
The Journal of Supercomputing, 29, 157–170, 2004
C© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Divide-and-Conquer Algorithm for Irregular
Redistribution in Parallelizing Compilers

HUI WANG hwang@u-aizu.ac.jp
MINYI GUO minyi@u-aizu.ac.jp
DAMING WEI dm-wei@u-aizu.ac.jp
School of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan

Abstract. In order to achieve higher load balancing, it is necessary to solve irregular block redistribution prob-
lems, which are different from regular block-cyclic redistribution. High Performance Fortran version 2 (HPF-2)
provides irregular distribution functionalities, such as GEN BLOCK and INDIRECT. This paper is devoted to
develop an efficient algorithm that attempts to obtain near optimal scheduling while satisfying the conditions
of minimal message size of total steps and the minimal number of steps for irregular array redistribution. The
algorithm intends to decrease the computation costs by dividing the whole block into sub-blocks and solving the
sub-problems accordingly, and then merging them together to get final results. Simulation results show that our
algorithm has comparable performance with a relocation algorithm developed previously (H. Yook and M. Park.
Proceedings of the IASTED International Conference Parallel and Distributed Computing and Systems, Nov. 3–6,
MIT, Boston, USA, 1999).

1. Introduction

In many scientific and engineering applications, distribution of an array in a parallel pro-
gram cannot remain fixed throughout the program. It is very often to change the distribution
of an array at run-time. At that time, each processor is required to know which local
elements of the array should be sent to the specified processor, and which elements of
the array should be received from the specified processor. So an efficient redistribution
communication algorithm is needed to relocate the elements of the array among different
processors and perform the necessary communication among different processors. Clearly,
it is much faster to access local data than to access remote data located at other nodes in dis-
tributed memory multi-computers, since the remote access incurs expensive inter-processor
communication overhead. Therefore, it is important to partition the program and data effi-
ciently among processors so that it minimizes communications while maximizing potential
parallelism.

As a data parallel programming language, High Performance Fortran version 2 (HPF-2)
[3] is an informal standard for extensions to FORTRAN 95 to assist its implementation on
parallel architectures. HPF-2 provides compiler directives for programmers to specify data
mapping, such as array distribution. For the generalized block distribution, GEN BLOCK
distribution scheme allows unequal-sized consecutive segments of an array to be mapped
onto consecutive processors [3]. It is quite useful since many applications need data redis-
tribution during computation since different phases there require different data mapping in

158 WANG, GUO AND WEI

order to execute loops efficiently without any data dependencies [9].

PARAMETER (S = /3, 5, 9, 4, 13, 4, 2/)
!HPF$ PROCESSORS P(7)

REAL A(40), B(40), new(7)
!HPF$ DISTRIBUTE A(GEN BLOCK (S)) ONTO P
!HPF$ DYNAMIC B

new = /2, 5, 3, 6, 8, 6, 10/
!HPF$ REDISTRIBUTE A(GEN BLOCK(new))

Above is an example of the GEN BLOCK scheme and the redistribution in HPF-2. Given
the above specifications, array elements A(1:3) are mapped onto P0, A(4:8) are mapped onto
P1, so on, and A(39:40) are mapped onto P6. After executing REDISTRIBUTE directive,
A is redistributed based on the new array, that is, a new distribution scheme is formed such
as A(1:2) onto P0, A(3:7) onto P1, and so on.

How to implement an efficient redistribution routine is quite important in parallel compil-
ers. In this paper, we propose an efficient algorithm—a divide-and-conquer algorithm—that
attempts to obtain near optimal scheduling while satisfying the conditions of minimal mes-
sage size of total steps and the minimal number of steps for irregular array redistribution.
The algorithm intends to decrease the computation costs by dividing the whole block into
sub-blocks and solving the sub-problems accordingly, and then merging them together to
get final results. Finally, simulation results show that our algorithm has comparable perfor-
mance with other algorithms developed previously.

2. GEN BLOCK redistribution communication models

In this section, GEN BLOCK redistribution communication models are implemented. A
redistribution R is a set of routines that transfer all the elements in a set of source processors
SP to a set of target processors TP. Generally, the sending and receiving phases indicate
that the array redistribution problem comprises two sub-problems. First, the array to be
redistributed should be efficiently scanned or processed in order to build all the messages that
are to be exchanged between processors. Then, all messages must be efficiently scheduled
so as to minimize communication overhead. Each processor generates massages to send to
other processors. The sizes of the messages are specified by values of a user-defined integer
for array mapping from source processor to target processor.

To develop a communication schedule, we can use either blocking scheduling algorithms
or non-blocking scheduling algorithms. The blocking scheduling algorithms are based on
blocking communication primitives, while the non-blocking scheduling algorithms are
based on non-blocking communication primitives. In general, because the non-blocking
scheduling algorithms avoid excessive synchronization overhead, they are faster than the
blocking scheduling algorithms. However, the non-blocking communication primitives need
as much buffering as the data being redistributed [5, 13]. It makes non-blocking scheduling
algorithm much expensive in some situations. In this paper, all of our discussions are based
on blocking communication primitives.

DIVIDE-AND-CONQUER ALGORITHM FOR IRREGULAR REDISTRIBUTION 159

In distributed memory parallel computing, the inter-processor communication overheads
can be represented using an analytical model of typical distributed memory machines. To
represent the communication time of a message passing operation, the model introduces
two parameters: the start-up time Ts and the unit data transmission time Tm . Based on the
one-step communication time in Eq. (1), Eq. (2) provides the total communication time of
collective message passing delivered in multiple communication steps.

Tstep = Ts + m × Tm, (1)

Ttotal =
∑

Tstep. (2)

Since node contention considerably influences overhead in communication among
source processors and target processors, a processor can only receive at most one mes-
sage from one other processor in each communication step. Similarly, a processor can only
send at most one message to one other processor in each communication step. Unlike reg-
ular redistribution, it has not a cyclic message-passing pattern. If SPi sends messages to
both TP j−1 and TP j+1, therefore it must certainly send a message to TP j , vice versa, where
SPi and TP j−1, TP j , and TP j+1 are a source processor node and target processor nodes,
respectively.

Figure 1 shows the redistribution communication of the example given above and de-
scribes the sending and receiving messages for GEN BLOCK scheme in detail. In this
example, there are 7 source processors and 7 target processors, respectively. Source pro-
cessor SP0 has 3 unit data, and target processor TP0 has 2 unit data. After the messages

Figure 1. An example of redistribution communication. (a) source processors’ and target processors’ messages
distribution; (b) messages communication between source processors and target processors.

160 WANG, GUO AND WEI

Figure 2. The matrix implementation of the above example. The order of the message is labelled in a smaller
font. S and T represent source processors and target processors, respectively.

distributed onto source and target processors, it is easy to figure out how many messages
each source processor should send out, to which target processor it should send out, and
how many unit data it should send to the target processor. Clearly, in this example, SP0

sends 2 unit data message to TP0, and 1 unit datum message to TP1, and so on.
We can consider the length of a message sent from source processor SPi to target processor

TP j as an element mi, j of a redistribution table. Figure 2 shows the redistribution table of
the above example, where the row and column represent the indexes of source processors
and target processors, respectively. In Figure 2, SP0 sends 2 unit data to TP0, and sends one
unit data to TP1. SP1 sends 4 unit data to TP1, and sends one unit datum to TP2, and so
on. Otherwise, if there is no communication between the source and target processors, the
corresponding entry is zero. The zero-value elements are ignored.

Since a neighbor message set (NMS) can be defined as a set of the messages (including
more than one message) that to be sent from same processor or to be received by same
processor, an NMS is a set of elements in the same row or same column in a redistribution
table. An NMS can be labelled accordingly as NMSk , (k = 1, 2, 3, . . .), from left-up side
to right-down side in a redistribution table. Obviously, it is possible that a message belongs
to two different NMSs, or NMSk ∩ NMSk ′ (k �= k ′), which is defined as a link message.
Therefore, the GEN BLOCK redistribution problem has the following properties:

(1) The total number of the neighbors of an element mi, j , NTotal = Bleft + Bright + Bup +
Bdown ≤ 2, where Bleft (or, Bright, Bup, Bdown) is 1 if mi, j has a neighbor in that direction,
or is 0 if it has not. It indicates that one message can belong to at most two different
NMSs.

(2) In a redistribution table, the total number of non-zero elements Nm satisfies with
max(l, n) ≤ Nm ≤ l + n − 1, where l and n are the sizes of row and column, re-
spectively. (It is reasonable to eliminate a column or a row if all elements in a column
or a row are zero. Assume that there is at least one element in a column or a row. Thus

DIVIDE-AND-CONQUER ALGORITHM FOR IRREGULAR REDISTRIBUTION 161

the total number of messages Nm satisfies Nm ≥ max(l, n). If there are total l + n
messages or more, at least a cyclic message passing pattern, {mi, j , m j,i }, or a conflict,
{mi, j , mi, j ′ , mi ′, j , mi ′, j ′ } can be found.)

(3) Elements in same row or same column cannot be scheduled in same time step. Clearly,
elements in same row or same column represents messages sent or received by the same
processor.

To efficiently design redistribution scheduling algorithms, it is better to concentrate on
how to organize the order of each message so that the total costs for GEN BLOCK redis-
tribution can be minimized. The aims for the GEN BLOCK redistribution algorithm are to
find:

(1) Minimal communication step. The minimum number of communication steps is the
maximum number of fan-out (fan-in) arrows of the processor nodes in Figure 1(a), or
the maximum number of elements in NMSs. Since the messages in the same neighbor
message set cannot be scheduled in same communication step, size of total commu-
nication steps should be equal to or larger than the maximum number of elements in
NMSs. This is called minimal step condition in the following context.

(2) Minimal the message size of total steps. The total communication time is a linear
function of the message size of total steps. In order to reduce total communication
time, one efficient way is to minimize the size of total steps. This is called minimal size
condition in the following context.

3. Divide-and-conquer algorithm

In the following discussion, for the sake of simplicity, we concentrate on two-dimensional
array redistribution. Our divide-and-conquer algorithm can also be generalized to that of
higher dimensions.

To develop a redistribution algorithm which satisfies both (1) and (2) goals is a quite
difficult task. Therefore, we propose a divide-and-conquer redistribution algorithm which
contains three parts: (1) breaking a problem into a set of sub-problems that are similar
to the original problems with smaller size, (2) solving these sub-problems recursively,
and (3) creating a solution to original problem by combining these solutions to sub-
problems together. This algorithm can be viewed as a divide-and-conquer algorithm, which
has been widely used in binary searching, Fast Fourier Transformation, matrix inversion,
etc.

When breaking the problem into smaller units, we first separate the problem into a set
of sub-problems where each sub-problem can be scheduled independently. After obtaining
the solutions to sub-problems, we combine them together to form a solution to the original
problem. Each neighbor message set, NMSi , is a unit of a sub-problem. After dividing a
redistribution table into NMSs, we group two neighboring NMSs as a pair, such as {NMS1,
NMS2}, . . . , {NMS2i+1, NMS2i+2}, and so on. Figure 3 shows the separating and grouping
processes for the example shown in Figure 2. In this example, there are totally 8 NMSs,
and they are grouped into 4 pairs: {NMS1, NMS2}, {NMS3, NMS4}, {NMS5, NMS6},

162 WANG, GUO AND WEI

Figure 3. Breaking the problem by separating NMSs and dividing into the smaller units for the example in
Figure 1.

{NMS7, NMS8}. The example in Figure 3 indicates that all separations are taken place at
the link messages.

After obtaining the pairs of NMSs, we begin the merging processes to produce the
scheduling. First, recursively merge neighboring NMSs pairs. In phase 0, we generate the
scheduling table for each NMSs pairs. There are total k pairs, while each pair forms a
group. In phase 1, scheduling tables for the group of {NMS1, NMS2, NMS3, NMS4}, . . . ,
the i-th group of {NMS4i+1, NMS4i+2, NMS4i+3, NMS4i+4}, . . . , will be merged
together. Recursively, in phase j , scheduling tables for the i-th group of {NMS j×(i+1),
NMS j×(i+1)+1, . . . , NMS j×(i+ j)} will be merged together.

Then, generate the scheduling tables for each group. The generating processes are quite
same for each group in every phase. First, we detect the conflict information, and pick up the
link message and those messages scheduled with it. Then sort the remaining messages to
make an optimal solution. If a message has more possible position in the scheduling table,
it stands with its closest ceiling. Finally, the link message together with those scheduled
messages, will be added into the scheduling table.

Figure 4 shows the merging processes from the smallest units to generate the
scheduling tables recursively for the above example. In Figure 4, we assume that the
length of total messages in step Si , L Si , satisfies L Si ≥ L S(i+1). In phase 0, m2, m4,
m7, and m11 are link messages. According to the length of messages, the algorithm
generates scheduling tables {m3, m1, m2}, {m3, m5, m4}, {(m6, m8), (m9, m5), m7}, and
{(m10, m12), m11, (m9, m13)} for each pair, respectively. In a scheduling table, all data are
in descending order. For example, here m3 ≥ m1 ≥ m2, and m6 ≥ m8. However, it is difficult
to determine which is larger, m8 or m5, just from the expression {(m6, m8), (m9, m5), m7}.

DIVIDE-AND-CONQUER ALGORITHM FOR IRREGULAR REDISTRIBUTION 163

Figure 4. To form the solution to the original problem, it merges from the smallest units recursively for the above
example. In each phase, these active link messages in merging processes are emphasized with underscores.

In phase 1 of Figure 4, we detect that m3 and m9 are link messages. Further merging is
straight forwarded for the left pair because both of them have the link message m3 in the same
scheduling step. When the link message m9 is in the different scheduling step, we rearrange
m9 and its related messages to perform optimal scheduling results. Similar situation happens
in phase 2. Finally we obtain the scheduling table for the whole redistribution problem.

Our algorithm can generate sub-optimal communication scheduling table. It satisfies
minimal size condition (higher priority) and minimal step condition. The algorithms are
described in Figures 5 and 6. The time complexity of our algorithm can be estimated as
O(k(log k)2), where k is the number of link messages, because message sorting processes
need O(k log k), and the merging processes need O(log k) steps totally.

4. Performance and discussion

To evaluate the effect of our algorithm, we implement the divide-and-conquer algorithm
and compare it with the relocation algorithm [14]. The relocation algorithm consists of
two phases. First, it sorts all messages in descending order, and allocates messages one by
one. When it cannot allocate a message within the minimal step condition, it goes to the
relocation phase. When dividing the schedule into two sets: a left-side set and a right-side

164 WANG, GUO AND WEI

Figure 5. Divide-and-conquer algorithm for GEN BLOCK redistribution.

set in the relocation phase, both of them are kinds of GEN BLOCK redistributions and can
be treated as an input of the relocation algorithm. One of them may be disregarded because
one of them does not satisfy the minimal size condition.

The simulation program generates a set of random numbers in a given range as the size
of message. Here we suppose that the number of source processors equals to the number of
target processors. However, it is possible that some processors do not contain any elements.
To keep the balance between source processors and target processor, we also suppose the
total size of messages in both source processors and target processors are equal.

The input parameters of the program are two arrays: a message set of source processor
and a message set of target processors. Obviously, the scheduling matrix can be generated
according to the input arrays. When the program runs, the algorithm presents a communi-
cation scheduling table, which figures out the time step for each message.

In our experiments, the up-bound of message size is one of the important input parameters.
Normally, a random number is generated according to the up-bound of message size. What
we concern here is the effects of message size to the simulation results of redistribution
algorithms. In Figure 7, the events percentage is plotted as a function of the message
size. The total generated events is about 100000 for each message size. Events percentage
shown in Figure 7 means the number of events is normalized. The up-bound message
size changes from 10 to 1280. For each different message size, 3 weighted tuples are
compared. In Figure 7, “DCA Better” represents the percentage of the number of events that
the divide-and-conquer algorithm has lower total communication time than the relocation

DIVIDE-AND-CONQUER ALGORITHM FOR IRREGULAR REDISTRIBUTION 165

Figure 6. Merging sub-problems methods in divide-and-conquer algorithm for GEN BLOCK redistribution.

Figure 7. The events percentage of both the divide-and-conquer algorithm and the relocation algorithm is shown
as a function of the message size with 8 processors.

166 WANG, GUO AND WEI

Figure 8. The normalized difference percentages of average communication times of the relocation algorithm
and the divide-and-conquer algorithm, (R A − DCA) × 100/DCA, are shown as a function of message size with 8
processors.

algorithm, while “RA Better” gives the reverse situation. If both algorithms have same total
communication time, events are collected into “Same Results” cylinder. The simulation
results in Figure 7 are generated with 8 processors as an example. From the figure, we can
see the message sizes from 40 to 640 give quite similar results, while the results from the
message sizes 10, 20, or 1280 are a little bit deviation from the others. Generally, the message
size of 100 is selected for generating redistribution events in the rest of this paper. Before that,
Figure 8 is plotted to validate whether it is reasonable or not to use the message size of 100.
The normalized difference percentages of average communication times of the relocation
algorithm and the divide-and-conquer algorithm, (R A − DC A) × 100/DC A, are shown as
a function of message size from 10 to 1280. Similar to the conclusion derived from Figure 7,
results with message sizes from 40 to 640 are close, while others show the abnormalities.

Figure 9 shows the simulation results of both the divide-and-conquer algorithm and the
relocation algorithm with different number of processors. For each different number of
processors, events percentages for “DCA Better”, “RA Better”, and “Same Results” are

Figure 9. The events percentage of both divide-and-conquer algorithm and the relocation algorithm is plotted
with different number of processors.

DIVIDE-AND-CONQUER ALGORITHM FOR IRREGULAR REDISTRIBUTION 167

Figure 10. The averaged total communication times of both the relocation algorithm and the divide-and-conquer
algorithm as a function of the number of processors.

compared in the figure. The number of processors stride from 8 to 1024. Most of results
are filled into “Same Results” cylinder, while both the divide-and-conquer algorithm and
the relocation algorithm have chances in the ascendant. The results indicate that both the
relocation algorithm and the divide-and-conquer algorithm have good performance.

The average communication times for both the divide-and-conquer algorithm and the
relocation algorithm are shown in Figure 10. The average communication time in an event
increases from about 100 to about 1000 with the increasing of the number of processors.
The simulation results are quite same from both algorithms. Figure 11 shows the normalized
difference percentages of average communication times of the relocation algorithm and the
divide-and-conquer algorithm. The differences between the divide-and-conquer algorithm
and the relocation algorithm is quite small, while each of them dominates one half of
different processors.

Both the divide-and-conquer algorithm and the relocation algorithm have advantages
and disadvantages. One disadvantage of the relocation algorithm exists in its relocation
phase. In the relocation phase, the bad link message cannot be allocated to other time

Figure 11. The normalized difference percentages of averaged total communication times of the relocation
algorithm and the divide-and-conquer algorithm for different number of processors.

168 WANG, GUO AND WEI

steps but only two time steps, for the left-side relocation and for the right-side relocation,
respectively. Obviously, it is possible to include other time steps in order to reduce the total
communication time. The divide-and-conquer algorithm requires n steps totally to merge n
link messages. But the disadvantage in the divide-and-conquer algorithm is that many bad
link messages can be generated during the processing of merging. For example, in phase i,
the link message can be joined two NMSs together naturally. But in phase i-1, it is possible
that the time step of the link message is changed, so that the link message becomes one of
bad link messages. Bad link messages make the scheduling quite inefficient. It indicates the
list scheduling, which is the first part of the relocation algorithm, is an efficient algorithm
for GEN BLOCK redistribution.

5. Related work

Recent work on array redistribution can be divided into two categories: regular redistribution
and irregular redistribution. Many researches have mainly concentrated on the efficient
index computation for generating the communication messages to be exchanged by the
processors involved in the redistribution. Efficient index set computation has been used to
compile array redistribution by assigning source array A to target array B [5]. A non-blocking
communication algorithm presented by Thakur et al. [13] can perform the computation and
communication in parallel which makes it more efficient than blocking communication. A
redistribution technique based on the descriptors called pitfalls has been presented in [12].

The following papers concentrate on the communication optimization in redistribution. A
generalized circulant matrix formalism was proposed by Lim et al. [8] in order to reduce the
communication overheads for CYCLIC(n)-to-CYCLIC(kn) redistribution. Park et al. [10]
proposed an extended algorithm that reduces the overall time for communication by consid-
ering the data transfer, communication schedule, and index computation costs. Kalns and
Ni [4] presented a mapping technique which can map data to logical processor to minimize
the total amount of communication data for BLOCK-to-CYCLIC(n) redistribution.

Guo and Nakata [1] developed techniques to reduce overheads in both index computation
and inter-node communication. Guo et al. [2] presented an efficient index computation
method and generated a schedule that minimizes the number of communication steps and
eliminates node contention in each communication step.

There are relative little papers on irregular array redistribution. However, as we may see, it
is an important problem in HPF-2. Leair et al. [6] have implemented the GEN BLOCK data
distribution in PGHPF, a High Performance Fortran compiler [11]. Some simple benchmark
results show that the GEN BLOCK distribution increasing the speed up to twice over regular
distribution.

Yook and Park [14] proposed an algorithm for the redistribution of one-dimensional
arrays in GEN BLOCK. The algorithm exploits a spatial locality in message passing from
seemingly irregular array redistribution. The algorithm attempts to obtain near optimal
scheduling by trying to minimize the size of communication step and the number of steps.
The algorithm shows good performance in typical distributed memory machines.

There exists a performance tradeoff between the expected higher efficiency of a new
distribution for subsequent computation and the communication cost of redistributing the

DIVIDE-AND-CONQUER ALGORITHM FOR IRREGULAR REDISTRIBUTION 169

data among processor memories. Lee et al. [7] focused on reducing the communication cost
in GEN BLOCK redistribution using a logical processor reordering method. According to
their experiments on CRAY T3E, the algorithms show good performance comparing typical
GEN BLOCK redistribution, which does not reorder logical processor numbers.

6. Conclusion

In HPF-2 compilers, GEN BLOCK array redistribution makes unequal-sized blocks map-
ping possible. An efficient algorithm for GEN BLOCK distribution is developed to achieve
sub-optimal solutions. The divide-and-conquer redistribution algorithm first breaks the
problem into a set of sub-problems, and then solves these sub-problems recursively and
creates the solution to original problem by combining these solutions to sub-problems.

Results from our algorithm are compared with these from the relocation algorithm. The
results indicate that both of them have good performance on GEN BLOCK redistribution.
We discuss the advantages and disadvantages of both the divide-and-conquer algorithm and
the relocation algorithm.

Multi-dimensional GEN BLOCK array redistribution is extended versions of one-
dimensional array redistribution. Thus, the minimal step condition and the minimal size
condition are also important in multi-dimensional GEN BLOCK redistribution schedul-
ing. Multi-dimensional GEN BLOCK array redistribution scheduling can be performed by
extending our algorithm.

References

1. M. Guo and I. Nakata. A framework for efficient data redistribution on distributed memory multicomputers.
The Journal of Supercomputing, 20(3):243–265, 2001.

2. M. Guo, I. Nakata, and Y. Yamashita. Contention-free communication scheduling for array redistribution,
Proceedings of the International Conference on Parallel and Distributed Systems, Dec. 1998, pp. 658–667.

3. High performance fortran forum. High Performance Fortran Language Specification version 2.0, Rice Uni-
versity, Houston, TX, Jan. 1997.

4. E. T. Kalns and L. M. Ni. Processor mapping techniques toward efficient data redistribution. IEEE Transactions
on Parallel and Distributed Systems, 6(12):1234–1247, 1995.

5. S. D. Kaushik, C.-H. Huang, and P. Sadayappan. Efficient index set generation for compiling HPF array
statements on distributed-memory machines. Journal of Parallel and Distributed Computing, 38(2):237–247,
1996.

6. M. Leair, D. Miles, V. Schuster, and M. Wolfe, Euro-Par99 Parallel Processing 5th International Euro-Par
Conference, Toulouse, France, Aug. 31–Sept. 3, 1999, Proceedings, Springer-Verlag LNCS 1999.

7. S. Lee, H. Yook, M. Koo, and M. Park, Processor reordering algorithms toward efficient GEN BLOCK
redistribution. Proceedings of the 2001 ACM Symposium on Applied Computing, Las Vegas, Nevada, USA,
2001, pp. 539–543.

8. Y. W. Lim, P. B. Bhat, and V. Prasanna. Efficient algorithms for block-cyclic redistribution of arrays. IEEE
Symposium on Parallel and Distributed Processing, Oct. 1996.

9. Y. Pan and J. Shang. Efficient and scalable parallelization of time-dependent Maxwell equations solver using
high performance Fortran, The 4th IEEE International Conference on Algorithms & Architectures for Parallel
Processing, Hong Kong, Dec. 11–13, 2000, pp. 520–531.

10. N. Park, V. K. Prasanna, and C. S. Raghavendra. Efficient algorithms for block-cyclic array redistribution
between processor sets. IEEE Transactions on Parallel and Distributed Systems, 10(12):1217–1239, 1999.

170 WANG, GUO AND WEI

11. PGHPF, a High Performance Fortran compiler, http://www.pgroup.com/products/pghpfindex.htm.
12. S. Ramaswamy, B. Simons, and P. Banerjee. Optimizations for efficient array redistribution on distributed

memory multicomputers. Journal of Parallel and Distributed Computing, 38:217–228, 1996.
13. R. Thakur, A. Choudhary, and G. Fox. Runtime array redistribution in HPF programs. Proceedings Scalable

High Performance Computing Conference, May 1994, pp. 309−316.
14. H. Yook and M. Park. Scheduling GEN BLOCK array redistribution, Proceedings of the IASTED International

Conference Parallel and Distributed Computing and Systems, Nov. 3–6, 1999, MIT, Boston, USA.

