
The Volume and Evolution of Web Page Templates

David Gibson
IBM Almaden Research

Center
650 Harry Road

San Jose, CA 95120.

davgib@us.ibm.com

Kunal Punera
Dept. of Electrical and
Computer Engineering

University of Texas at Austin
Austin, TX 78751

kunal@lans.ece.utexas.edu

Andrew Tomkins
IBM Almaden Research

Center
650 Harry Road

San Jose, CA 95120.

tomkins@us.ibm.com

ABSTRACT
Web pages contain a combination of unique content and
template material, which is present across multiple pages
and used primarily for formatting, navigation, and brand-
ing. We study the nature, evolution, and prevalence of these
templates on the web. As part of this work, we develop new
randomized algorithms for template extraction that perform
approximately twenty times faster than existing approaches
with similar quality. Our results show that 40–50% of the
content on the web is template content. Over the last eight
years, the fraction of template content has doubled, and
the growth shows no sign of abating. Text, links, and total
HTML bytes within templates are all growing as a fraction
of total content at a rate of between 6 and 8% per year.
We discuss the deleterious implications of this growth for
information retrieval and ranking, classification, and link
analysis.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms
and Problems—Pattern Matching ; I.5.4 [Pattern Recog-
nition]: Applications—Text processing

General Terms
Algorithms, Experimentation, Measurements

Keywords
templates, data mining, web mining, data cleaning, algo-
rithms, boilerplate

1. INTRODUCTION
Template material is common content or formatting that

appears on multiple pages of a site. Almost all pages on the
web today contain template material to a greater or lesser
extent. Common examples include navigation sidebars con-
taining links along the left or right side of the page; corpo-
rate logos that appear in a uniform location on all pages;
standard background colors or styles; headers or dropdown
menus along the top with links to products, locations, and

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

contact information; banner advertisements; and footers con-
taining links to homepages or copyright information. The
template mechanism is used to support many purposes, par-
ticularly navigation, presentation, and branding.

There is no single dominant mechanism by which tem-
plates appear in web pages. At one extreme is web site
design software that allows a user to single-handedly man-
age a medium-size web site, formally editing and applying
templates to groups of pages as necessary. At the other ex-
treme is the personal web site in which the owner copies the
same fragment of HTML from one page to the next in order
to provide a uniform look and feel, and diligently avoids the
overhead of changing templates too frequently. Other famil-
iar mechanisms include application servers that implement
page templates in code; dynamically generated pages that
wrap content into a template; portal servers that arrange
content into cells with arbitrary content around them; and
content management systems that manage templates.

On today’s web, templates are a significant cause for con-
cern. As we show below, templates are responsible for roughly
40–50% of the content on the web. The repeated occur-
rence across a website of content purporting to be origi-
nal misleads search engines, page classification, clustering,
link analysis, and other applications providing advanced text
analysis on web content. Furthermore, an accurate assess-
ment of whether the content of a page has changed is critical
in several applications. First, crawlers may behave more ef-
ficiently based on knowledge of the change rate of pages.
Second, alerting applications should not alert users due to
template changes. And third, any applications that support
trending over web data should not be misled into believ-
ing that a site has changed significantly due to a template
modification.

Further, we show that the proportion of templated text on
the web has been growing consistently for nearly a decade,
and thus all these applications will need even greater aware-
ness of templates in coming years.

On the other hand, effectively recognizing templates brings
several advantages. Once extracted, they can be used to
identify key pages on a website, such as the products page of
a company, or the entry point or each school of a university.
Pages that share a template can also be grouped together
into a cluster that may not be apparent using other mech-
anisms. Finally, once templates have been identified, any
analysis algorithms can realise a nearly two-fold improve-
ment in storage and processing requirements, by exploiting
redundancy.

830

Unfortunately, no simple and completely effective algo-
rithm for template extraction is known. Techniques for the
problem fall into two families. Local techniques operate on
an individual page without reference to other pages, while
global techniques consider a family of pages together and ex-
ploit the property that templates occur many times. Purely
local techniques are effective at stripping away certain kinds
of banners and navigational material, but these techniques
are only heuristics and are somewhat error-prone as the web
changes. It is quite common, for example, for certain para-
graphs of textual content in the middle of a page to be
templates—detecting this without reference to global infor-
mation is essentially impossible. Thus, effective template
detection requires global techniques. We perform our study
via two global template detection algorithms.

1.1 Our Contributions
Our contributions are primarily focused on measuring the

nature and extent of templating on the web. However, in
order to perform this task, we also develop efficient algo-
rithms for template extraction which are appropriate for in-
tegration into the workflow of a traditional large-scale web
crawler. These algorithms are simple to implement, and al-
low detection and removal of templates “on-the-fly”, using
very little memory footprint per site.

We report on two studies. In the first, we randomly sam-
ple two hundred sites from a large crawl containing approx-
imately fifty million sites and two billion pages. We hand-
classify this site-level sample into seven categories such as
personal sites, catalog sites, community sites and so on. We
then analyze the nature and prevalence of templates within
sites belonging to each category. For each site, we create a
uniform random sample of the crawled content from the site
of approximately two hundred pages, and study the com-
monality of templating across this sample; thus, our study
captures only templates that occur on some small fraction of
the pages on a site. In this context, we present a novel visu-
alization technique which effectively captures the template
structure of an entire site.

In our second study, we consider the evolution of template
usage. Using crawls from the Internet Archive [5], we study
multiple snapshots of pages from two collections: the hand-
classified sites from our first study, and the sites studied
by Ntoulas et al. [9]. We gathered approximately 72K page
instances during this study, over 1380 snapshots of time. We
show how template usage has changed over the last 8 years,
and offer some thoughts about what these studies portend
for the future.

Our primary conclusions are the following:
Template volume: According to our studies, the vol-

ume of templated material is 40–50% of the total bytes on
the web, and the growth shows no signs of slowing. This
has several implications. First, as bandwidth, tooling, and
browser capabilities increase, there will be ever more com-
plex and costly templates attached to pages. As browsing
patterns show, users tend to visit multiple pages when they
visit a site, suggesting that a more sophisticated approach
to client-side template caching would be in order. Second,
for organizations like search engines and archives that store
significant amounts of web content, our results suggest that
documents organized by site and compressed schemes that
allow implicit or explicit references to site-level templates
will show significant savings. Finally, analytical operations

in a domain with inline template extraction will run twice as
fast as they do today, rather than spending half their time
re-processing the same template bytes.

Template types: Different types of web sites show very
different templating behavior. While media sites are often
presented as examples of aggressive templating, and there
are high-profile examples of such sites, we show that the
average media site (typically small local media outlets) in
fact use templates far less frequently than the rest of the
web. On the other hand, catalog sites dedicated to present-
ing items favorably to consumers offer templates covering
60% or more of their content.

Rate of change: We show that the duration of the aver-
age template is quite similar to the duration of the detem-
plated region of the page. We also consider changed pages,
and study the distribution of the magnitude of change. We
show that this distribution is weighted more heavily towards
the tail (i.e., changes of large magnitude) once the template
content has been removed, suggesting that pages do in fact
change more or less completely with significant frequency.

Links, text, and html: The fraction of HTML content,
and hyperlinks, that appear in templates are comparable,
ranging from about 35% to about 50% over a number of data
sets. The fraction of detagged content in templates shows
a somewhat broader range, as low as 24% in some cases
to as high as 53% in others. The rates of change of these
three quantities range from 6 to 8% per year. There are two
key implications. First, the graph structure of the web is
increasingly dominated by boilerplate, suggesting that link
analysis algorithms require an understanding of templates.
Second, all categories of template usage are on the rise, sug-
gesting that navigation, layout, and publishing of textual
content via templates are all important and growing tools
in the toolbox of web designers.

1.2 Roadmap
The remainder of the paper proceeds as follows. Section 2

presents related work, and Section 3 gives our algorithms.
Section 4 shows the results of analyzing a random sample of
web sites from a large crawl, breaks the sites into categories,
and presents findings regarding the structure of templates
for each category. Section 5 presents a visualization that
captures the template structure of an entire site, and gives
examples from the categories of the previous section. Sec-
tion 6 gives the results of an experiment crawling multiple
copies of a set of pages from the Internet Archive [5] in order
to assess the evolution of templates. Finally, Section 7 gives
conclusions.

2. RELATED WORK
The problem of extracting templates from web pages was

first introduced by Bar-Yossef and Rajagopalan [1]. They
propose a technique based on segmentation of the DOM
tree and selection of certain key nodes using properties of
the content of the node (such as the number of links within
the node) as candidate templates. Yi et al. [12] and Yi and
Liu [11] study template extraction in order to improve data
mining results by removing noisy features due to templates.
They present a data structure called the style tree which
takes into account certain metadata about each node of the
DOM tree, rather than the particular content of the node.

Local algorithms based on machine learning have been
proposed to remove certain types of template material. Davi-

831

son [4] uses decision tree learning to remove “nepotistic”
links, which are not present for a valid navigational pur-
pose, and Kushmerick [7] introduces AdEater, a browsing
assistant that learns to automatically removes banner ad-
vertisements from pages.

There are various approaches to understanding the rel-
ative merits of different parts of web pages that address
problems raised by the presence of templates and related
phenomena. Kao et al. [6] propose a scheme based on in-
formation entropy to focus on the links and pages that are
most information-rich, hopefully downgrading template ma-
terial in the process. Song et al. [10] carefully decompose
web pages using features of the layout into blocks, and then
judge the quality and salience of the blocks in order to rate
their importance.

Finally, our approach to detection of templates is related
to string matching. The techniques of Broder et al. [2] clus-
ter together documents with sigificant overlap. Edit dis-
tance [8] and related string matching operations such as the
longest common subsequence of multiple documents may
be taken as motivational algorithms for our proposed tech-
niques for syntactic matching of text templates.

3. ALGORITHMS
The algorithms presented in this section have been de-

veloped in aid of our measurement efforts; they have been
tested to determine that they accurately discover templates
across pages on a site, but it is not our intention to provide
a formal comparison of template detection algorithms. For
validation, we do report results comparing the algorithms
on a sample of pages.

We consider two algorithms, one based on the DOM struc-
ture of the web page, and the other based on syntactic se-
quences of characters. DOM-based algorithms provide effi-
cient representations (as a typical page may contain 10-20K
of content but only around 100 DOM nodes), and perform
well on hierarchical templating schemes using table layouts.
Text-based algorithms, on the other hand, are amenable to
a class of probabilistic speedups, and perform well in jsp-
style templates, as the material in the template need not
correspond strictly to the DOM tree.

3.1 DOM-based algorithm
This algorithm uses the DOM structure of the pages on

a website by searching for nodes of the DOM tree that are
repeated across multiple pages on the website. It is based
on the work of Rajagopalan and Bar-Yossef [1], and Yi and
Liu [11], but contains simplifications from those techniques.

Construction of the DOM tree for a page requires that the
page first be cleaned. This is a substantial problem on the
Web due to the diverse set of languages, authors, and tools;
and also due to the excellent efforts of web browsers to ren-
der badly-formed HTML correctly. We modified an existing
HTML parsing and cleaning library called HyParSuite [3]
to address this problem, maintaining offsets to nodes in the
original unclean page so that the links and text inside and
outside templates may be extracted later. The algorithm
then operates in two passes.

First pass: The first pass iterates over all the pages in the
website and dumps information about all the DOM nodes in
a page. This information consists of the hash of the content
of the node (template-hash) and the start and end offsets
into the original file. The template-hash is calculated using

the HTML content within the node’s start and end tags
and DOM node’s name, attributes, and their values. For
example, consider the following HTML substructure:

<td>Click here to visit ...</td>

This structure consists of four HTML nodes. The top-
most node is the <td> node. The template-hash of this node
will be computed from the entire HTML string. The <a>

tag is a child of the <td> node and its template-hash will
be calculated using the the contents between the <a> and
 tags inclusive of the tags. Text nodes are constructed
for stretches of text in HTML files and the above example
consists of two text nodes.

Thus the template-hash is a compressed representation
of the HTML tag and its contents. Counting the number of
times a template-hash is encountered in a website tells us the
number of times a specific HTML node is seen. Hence, the
first pass keeps track of the number of times each template-
hash has been seen in the website and passes this informa-
tion to the second pass.

Second pass: The second pass then scans this informa-
tion and computes a set of template-nodes for each page. A
HTML node in a particular page is said to be a template-
node if the following conditions are met: first, the occur-
rence count of the node’s template-hash is within a specified
threshold; and second, the node is not a child of any other
template-node.

Sibling template nodes are then coalesced to produce the
templates on a page. The coalescing process permits small
gaps of changing content in the final templates produced.
This is useful for templates with dynamic content, where
small portions of the template content changes while the
essential HTML and text structure remains the same.

Parameter settings: The DOM-based algorithm is pa-
rameterized by the upper and lower thresholds on the num-
ber of occurrences of template-nodes. A lower-threshold
value of 1 will cause the entire web page to be regarded
as a single template, as the root of the page always occurs
at least once. The upper-threshold parameter prevents the
algorithm from detecting extremely small HTML constructs
like
 as templates just because they are fairly com-
mon in HTML files. Other than removing small commonly-
occurring HTML nodes from consideration, the upper-threshold
does not have significant impact on the quality of templates
detected.

For the experiments reported below, the lower threshold is
set to 10% of the number of pages scanned on each site, while
the upper threshold is set conservatively to the full number
of pages scanned, since the volume of small templates de-
tected does not contribute significantly to the overall pro-
portions. 200 pages were scanned per site. The processing
runs at an average of 17.5 seconds per site on a 2.4GHz
Pentium IV machine.

3.2 Text-based algorithm
The text-based algorithm does not make use of HTML

structural information. The page is pre-processed to remove
all HTML tags, comments, and text within <script> tags.
The resulting detagged content is typically 2-3 times smaller
than the original HTML. The algorithm operates henceforth
on this representation.

The algorithm detects templates using a two-pass sliding-
window controlled by four parameters: a window size W ,

832

Figure 1: Running time and aggregate detection
performance for a variety of parameters. Each point
is labeled with the parameters W.F.D.P

a fragment frequency threshold F , a sampling density D,
and a page sample size P . All are described below in more
detail.

First pass: In the first pass, P pages are sampled uni-
formly at random from the crawled pages of the site1 and
a window of size W is slid over the text of those pages. At
each offset, a counter is incremented for the fragment con-
tained in the window. Those fragments which occur at least
F times in the sample are passed to the second pass.

For efficiency, we introduce the sampling density parame-
ter D in the first pass. A counter for a fragment is only kept
if the hash of the fragment is zero modulo D. Thus, only 1 in
every D fragments will be considered, but the downsampling
is performed such that if a certain fragment is counted on
one page, it will be counted on all pages. Other downsam-
pling mechanisms, such as retaining every Dth fragment, do
not have this essential property. We choose D ≈ W in order
to increase the likelihood that after the filtering process con-
cludes, consecutive fragments are contiguous. A coalescing
process in the second pass ensures that the total volume of
template text is counted correctly. A value of D = 0 in the
experiments means all fragments are used.

Second pass: In the second pass, each page is scanned
for these frequent fragments, and overlapping or contiguous
fragments are coalesced into a single template.

At the end of the second pass, we have a set of template
hashes which are either individual or coalesced fragments.
These hashes are stored in a hash table, so that a new page
can be broken into fragments and scanned quickly for tem-
plates.

Parameter settings:
Figure 1 shows the performance of this algorithm for vari-

ous values of the parameters. These studies were performed
on a 2.4GHz Pentium IV machine: the running time varies
from 0.4 to 12.5 seconds per site, compared to 17.5 seconds
per site for the DOM-based algorithm.

The 32.10.0.200 data point represents the algorithm with
no downsampling of the number of available templates. In-
creasing or decreasing W results in a greater proportion
found. However, D can now be set to achieve equivalent per-
formance, with much improved running time. With D = 40

1Note that a uniform sample is critical here; if we were in-
stead to crawl only the first few levels of a site, for example,
significant biases could be introduced.

we achieve a similar proportion detected, with a running
time of 0.59 seconds per site, or 3 ms per page, achieving a
speedup of 20 times over the non-randomized approach.

Note that if P is set to a smaller value, the detection
accuracy changes. As the number of pages sampled is de-
creased, F must decrease too, in order to detect the same
fragments. With very small values of F , however, there is a
risk of detecting greater numbers of spurious fragments.

In our experiments, we apply the algorithm with param-
eter settings 32.10.0.200.

4. TEMPLATES ON TODAY’S WEB
This section covers a family of experiments performed on

a recent snapshot of the web.

4.1 Methodology
Our concern is to analyze the prevalance and nature of

templates across the entire web without introducing unnec-
essary biases towards a particular subset. To begin, we make
use of the IBM WebFountain data set, a large crawl contain-
ing over two billion pages and fifty million sites. From this
set, we select uniformly at random a subset of two hundred
sites, each containing at least two hundred pages.2 The scale
of the initial collection provides a broad underlying sample
space from which to resample. We then manually classify
these sites into categories and report results of template be-
havior for each category.

In addition to studying the amount of templated content
on the web, we also study how templating behavior varies
across seven site categories determined by inspection of the
two hundred sites. These categories are intended to reflect
various genres or modes of content that occur on the web,
without regard to the nature of the content. Each has im-
plications for the kinds of formatting and quantities of in-
formation that occur on each page. The categories are:

• Brochure. The online presence of a company or or-
ganization, typically containing events, reviews, press
releases and diverse other information.

• Catalog. Listings of products, usually for sale.

• Community. Sites with content submitted and man-
aged by a large number of individuals.

• Documents. Sites containing reference material. Many
academic and government sites fall into this category.

• News. Sites which contain regular and editorially con-
trolled updates on some range of topics. Most often
this is local news or news devoted to specific topics.

• Personal. Homepage of a single individual, irregularly
updated and containing a mix of content.

• Portal. Links to contents elsewhere. Often these are
local portals, for a particular city or region.

A dating site, for example, falls most naturally into the
“Catalog” category, even though the “products” are not re-
ally for sale. If the site also contained a chat forum, it would

2The requirement that each site contain at least two hundred
pages introduces a bias; we discuss the nature of this and
other biases below.

833

also fall into the “Community” category; thus, multiple as-
signments are allowed in our categorization.

Of the 200 sites, 109 were labeled, and the remainder were
either pornographic (about 3%), no longer existent (about
15%), or not in a language understandable by the authors
(about 30%); see below for a discussion of the biases intro-
duced by this labelling. The number of sites in each category
are shown in the following table.

News 5
Personal 8
Community 14
Documents 14
Catalog 40
Brochure 42
Portal 16

Roughly 5% of sites are news sites, much fewer than the
number of community and personal sites. The dominance
of the commercial sector of the web is clear from the number
of catalog and brochure sites.

Summary of Biases: The following biases exist in our
sample. First, we consider only sites with at least two hun-
dred pages in our crawl. Pages that lie on smaller sites
represent approximately 20% of the overall crawl, and thus
represent a non-negligible fraction; nonetheless, for technical
reasons, we focus on the 80% of pages that belong to larger
sites. Second, we consider non-pornographic sites only; we
thus report results for the non-pornographic region of the
web. Third, our classification results apply only to sites
in English, but all other results apply to sites in all lan-
guages. This bias is difficult to overcome without enlisting
the skills of many assistants. Finally, the crawling of sites is
performed by a commercial crawler, which encodes many de-
sign decisions that may influence its behavior for or against
a particular site. Overall, however, we believe the scope of
the underlying dataset makes the results reasonably repre-
sentative.

4.2 Results: proportions of template text
We ran both the DOM-based and the text-based algo-

rithms over this sample set. The text-based algorithm re-
ports the fraction of text content within templates on each
page. The DOM-based algorithm reports the fraction of
template versus non-template HTML content on the page,
and then through post-processing of the resulting templates,
also reports the fractions of links and text that appear within
a template.

The two algorithms should report similar values for the
fraction of text content that appears in templates. An ex-
amination of the results shows that the reported fractions
of template content on average differ by only 7%, and show
a similar level of agreement for each individual category.
Given the extremely different approaches taken by these two
appraoches, we find the measures of fraction of template
content to be fairly stable across these approaches.

The results are shown in Figure 2. The figure shows a sig-
nificant difference between the volume of templates across
the different categories. Overall, the amount of template
text on a page is around 50%, but this is significantly lower
for News sites, and significantly higher for Personal sites.
The types of text found in templates also varies across cate-
gories: for example, there are noticeably more links in tem-
plates in the Documents category.

Text-
Based

DOM
HTML

DOM
Text

DOM
Links

Brochure 56 59 53 55
Catalog 66 59 57 51
Community 64 51 50 53
Documents 35 57 26 58
News 12 15 8 12
Personal 67 68 77 52
Portal 44 48 39 43
OVERALL 53 53 46 49

Figure 2: Proportions of templated content for all
categories

4.3 Results: Counting and aggregating
template bytes

Having considered the raw counts of template bytes across
categories, we now turn to a more detailed view of the nature
of these templated regions. We will refer to a contiguous se-
quence of bytes discovered by one of our algorithms as a
“template hash.” All analyses reported in this section are
performed using the template hashes returned by the text-
based algorithm, over the 109 sample sites. The algorithm
found 64K occurrences of 3K distinct templates in this col-
lection.

First, we consider occurrences of template hashes across
sites. For the set of sites we study, the amount of cross-site
template duplication is extremely small. Over the entire set
of three thousand distinct template hashes, exactly three
distinct templates occur on more than one site. One instance
is a message that a page has moved, occurring twenty times
on one site and four on another; the second contains HTML
header material that appears accidentally in the body of the
page, occurring twenty times on one site and fifteen times
on another; and the third contains part of an error mes-
sage, occurring ninety-two times on one site and three times
on another. Overall, same-site duplication is the dominant
cause of the significant duplication shown in our results.

We now study the distribution of frequency with which
each template byte occurs. Figure 3 shows a plot of rank
of template hash (ordered by number of occurrences) versus
number of occurrences, in log-log space. For comparison,
the power law with exponent 0.8 is also plotted. The distri-
bution is not a clean power law. Surprisingly, the majority
of distinct template hashes in our data occur in the heavy
region between x = 200 and x = 2000. The first two hun-
dred hashes represent 40% of the number of template occur-

834

Figure 3: Re-use across templates.

rences, and the dense region with x ∈ [200, 2000] represents
the next 55% of occurrences. Thus, a small template cache
could reduce the amount of template traffic required by at
least 50% (holding only three small template hashes per site
on average), but the additional captured mass would grow
more slowly until the cache reaches ten times that size.

Next, observe that our algorithms find contiguous regions
of duplicated text (template hashes), but in fact these re-
gions may be coalesced into entire templates representing,
for example, a header, a sidebar, and a footer. The three
parts of such a template will not be contiguous on a page,
and thus will represent multiple non-contiguous template
hashes according to our algorithms. We now consider an al-
gorithm to group these template hashes back together into
full templates. Such an algorithm should, for example, iden-
tify that the sequence “1,2,3” of template hashes might be
a template if a series of pages contain template hashes 1, 2
and 3 in that order, even if each page in the series contains
other information of varying lengths in between these tem-
plate hashes. Further, pages in the series might also contain
other templates; for example, “1,2,3” might be a site-level
template with a uniform header, sidebar and footer; but
there might also be a distinct template for a particular part
of the site, such as the “world news” section, which adds
some headlines on the right side of the page. The algorithm
should capture both of these occurrences. Finally, the al-
gorithm should be extremely efficient, given the number of
web sites across which it should run.

We propose the following simple greedy algorithm. Dur-
ing each phase, the algorithm finds the template hash which
occurs most frequently in the entire set of pages, breaking
ties by choosing the minimum average offset of the tem-
plate in the page. Next, it advances a per-page counter to
the location of the most-frequent template hash. It then
finds the template hash which occurs most frequently to the
right of the per-page counter, adds this hash to the current
template, advances the per-page counters, and continues.
At each stage, the template will have a certain length, and
will occur on a certain number of pages. The final tem-
plate output by this pass of the algorithm will be the one
that maximizes the count times the length (representing the
number of distinct template hash occurrences capture by
the template). After finding this template, all occurrences
of the template are greedily removed from all the pages in
the collection, and the algorithm begins again.

Figure 4 shows the results of applying this algorithm to
our collection; the numbers have been scaled to show per-

Figure 4: Re-use across templates.

site averages, so that we can meaningfully discuss a certain
number of aggregated templates per site. The top curve in
the figure shows for each number of aggregated templates
the average over all sites of the fraction of template bytes
on the site which are covered by that number of aggregated
templates, based on the scale on the left axis. The lower
curve shows for each number of aggregated templates the
total number of template hashes needed to represent that
many aggregated templates, based on the scale on the right
axis.

The first one or two aggregated templates require about
3–5 template hashes per site, and capture around 40% of
the total template bytes; over all sites, this corresponds to
the early region of Figure 3 up to around two to three hun-
dred templates across the entire collection of sites. Coverage
grows to about 90% of total reuse based on around fifteen
aggregated templates per site; this corresponds to a cache of
approximately 50% of the total number of distinct template
hashes. The slope of the lower curve shows that aggregated
templates average about two template hashes, and hence
around 30–60 bytes of actual site content. Of course, some
templates are much longer.

5. VISUALIZING RICH TEMPLATE
STRUCTURE

Templating behavior across a site is rich, complex, and
hard to capture in a single numerical analysis. For example,
a site may manifest a single uniform template, or entirely
different templates for different regions of the site, and the
templates may exhibit recursive structure, such as a com-
mon footer with many different headers. In this section,
we introduce a pictorial representation of template behavior
across a site to provide a complementary and more visceral
view of the nature of templates on that site. In many cases,
this view will provide insights into the more complex tem-
plate structure of the site.

In order to display the pattern of template occurrences
across a site in a compact but accessible way, we dispense
with displaying text entirely and represent each template as
a bar of color. To choose a color for each template hash, it is
not feasible to assign each distinct template hash a unique
color, since there may be very many templates on a site,
and the colors would rapidly become difficult to distinguish.
Rather, we assign a few broad classes of colors, based upon
the frequency of occurrence of the template hash. Template
hashes which occur fewer than 10 times over the site are

835

Figure 5: allsiouxlandhomes.com templates. This is
a Catalog and Brochure site

Figure 6: instrumentexchange.com templates. This
is a Catalog site

colored red, those occurring 10-100 times are orange, and
so on, through the rainbow scale of yellow, green, blue and
finally purple indicating the most frequent templates. Since
templates of similar kinds are likely to be used with similar
frequency, this groups similar templates visually.

Each page, then, is represented as a single thin horizontal
bar of gray, read from left to right, where the templates are
placed along the bar according to their position on the page,
and with length proportional to their size. Each horizontal
bar is thus a miniaturized sketch of the page. The overall
length of the bar is proportional to the size of the page. The
plot is scaled so that the largest page fits into the maximum
width allowed.

Pages must then be arranged in some order which is likely
to group together pages with similar template structure.
Our solution is simply to sort pages in order of increasing
length. Intuitively, we expect that similar pages have simi-
lar lengths, and our plots indicate that this intuition usually
provides a good ordering. Additionally, sorting by length
makes the right-hand edge of the plot into a smooth curve,
which gives a clear indication of the page size distribution
on the site.

Figure 5 is a real estate site, which has been classified as a
Catalog and a Brochure site. It is clear that there are a few
categories of short pages, and two dominant categories of
longer pages differing primarily by the length of the footer
template.

5.1 Observations
From the examples presented in this paper, and across

the range of sites in our sample, we can draw the following
conclusions.

Figure 7: www.ade.az.gov (Arizona Department of
Education) templates. This is a Documents and
Brochure site

Figure 8: findbestcasinos.com templates. This is a
Portal site

First, template structure is fairly simple. In the large
majority of cases, pages contain only a header and a footer
template. In the extremes of some News sites, this forms
a negligible fraction of the page. In some cases, notably
for some Catalog sites, the templates dominate the portion
of the page which contains varying content. Figure 9 is
presented as a rare counterexample, in which there is a large
templated region in the middle of the text of each page.

In the case of Portal sites, such as Figure 8, the header
and footer pattern is clear, but there is also a lot of text
which is repeated across the body of many portal pages,
since portal sites typically lay out many small fragments of
content onto a page. This results in a dust-like pattern of
small templates in the plot.

We may consider the pattern of templates across a page
as the “template schema” for the page. There are relatively
few template schemata that are used by any particular site.
The examples shown are representative in that most of the
pages on a site will typically follow the same schema. The
exceptions tend to be the shorter pages, which are often
navigation pages, and redirect (302) and error (404) pages.

This relative paucity of distinct template schema types is
largely because sites tend to have a single focus, such as sell-
ing products. In some cases we have found that when more
than one form of template schema does exist, the schemata
separate by age: older pages which have not been updated
to a newer template schema are still available.

These visualizations suggest that an exploratory tool can
be built, which can very easily present the pages on a site,
grouped according to their template schema, and possibly
perform different forms of text analytics based on the schema:
indexing only content-rich pages and using link-rich tem-

836

Figure 9: www.travellerpoint.com templates. This
is a Community and Catalog site

plates to find key areas of the site, for example. Unusual
pages, outliers in the clustering by schema, are also easy to
present.

6. TEMPLATE EVOLUTION
In this section, we describe a set of experiments studying

the evolution of templates from 1996 to 2004, based on a
crawl of pages stored in the Internet Archive [5]. We study
two sets of sites. The first set is the familiar collection of
109 unbiased sites introduced in Section 4. We will refer to
this data set as the “unbiased” set. Of the 109 sites in the
set, we found at least one snapshot for 78 of them.

Our second evolutionary dataset covers more popular web
sites, and is better represented in the archive’s historical
database. Ntoulas et al. [9] used a set of 157 sites in or-
der to study changes over time. While this set may be
less representative of the web at large, it is perhaps more
representative of the types of content that people typically
browse, and it has been extensively studied by Ntoulas and
his co-authors, allowing us to place our results in context.
We found at least one snapshot for 105 of the 157 sites in
the set.

We successfully crawled approximately 72K pages from
the Internet Archive from these two datasets representing
1380 snapshots of a website at a particular time. Some de-
tails about these data sets are shown in Table 1.

For each snapshot, we identified templates using the DOM
based detection method, and considered six regions on each
page: links, text, and HTML within and outside templates.

6.1 Fraction of template content over time
Our first set of evolutionary results covers the fraction

of content that appears inside versus outside templates as
a function of time. The results and trends are similar for
popular and unbiased sites, so we report only results for
popular sites as the number of snapshots is larger. Figure 10
is a scatter plot in which each point represents a website
from our popular dataset at a particular point in time (i.e.,
one of the snapshots of Table 1). The x axis represents the
time of the snapshot. The y axis is the fraction of links on
the page that occur inside a template. While coverage for
sites in the 1990s is more sparse, it is clear that snapshots
from 2002 and 2003 show a significantly larger proportion
of sites with more links in templates. The best fit trend line
shows a growth of 8% per year in the fraction of links that
are inside a template.

Figures 11 and 12 show the same type of scatter plot for
the fraction of the bytes of HTML, and the bytes of de-

Unbiased Popular
Non-empty Websites 78 105

Total pages 32K 42K
Avg snapshots/site 5 8

Year of Snapshot
Unbiased

#Snapshots
Popular

#Snapshots
1996 2 19
1997 5 51
1998 10 46
1999 15 64
2000 50 162
2001 60 165
2002 98 178
2003 194 198
2004 24 39
Total 458 922

Table 1: Internet Archive data volumes for Unbiased
and Popular collections of websites.

Figure 10: Fraction of links inside versus outside
templates as a function of time. Collection: popular
sites.

tagged content, that appear within templates. The best fit
growth rates are about 7% and 6% respectively. Total bytes
of HTML again shows a mass of more heavily-templated
pages in more recent years. While many recent pages have
more than 70% of their links in templates, this is not true
for total HTML content, supporting the intuition that pages
may contain menus, headers, footers, and sidebars with a
large number of navigational links, but will still contain some
reasonable amount of non-template content.

Table 2 shows summary information for these figures. The
popular sites show less overall template activity than the un-
biased sites, though with similar trends. The unbiased sites
from 2002 onwards show 38% of their text, 46% of their
HTML, and fully 55% of their links in templates. Combin-
ing this aggregate information with the trend lines, we see
that a large and rapidly-growing fraction of links appear in
templates, suggesting that template-based navigation con-
tinues to increase in popularity. The aggregate results shown
in this table are normalized for site size and number of in-
ternet archive crawls per site. Thus, the results should be
taken as representative of the “average” page in the given
collection.

837

Figure 11: Fraction of HTML content inside versus
outside templates as a function of time. Collection:
popular sites.

Figure 12: Fraction of text content inside versus
outside templates as a function of time. Collection:
popular sites.

6.2 Change rates
Ntoulas and his co-authors crawled each site of the pop-

ular set weekly, and performed experiments to capture the
amount of change noted each week; this amount was found
to be very small for most changes. We conducted a similar
experiment to check whether the amount of change would
be higher if we first removed templates from these pages.
The Internet Archive crawls pages much less frequently than
once per week, so the change on each visit will be much
larger in our case. However, from our data we can esti-

Unbiased Sites Popular Sites
Category 96–01 02–04 All 96–01 02–04 All
Links 44% 55% 52% 32% 42% 36%
HTML 39% 46% 44% 32% 40% 35%
Text 28% 38% 35% 21% 28% 24%

Table 2: Fraction of links, HTML, and text that
appears in templates by data collection and date
range.

mate changes that occur less frequently than every hundred
days.

We perform the following experiment. Consider a series of
n snapshots of a web page, and let x1, . . . , xn be the value of
the templated region of the page at each timestep. Let ti be
the time of the ith snapshot. We will apply exactly the same
approach to the detemplated region of the page; that is, all
content on the page other than the templates. In this anal-
ysis, we consider the text content rather than the HTML or
links. Consider the ith snapshot, xi. If x1 6= xi 6= xn then
we say that the value xi is bracketed, meaning that we saw
the page before this template appeared, and thus we have
some estimate of the date when it appeared; and we saw the
page after the template had disappeared, and thus we have
an estimate of the date when it disappeared. For any brack-
eted value xi, we define the first value f(xi) as the index i′

at which xi′ = xi, but xi′−1 6= xi. Likewise, the last value
`(xi) is the index i′ such that xi′ = xi but xi′+1 6= xi. The
beginning B(xi), the time at which the template appeared,
is then estimated to be (tf(xi) − tf(xi)−1)/2. Likewise, the
end E(xi) is estimated to be (t`(xi)+1 − t`(xi))/2. Notice
that these times must all exist if xi is bracketed. Finally,
the duration D(xi) is taken to be E(xi)−B(xi).

For any time t, we say the active templates at t are all
the templates such that B(xi) ≤ t ≤ E(xi). Notice that the
active templates at time t are all the templates that both
exist on some page at time t and are bracketed (so that we
can estimate their duration). The average duration at time
t is then the average of the duration of all templates that are
active at time t. Figure 13 shows the average duration as
a function of time. The figure also shows a second curve in
which the value of xi is not the templated region of the page,
but is the remainder of the page (that is, the detemplated
region). In both cases, the average duration of a template
can be seen to shrink dramatically over time, implying that
the rate at which both content and templates are changing
is shrinking. The average duration of templates is slightly
larger than that of detemplated text, but the difference does
not appear to be significant.

Oct−96 Feb−98 Jun−99 Nov−00 Mar−02 Aug−03 Dec−04
200

300

400

500

600

700

800

900

du
ra

tio
n

in
 d

ay
s

Template−text
Detemplated text

Figure 13: Average duration of all templates and
detemplated pages existing at each point in time.

Figure 14 shows the histogram over the entire timeframe
of the study of the average durations of templates. Due to

838

the refresh rate of the Internet Archive, we do not have de-
tailed information for content that changes more frequently
than every hundred days. However, the figure demonstrates
that both templates and detemplated content typically last
for between fifty and three hundred days, with perhaps five
percent remaining for two years or more.

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

duration in days

fr
ac

tio
n

of
 d

ur
at

io
ns

Template−text
Detemplated−text

Figure 14: Histogram of durations of templates and
detemplated content over all pages.

6.3 Change rate versus change magnitude
Figure 15 shows an analysis of changes in the text content

of pages from one version of a page to another. For two docu-
ments with word sets A and B, the magnitude of the change

is taken to be: 1− 2 |A∩B|
|A|+|B| . The figure shows the distribu-

tion of the magnitude of change for the detemplated region
of the page and for the entire page. Changes of magnitude
65% or larger are about twice as likely in the detemplated
text, suggesting that results on large changes may be biased
by the presence of a significant and unchanged template.
Overall, however, the results in this figure are very similar
to those of Ntoulas et al.

7. CONCLUSION
Templates represent 40–50% of the total bytes on the web,

and this fraction continues to grow at a rate of approxi-
mately 6% per year. Similarly, the fraction of visible words,
and the fraction of hyperlinks appearing in templates is ex-
tremely high. This finding implies that: (1) the graph struc-
ture of the web is increasingly dominated by boilerplate, sug-
gesting that link analysis algorithms require understanding
of templates; (2) with increased bandwidth, site creators are
spending an increasing fraction of their resources on convey-
ing information that has little raw content value, suggesting
that improved caching and delivery mechanisms are needed.

8. REFERENCES
[1] Z. Bar-Yossef and S. Rajagopalan. Template detection

via data mining and its applications. In Proceedings of
the Eleventh International Conference on World Wide
Web, pages 580–591. ACM Press, 2002.

[2] A. Z. Broder, S. Glassman, M. Manasse, and G. Zweig.
Syntactic clustering of the web. WWW6/Computer
Networks, 29(8-13):1157–1166, 1997.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

fr
ac

tio
n

of
 c

ha
ng

es

1 − word intersection

Full text
Detemplated text

Figure 15: Distribution of magnitude of change in
full text and detemplated content.

[3] S. Chakrabarti. HyParSuite,
http://www.cse.iitb.ac.in/~soumen/download/.

[4] B. Davison. Recognizing nepotistic links on the web.
In Artificial Intelligence for Web Search, pages 23–28.
AAAI Press, 2000.

[5] B. Kahle. The internet archive,
http://www.archive.org.

[6] H.-Y. Kao, M.-S. Chen, S.-H. Lin, and J.-M. Ho.
Entropy-based link analysis for mining web
informative structures. In Proceedings of the Eleventh
International Conference on Information and
Knowledge Management, pages 574–581. ACM Press,
2002.

[7] N. Kushmerick. Learning to remove internet
advertisement. In Proceedings of the Third
International Conference on Autonomous Agents
(Agents’99), pages 175–181, Seattle, WA, USA, 1999.
ACM Press.

[8] V. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics
Doklady, 10(8):707–710, 1996.

[9] A. Ntoulas, J. Cho, and C. Olston. What’s new on the
web? the evolution of the web from a search engine
perspective. In Proceedings of the World-Wide Web
Conference (WWW), 2004.

[10] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma. Learning
block importance models for web pages. In
Proceedings of the 13th International Conference on
World Wide Web, pages 203–211. ACM Press, 2004.

[11] L. Yi and B. Liu. Web page cleaning for web mining
through feature weighting. In Proceedings of
Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI-03), 2003.

[12] L. Yi, B. Liu, and X. Li. Eliminating noisy
information in web pages for data mining. In
Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 296–305. ACM Press, 2003.

839

