
approach, we prove that the proposed algorithm is a 
constant-factor approximation algorithm, i.e. its 

The 10th IEEE International Conference on High Performance Computing and Communications

978-0-7695-3352-0/08 $25.00 © 2008 IEEE

DOI 10.1109/HPCC.2008.121

532

The 10th IEEE International Conference on High Performance Computing and Communications

978-0-7695-3352-0/08 $25.00 © 2008 IEEE

DOI 10.1109/HPCC.2008.121

532

The 10th IEEE International Conference on High Performance Computing and Communications

978-0-7695-3352-0/08 $25.00 © 2008 IEEE

DOI 10.1109/HPCC.2008.121

532



approximation ratio1  is bounded by a finite number. In 
order to study the tradeoff between the algorithm 
optimality and message complexity, we derive their 
upper bounds in a closed form. By simulation studies, 
the performance of the proposed algorithm is evaluated 
and our theoretical analysis on the tradeoff between 
these two performance metrics is also validated. 

The rest of this paper is organized as follows. Section 
2 develops the system model. Section 3 analyzes the 
message complexity of the existing DMMT algorithm 
and proposes a new distributed algorithm DMMT-EQ. 
The theoretical analysis on algorithm optimality and 
message complexity of the DMMT-EQ algorithm is 
given in Sections 4 and 5, respectively. Section 6 
evaluates the performance of the distributed algorithms 
and studies the tradeoff of these two performance 
metrics using simulations. Section 7 gives the 
conclusion on the results. 
 
2. Network model 
 

In wireless sensor networks, the sensor nodes are a 
set of homogeneous low-cost electrical devices. We 
assume that the omni-directional antenna equipped for 
each node has a fixed coverage range R. A static 
wireless sensor network can thus be modeled as a simple 
graph G with a finite node set N (n = |N|) and an arc set 
A (m = |A|). A wireless link (v, u) corresponding to the 
unidirectional wireless communication channel between 
nodes v and u, separated by a distance rvu, belongs to the 
arc set A only if rvu ≤ R. A constant RF power pR is used 
for each transmitting node to cover all the neighboring 
nodes within the range R.  

We consider a source-initiated multicast with 
multicast members M = {s} ∪ D, where s is the source 
node and D is the set of destination nodes. The topology 
constructed by a tree-based multicast routing protocol 
for multicast traffic delivery is a multicast tree, which is 
rooted at the source node and includes all the destination 
nodes. A multicast tree Ts, with a tree node set N(Ts) and 
a tree arc set A(Ts), is formally defined as a rooted 
Steiner tree, which is a directed acyclic graph with a 
source node s with no incoming arcs, and each other 
node has exactly one incoming arc. A node with no out-
going arcs is called a leaf node, and all other nodes are 
internal nodes (also called relay nodes).  An important 
property of a rooted multicast tree is that there exists a 

                                                           
1  An algorithm for a problem has an approximation ratio of 

ρ(n) if, for any input of size n, the expected cost c of the 
solution produced by the algorithm is within a factor of 
ρ(n) of the cost c* of an optimal solution: max{c/c*, c*/c} ≤ 
ρ(n). 

unique directed path from the source node to any 
destination node in the tree.  

Let the battery supply εv be the energy level 
associated with each node v. At the beginning of the 
sensor node deployment, the battery supply is at the full 
energy level εmax. With the evolution of the network, the 
energy level at each node will gradually decrease until 
depletion. The lifetime of a multicast session is typically 
defined as the duration of the multicast tree operation 
time until the battery depletion of the first node in the 
network [1 - 8]. In order to avoid the premature failure 
of new-constructed multicast tree, the sensor nodes with 
energy level lower than εmin should not be in the 
multicast tree as a relay node.  

Base on the above model, the lifetime tvu of arc (v, u) 
in a multicast tree Ts is εv/pR. Let ΩM be the family of all 
multicast trees rooted at s and including all the nodes in 
D. The maximum-lifetime multicast problem can thus be 
expressed as 

( , ) ( )

( , ) ( )

1max min ( )
1min max ( )ss M

s M s

vuv u A TT

T v u A T vu

t

t
∈∈Ω

∈Ω ∈

= . (1)

Note that if we assign the arc weight function w(v, u), or 
denoted as wvu equivalently, as the reciprocal of arc (v, 
u)'s lifetime, i.e.  

min max
1 ,     R

vu v
vu v

p
w

t
ε ε ε

ε
≡ = ≤ < , (2)

the maximum-lifetime multicast problem is equivalent 
to the directed min-max Steiner tree problem. Given a 
multicast tree Ts in a network instance G(N, A) with an 
arc weight function w, we use δw(Ts) to denote the 
maximum arc weight, i.e.  

( , ) ( )
( ) max

s
w s vuv u A T

T wδ
∈

= . (3)

The tree arcs with weight δw(Ts) are called the bottleneck 
arcs. The directed min-max Steiner tree problem is to 
determine a rooted Steiner tree Ts spanning all the 
multicast members (i.e. M ∈ N(Ts)) such that the 
bottleneck arc weight is minimized. The corresponding 
optimal solution δw

* satisfies  
* min ( )

s M
w w sT

Tδ δ
∈Ω

= , (4)

which is just the reciprocal of the lifetime of the 
maximum-lifetime multicast tree.  

In the following, we briefly describe some notations 
used in the rest of the paper. Let CX denote the cut 
straddling a node partition X and N−X, in which the 
first node set X must include the source node s and the 
second node set N − X must include at least one 
destination node, i.e.  
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CX ≡ {(v, u) | v∈X ∧ u∈N−X ∧ s∈X ∧ D⊄X}. (5)
We use ψw(CX) to denote the minimum weight of the 
cut links under the arc weigh function w, i.e.  

( , )
( ) min

X
w X vuv u C

C wψ
∈

= . (6)

 
3. Distributed min-max tree algorithms 
 

As mentioned earlier, the most desirable result for the 
directed min-max Steiner tree problem is the DMMT 
(Distributed Min-Max Tree) algorithm presented in [12]. 
It runs in a distributed fashion and provides globally 
optimal solutions for wireless sensor networks with 
omni-directional antennas. While it requires low 
requirements on memory and computational capacities, 
its message complexity may be still high. In this section, 
we first give a brief description of the algorithm DMMT 
[12], which is non-strict but sufficient for us to study 
its worst-case message complexity. This 
reinvestigation would motivate us later to design a new 
distributed and scalable algorithm. 
 
3.1. The DMMT Algorithm 
 

The DMMT algorithm has an initial neighbor 
discovery process which allows each node v to aware 
the existence of all its neighbors Nv. Whenever there is 
a multicast session request (s, D) in the network but no 
route information is known, the source will iteratively 
perform the Search-and-Grow procedure, as described 
in pseudo code in Fig. 1, by propagating the Search-
Report and Grow-Request messages to construct an 
optimal min-max tree until the tree contains all the 
destination nodes. 

 
Search-and-Grow procedure 

Search:  find the minimum weight ( )( )
sw N TCψ . 

Grow: the tree Ts then grows by absorbing as 
many links as possible such that any 
included link (v, u) must satisfy 

( )( )
svu w N Tw Cψ≤  and the resulting sub-

graph still keeps a tree structure until no 
more such links can be found. 

 
Figure 1. The Search-and-Grow procedure 

 
Initially, Ts

0 contains the source node s only. We 
now consider the i-th (i ≥ 1) round of Search-and-Grow 
procedure and use Ts

i to denote the tree partially 
constructed after such procedure. In the Search phase, 

each tree node v ∈ N(Ts
i-1) first calculates an upper 

bound, denoted as ( )w vψ , of 1( )( )i
s

w N TCψ −  locally as 

1( ),
( )

+ otherwise

iR
s vu

vw

p
u N T r R

v εψ
−⎧ ∃ ∉ <⎪≡ ⎨

⎪ ∞⎩

. (7)

It then sends back a Search-Report message to its 
parent node (if v ≠ s) with the parameter ( )w vψ  if v is 
a leaf node or, otherwise, the parameter min{ ( )w vψ , 

( )w uψ  | u: (v, u) ∈ A(Ts
i-1)} after collecting all the 

Search-Report messages from its child nodes. These 
messages propagating back to the source, shown as the 
dotted arrowed lines in Fig. 2, shall eventually allow 
the source to obtain 1( )( )i

s
w N TCψ − . Consequently, the 

source initiates a Grow phase by flooding the Grow-
Request messages with the parameter 1( )( )i

s
w N TCψ −  

over the tree Ts
i-1. 

 

i
sT

1i
sT −

 
 
Figure 2. Illustration of the i-th round of Search-

and-Grow procedure 
 

After the tree-flooding of the Grow-Request 
messages, shown as the solid arrowed lines within the 
area Ts

i-1 in Fig. 2, each tree node v would further 
forward Grow-Request to a non-tree node u if wvu ≤ 

1( )( )i
s

w N TCψ − . At each new included node, the node 

from which the first Grow-Request message is received 
will be set as the parent node and all subsequent 
duplicate Grow-Request messages are simply dropped 
(e.g. the message from x to y as shown in Fig. 2). Such 
message propagation, shown as the solid arrowed lines 
in the shaded area outside Ts

i-1 in Fig. 2, will proceed 
until the incremental tree Ts

i ceases growing. If Ts
i does 

not span all destination nodes, a new round of Search-
and-Grow procedure will start shortly. Eventually, a 
multicast forwarding tree is created by several Search-
and-Grow cycles until all members join the tree. After 
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that, the final min-max tree can be obtained 
straightforward by pruning all unnecessary links (the 
branches including non-member nodes only). Such 
post-procedure starts backwards from the non-member 
leaf nodes and performs in a distributed manner. 

 
3.2. Message complexity of DMMT 
 

Note that at each round of Search-and-Grow 
procedure, the tree grows by one additional node at 
least. Therefore, we can assume that there are exactly k 
(1 ≤ k ≤ n–1) rounds of Search-and-Grow procedure to 
achieve the final multicast tree.  

 

 
 

Figure 3. Illustration of the message 
propagation in a special case for DMMT  

 
Now we consider a special case k = n – 1 for a 

message complexity analysis as shown in Figure 3, in 
which the final constructed tree is a directed chain 
staring from the source node s (= d0) and connecting all 
the destination nodes d1, d2, …, dn-1 one by one. Figure 
3 illustrates the i-th round of the Search-and-Grow 
iteration, in which the Search-Report messages 
propagate backwards from di-1 to the source and the 
Grow-Request messages forwards from the source to 
di-1 and further to di such that the tree is incremented 
from Ts

i-1 to  Ts
i by incorporating one more node di. 

The total number of messages to obtain the final tree is 
therefore 

1 2
1

(( 1) ) ( 1)n
i

i i n−
=

− + = −∑ . (8)

 
3.3. The DMMT-EQ Algorithm 
 

From the reinvestigation on the message complexity 
of the DMMT algorithm, we find that its message 
complexity could be at the order of Ω(n2), which is 
obviously not scalable and motivates us to design new 
distributed algorithms with low message complexity, 
preferably in a linear complexity. From the description 
of the Search-and-Grow procedure in Fig. 1, we have 
the following observations that will be used for the 
new algorithm design. 

Observation 1. Let Ts be the final tree obtained from 
the distributed DMMT algorithm. We observe that the 

sequence of the values 1( )( )i
s

w N TCψ − , 1 ≤ i ≤ k, found in 

the multicast tree formation is in a strict increasing 
order and the final one in the sequence is equal to 
δw(Ts), i.e.  

0 1( ) ( )( ) ... ( ) ( )k
s s

w w w sN T N TC C Tψ ψ δ−< < = . (9)

From the above general observation, we can conclude 
that the weight sequence of arcs included into the tree 
by the DMMT algorithm satisfies the following 
condition in the case as shown in the Fig. 3, 

w(d0, d1) < w(d1, d2) < … < w(dn-2, dn-1), 
which implies that the number of weights with unique 
value in the graph must be at least n – 1.  In other 
words, if the number of unique weighs is less than n – 
1, the case in Fig. 3 will not happen. ■ 

Observation 2. Suppose that the DMMT algorithm 
includes the links into the min-max spanning tree in 
the order of (e1, …, en–1), in which ei is the i-th 
included link with the weight wi. Note that the orders 
of the links that tie (i.e., with the same weights) to be 
included into the tree at the same Search-and-Grow 
iteration of the algorithm may be arbitrary in the list 
(e1, …, en–1) [12]. Therefore, we can conclude that link 
ei is the first one chosen to be included in a certain 
Search-and-Grow procedure, if and only if the variable 
xi (1 ≤ i ≤ n –1) defined below is equal to one. 

1 ,    1 1
 
0 otherwise

j i
i

w w j i
x

< ≤ ≤ −⎧
= ⎨
⎩

 (10)

Using this function, the number of the Search-and-
Grow iterations, the determining factor of the message 

complexity, can be expressed as 1
1

n
ii

x−
=∑ . ■ 

In order to reduce the message complexity, a good 
distributed algorithm with low message complexity 
would generate the list (x1, …,  xn–1) with many zero 
elements. From (10), a sufficient condition for 
satisfying xi = 0 (i > 1) in a given list (w1, …,  wn–1) 
could be 

∃ j, 1 ≤  j ≤ i –1 and wj = wi. (11)
Both results in (9) and (11) from the above 
observations imply that an approach to reduce the 
number of unique arc weights in the given network 
would improve the distributed DMMT algorithm in 
terms of message complexity. A new algorithm, called 
DMMT-EQ (DMMT with Energy-supply Quantization) 
as the extension of the DMMT algorithm, redefines the 
weigh function as follows 

min

R
vu

v

p
w

ε ε
′ ≡

+ ⋅ Δ
, in which (12)
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minv
v

ε ε
ε

−⎢ ⎥= ⎢ ⎥Δ⎣ ⎦
2 , and (13)

max min

L
ε εε −

Δ = . (14)

Note that there is only L number of values allowed 
for the new weight function w' by quantizing the 
energy supply at each node v to be a series of discrete 
values εmin + v ⋅Δε (0 ≤ v < L). The DMMT-EQ 
algorithm has the same iterative and distributed 
Search-and-Grow procedure as the DMMT algorithm, 
with the only variance that it runs under the new 
weight function w' defined in (12). Recalling that the 
DMMT algorithm generates the optimal solution [12], 
we have the following observation. 

Observation 3. Given a network example, the final tree 
Ts obtained by DMMT-EQ is optimal under the weight 
function w', while not optimal in general under the 
original weight function w, i.e.  

*( )w s wTδ δ′ ′= , (15a)
*( )w s wTδ δ≥ . ■ (15b)

From the above observations, we can conclude that 
the DMMT-EQ algorithm must have a lower message 
complexity, but on the other hand it is a suboptimal 
algorithm in terms of proving longest-lived multicast 
trees. In the following sections, we shall quantitively 
study the tradeoff between the algorithm optimality 
and message complexity of the proposed algorithm. 
 
4. Approximation ratio analysis 
 

In this section, we shall first provide several 
fundamental lemmas that can be used to derive the 
upper bound of the approximation ratio for the heuristic 
algorithm DMMT-EQ. Let Ts be the tree obtained by the 
DMMT-EQ algorithm.  Its approximation ratio ρ  can 
be expressed as  

*

( )w s

w

Tδρ
δ

= . (16)

Lemma 1. The following statements on the relationship 
between w and w' are satisfied.  

,    ( ) ( )X vu w X vu w XC w C w Cψ ψ ′′∀ = ⇒ =  (17)

,    ( ) ( )s w s w sT T Tδ δ ′∀ ≤  (18)

                                                           
2  The symbol ⎣x⎦ denotes the maximum integer that is not 

greater than x. 

Proof: The results in Lemma 1 can be obtained 
straightforward from the definitions (2) and (12) and 
thus the detailed proof is omitted here. ■ 

Lemma 2. If G(N, A) is connected, then for any weigh 
function w and any cut CX,  

* ( )w w XCδ ψ≥ . (19)

Proof: Note that there is at least one destination node z 
(z ∈ D) belonging to N − X as shown in Fig. 4, i.e. z ∈ N 
− X, because D ⊄ X. Let Ts

*
 be a min-max tree of 

network G under the weigh function w. There must exist 
an arc (v, u) ∈ A(Ts

*) connecting X and N − X (i.e. v ∈ X 
and u ∈ N − X) in order to satisfy that there must exist a 
directed path from s to the destination node z along the 
links in the tree Ts

*. Therefore, we can obtain δw
* = 

δw(Ts
*) = max {wxy | (x, y) ∈ A(Ts

*)} ≥  wvu  ≥  min {wxy | 
(x, y) ∈ CX } = ψw(CX). ■ 
 

 
 

Figure 4. Illustration of the proofs for Lemma 2 
and Theorem 1 

 
Theorem 1.  The DMMT-EQ algorithm is a constant-
factor approximation algorithm.  
Proof: Given a network G(N, A), let Ts be the multicast 
tree obtained by the DMMT-EQ algorithm under the 
weight function w'. Suppose that there are exact k 
iterations of the Search-and-Grow procedure performed 
to achieve the final tree Ts as shown in Fig. 4, in which 

1( )k
sX N T −= . (20)

Let (x, y) be the link with minimum weight over the cut 
CX under the function w, i.e.  

( )xy w Xw Cψ= . (21)

The same link must be the one with minimum weight 
over CX under the function w' as well, i.e.  

( )xy w Xw Cψ ′′ =  (22)
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that can be concluded from (17). Note that arc (x, y) is 
not necessary to be included in the tree Ts, shown as the 
dotted arrowed line in Fig. 4. Now we can derive by 
combining (18), (9) and (22) sequentially as follows.  

1( )( ) ( ) ( )k
s

w s w s w xyN TT T C wδ δ ψ −′ ′ ′≤ = =  (23)

On the other hand, we have 

min min( 1)
R R R

x x x

p p p
ε ε ε ε ε

≤ ≤
+ + ⋅ Δ + ⋅ Δ

, (24)

from the definitions of w and w', or equivalently 

min

min ( 1)
x

xy xy xy
x

w w w
ε ε

ε ε
+ ⋅Δ ′ ′⋅ ≤ ≤

+ + ⋅ Δ
. (25)

We then can substitute (25) into (23) to achieve 

min
( ) (1 )w s xy xy

x
T w wεδ

ε ε
Δ′≤ ≤ + ⋅
+ ⋅ Δ

. (26)

Finally, combining (26), (21) and (19), we obtain 

min

min

*

min

( ) (1 )

         (1 ) ( )

         (1 )

w s xy
x

w X
x

w
x

T w

C

εδ
ε ε

ε ψ
ε ε

ε δ
ε ε

Δ≤ + ⋅
+ ⋅ Δ
Δ= + ⋅
+ ⋅Δ
Δ≤ + ⋅
+ ⋅ Δ

. (27)

Therefore, the approximation ratio ρ of the DMMT-EQ 
algorithm can be express as 

*
min

max min

min max min

( )
1

  1
( )

1  1
( 1)

w s

xw

x

x

T

L
h

L h

δ ερ
ε εδ

ε ε
ε ε ε

Δ= ≤ +
+ ⋅ Δ

−
= +

⋅ + ⋅ −
−= +

+ ⋅ −

, (28)

in which h = εmax/εmin is a parameter that characterizes 
the dissimilitude of energy distribution over the network 
and the value of x is determined by the tree generated 
from DMMT-EQ as shown in (24), (22) and (20). The 
theoretical upper bound of the approximation ratio ρ is 
therefore 

11
( 1)x

h
L hρρ μ −≤ ≡ +

+ ⋅ −
. (29)

Considering various cases, we further obtain 
1 11 1

1 1
h h

h L h L hρμ− −+ ≤ ≤ +
⋅ − + + −

, 1 ;x L≤ <  (30a)

11 h
Lρμ −≤ + , 0x = . (30b)

When x > 0, we have μρ < 2 obtained from (30a), 
which is obviously bounded by a constant number. 
Recall that only nodes with relatively sufficient energy 
supply are allowed to be involved in the multicast tree, 
in other words, the h-value should be a bounded number, 
resulting in μρ to be bounded by a small number given in 
(30b) as well when x = 0. Finally, we can conclude 
from both (30a) and (30b) that DMMT-EQ is a 
constant-factor approximation algorithm. ■ 
Corollary 1. The DMMT-EQ algorithm achieves the 
global optimal solution if h = 1 or L = ∞. 

We can observe from (28) that to increase the value 
of L will improve the theoretical approximation ratio of 
the DMMT-EQ algorithm, its message complexity, 
however, would be exacerbated as analyzed in the 
following section. 
 
5. Message complexity analysis 
 

In order to study the upper bound of message 
complexity, we only need to consider the spanning tree 
case. The best message complexity is O(nlogn + m) [13] 
for the min-max spanning tree problem in undirected 
graphs. In this section, we shall analyze the message 
complexity of DMMT-EQ for the same problem in 
more general directed graphs. 

We consider the message interaction in the i-th 
round of Search-and-Grow procedure. It can be 
considered to consist of two components as shown in 
Fig. 2: (1) the tree-flooding of the messages (Search-
Report and Grow-Request) in the area Ts

i-1  and (2) the 
network-flooding of the messages (Grow-Request) in 
the area Ts

i – Ts
i-1.  The number of messages of the 

corresponding components is denoted as ct (tree-
flooding) and cn (network-flooding), respectively. Let 
ni and mi be the number of messages propagated within 
the areas Ts

i-1 and Ts
i – Ts

i-1, respectively. Thus the 
message complexity c (i.e. the total number of Search-
Report and Grow-Request messages) of the distributed 
algorithms using k rounds of Search-and-Grow 
procedure can be expressed as follows.  

c = cn + ct (31)

1

1 1
2 ( )

k k
i

t i s
i i

c n A T −

= =
= ≤∑ ∑  (32)

1

k

n i
i

c m
=

=∑  (33)

Recall that in the network-flooding, the Grow-
Request messages are delivered only to non-tree nodes, 
which will join the tree and never receive such 
messages again in the later rounds. 
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                         (a) n = 100                                          (b) n = 200                                         (c) n = 500 
 

Figure 5. The approximation ratio as a function of L under various network sizes 
 

Therefore, throughout the whole distributed algorithm, 
the network-flooding Grow-Request message passes 
on each link at most once, resulting in 

*
1

{ | }k
n i vu vu wi

c m w w mδ ′=
′ ′= = ≤ ≤∑ . (34)

The upper bound for the component cn given in (34) 
is not related to the quantization level L. We now turn 
our attention to the more interesting task for a tradeoff 
analysis on the message complexity of component ct in 
the worst case.  Suppose that our distributed algorithm 
DMMT-EQ includes the links into the min-max 
spanning tree in the order of (e1, …, en–1) with the 
corresponding list (x1, …, xn–1), in which variable xi (1 
≤ i ≤ n –1) is defined in (10). The message complexity 
of component ct in (32) can thus be rewritten as 

1
1

2( 1)n
t ii

c i x−
=

= −∑ . (35)

The upper bound of ct can be obtained by letting the 
last L–1 elements in the list (x1, …, xn–1) be equal to 
one if L < n–1. In particular, we have 

2

2

2( 1) ( 2) 1;
 

3 2 otherwise.
t c

L n L L L n
c

n n
μ

⎧ − − + − < −⎪≤ ≡ ⎨
− +⎪⎩

(36)

Considering the results in (34) and (36), we can 
conclude that the message complexity of the DMMT-
EQ algorithm is at the order of O(min(L⋅n, n2) + m). 
Finally, the results in (30) and (36) show the tradeoff 
between the algorithm optimality of DMMT-EQ and 
its message complexity. In a typical scenario, a small 
value for L, e.g. L <10, would yield a linear message 
complexity O(m) with an approximation ratio close to 
one. 

 

6. Performance evaluation 
 

In this section, we would like to evaluate the 
performances of the heuristic algorithm DMMT-EQ in 
terms of algorithm-optimality (its approximation ratio) 
and message complexity from an experimental 
perspective. The tradeoff analysis conducted in previous 
sections shall be verified by simulations as well.  

In each network example, a number of sensor nodes 
(n = 100, 200 and 500) are randomly generated within a 
square region 10 × 10. The transmission range R is set 
as the value such that the number of neighbors of a 
sensor node is equal to 10 averagely over all sensor 
nodes. The initial energy supply at each node is evenly 
distributed between εmax = 100 and εmin = 50. Because 
we study the tradeoff between theoretical bounds (i.e. 
the extreme case), only the broadcast scenarios are 
considered. Note that all parameters above can be 
arbitrary units that are consistent with the units of 
distance. 

The approximation ration defined in (16) is used to 
evaluate the real performance of the proposed DMMT-
EQ algorithm. It shows how well it performs compared 
to the optimal solutions. A value closer to one means it 
performs near to the optimum. As explained in the 
previous section, only the message component ct will be 
evaluated for a tradeoff analysis. In order to facilitate 
the comparison of message complexity under various 
network sizes, we use the metrics ct/n, called the 
normalized message complexity, to evaluate the 
scalability of the DMMT-EQ algorithm. 
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                         (a) n = 100                                        (b) n = 200                                         (c) n = 500 
 

Figure 6. The normalized message complexity as a function of L under various network sizes 
 

The results given in Figs. 5 and 6 are based on 100 
examples for each simulation setting. We observe that 
the correctness of our derived bounds holds for all cases. 
The tradeoff of these two performance metrics is also 
verified, i.e. using larger values of L will significantly 
improve the approximation ratio of the heuristic 
algorithm, while it would also incur higher message 
complexity. Another important observation is that the 
average performances, in terms of both metrics, are 
quite good even using small L (e.g. L = 5). 
 
7. Conclusion 
 
In this paper, we proposed a new distributed algorithm 
DMMT-EQ for the problem of longest-lived multicast 
communications in WSNs. We derive the theoretical 
bounds of its approximation ratio and message 
complexity. The tradeoff of these two performance 
metrics are investigated thoroughly from both 
theoretical and experimental perspectives. 
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