Toward Topic Search on the Web

Yue Wang, Hongsong Li, Haixun Wang, Kenny Q. Zhu Microsoft Research Asia

ABSTRACT

Traditional web search engines treat queries as sequences of keywords and return web pages that contain those keywords as results. Such a mechanism is effective when the user knows exactly the right words that web pages use to describe the content they are looking for. However, it is less than satisfactory or even downright hopeless if the user asks for a concept or topic that has broader and sometimes ambiguous meanings. This is because keyword-based search engines index web pages by keywords and not by concepts or topics. In fact they do not understand the content of the web pages. In this paper, we present a framework that improves web search experiences through the use of a probabilistic knowledge base. The framework classifies web queries into different patterns according to the concepts and entities in addition to keywords contained in these queries. Then it produces answers by interpreting the queries with the help of the knowledge base. Our preliminary results showed that the new framework is capable of answering various types of topic-like queries with much higher user satisfaction, and is therefore a valuable addition to the traditional web search.

1. INTRODUCTION

Keyword based search works well if the users know exactly what they want and formulate queries with the "right" keywords. It does not help much and is sometimes even hopeless if the users only have vague concepts about what they are asking. The followings are four examples of such "conceptual queries":

- Q1. database conferences in asian cities
- Q2. big financial companies campaign donation
- Q3. tech companies slogan
- Q4. winter vacation destinations except florida

Although the intentions of these queries are quite clear, they are not "good" keyword queries by traditional standard. In the first query, the user wants to know about the database conferences located in Asian cities, without knowing the names of the conferences or cities. In the second query, the user asks which big financial companies are involved in campaign donation. In the third query, the user wants to find out the various slogans of tech companies.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...\$10.00.

In the fourth query, the user tries to get information about winter vacation places excluding Florida.

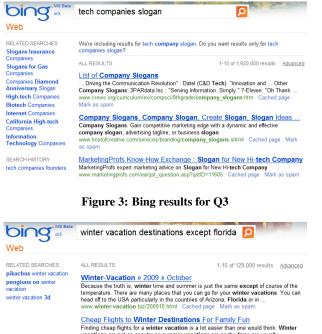
Google	database conferences in asian cities	Search		
0	About 219,000 results (0.20 seconds)	Advanced searc		
Severything More	Asian Network of Major Cities 21 - Tokyo Metropolitan Government Asian cities work together to attract visitors from Europe, North America, Holdin ANMC21 Conference on Infectious Diseases in Asia; Conducting ANMC21 Trainin			
Show search tools	Combating The TMG operates the Asian Human Network Database vww.metro.tokyo.jp > TOP > City Profile - Cached - Similar			
	International Conference on "Asian World Heritage Cities 18 May 2010 Communities - National Commission's Database for Asia and the Pacific The conference was attended by 100-150 participants including representatives The Asian World Heritage Cities of Melaka-Penang, Luang Prabang, portal.unesco.org//ev.php-URL_ID=125468.URL_D0=D0_TOPIC8.URL_SECTION=201.html - Cached			
	HEI International Page PAPA was launched at the Better Air Quality Conference and annual meeting of t Initiative for Asian Cittles held in Hong Kong in and Air Pollution in Asia—Scienc the Net) is the world's largest database of www.healtheffects orginiternational.htm: Cached - Similar			
	Figure 1: Google results for Q1			
Coorlo				

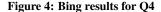
Figure 2: Google results for Q2

Fig. 1 through 4 show the top results returned by Google and Bing for these four queries. None of these results render meaningful answers to the actual questions implied by the queries. Most of them are likely to be considered irrelevant by the user. These results were returned merely because they contain some of the keywords in the queries. For example, the top two results in Fig. 1 have nothing to do with Asian cities, or database conferences. In Fig. 2, the words "financial" and "finance" appear in various places but are not related to financial companies. Fig. 3 happens to return a page with a list of company slogans, not because these are tech companies but because one of the company names contains the word "tech". Fig. 4 shows that Bing does not understand the meaning of "except florida" and returns pages that are about vacations *in* Florida.

Apparently, *database conferences*, *asian cities*, *big financial companies* and *winter vacation destinations*, *etc.* are abstract concepts (or semantic classes) while *slogan* can be regarded as an attribute of tech companies. None of these are keywords in the traditional sense. Traditional search engines are good at handling entities in

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.





these classes (e.g. VLDB as an entity of database conferences), because these entities can be exactly matched as keywords. But in reality, quite a significant percentage of web queries are not *entity only* queries. Our statistics from the Bing search log of the last two years suggests that about 62% of the queries contain at least one conceptual class term (see Fig. 11). To better serve such conceptual queries, we need to understand concepts in web pages.

In this paper, we present a framework that leverages a probabilistic knowledge base and query interpretation techniques to improve web search on concept-related web queries. We previously built a knowledge base, named Probase [14], which was automatically constructed by integrating information from web pages and other more reliable data sources such as Freebase [10] and Wordnet [16]. With 2.7 million concepts, 16.2 million entities and over 5 thousand attributes, it represents an enormous amount of sometimes fuzzy and inconsistent concepts of worldly facts in human minds, all organized in a hierarchical structure with subsumption, similarity and other relations. With the help of Probase, we can identify concept and attribute terms in queries and interpret them by replacing the concepts with their most likely entities, and hence formulate more accurate keyword-based queries. The results of these new queries from the traditional search engines can then be ranked and presented to users, in addition to normal keyword queries.

Fig. 5 shows the top search results of the query "database conferences in asian cities" from our prototype system. These results do not contain the keywords "database conferences" or "asian cities", but instead directly gives information about three recent VLDB conferences that were actually hosted in Asia. This information is a lot more targeted and relevant from the user perspective. Fig. 6 gives the top results for query "big financial companies campaign donation" on our system. Our system correctly links Citigroup and

VLDB 2002			
28th International Confer	nce on Very Large Dat	a Bases. Hong Kong, Chin	a; August 20-
2002.	,	j,	-,

VLDB2010 Spore : Conference Overview

VLDB 2010, 36th International Conference on Very Large Data Bases Singapore : 13 to 17 Sept 2010, Grand Copthorne Waterfront Hotel vldb2010.org

32. VLDB 2006: Seoul, Korea

32. VLDB 2006: Seoul, Korea Umeshwar Dayal, Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha, Young-Kuk Kim (Eds.): Proceedings of ...

www.vldb.org/dblp/db/conf/vldb/vldb2006.html

Figure 5: Our top results for Q1

www.sourcewatch.org/index.php?title=Merrill Lynch

Figure 6: Our top results for Q2

Merrill Lynch, two of the largest financial institutes with contributions to political campaigns. When serving the query "tech companies slogan", our prototype system realizes that the information is immediately available from the taxonomy, and hence presents all the slogans it knows directly in a table, which is shown in Fig. 7. Fig. 8 pinpoints accurately some of the top winter vacation destinations other than Florida, such as Mexico and Hawaii.

It is important to note that the lack of a concept-based search feature in all mainstream search engines has, in many situations, discouraged people from expressing their queries in a more natural way. Instead, users are forced to formulate their queries as keywords. This makes it difficult for people who are new to keywordbased search to effectively acquire information from the web.

The proposed framework is not meant to replace the existing keyword based search, but complements keyword search as we can now handle some of "non-keyword" queries as well. This framework therefore represents a significant step toward a new genre of search on the web — *topic search*.

- The main contributions of this paper are:
- a large-scale, automatically constructed taxonomy is used for web search;
- the new framework better understands user queries by pattern matching and query interpretation using the concepts and entities in the taxonomy;
- 3. our experiments show that this conceptual search framework provides additional values for topic-related queries and significantly improves user experiences with web search.

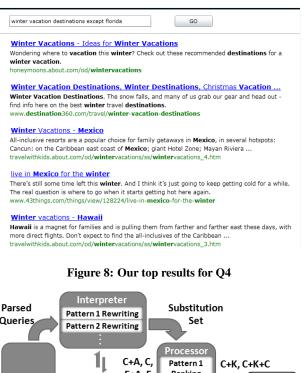
In the remainder of this paper, we will first give an overview of the topic search framework (Section 2), followed by the introduction of Probase (Section 3). Section 4 details the proposed framework, and Section 5 presents the evaluation of the system. This is followed by some most related work (Section 6) and the conclusion (Section 7).

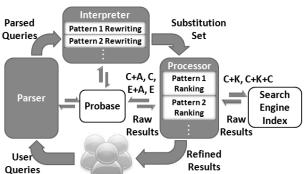
2. OVERVIEW

In web search, limited query rewriting techniques are used to find a term's alternative forms, so that documents containing the alterna-

tech companies slogan		GO		
	1			
Microsoft	slogan	Your potential. Our passion.		
IBM	slogan	What Makes You Special?, Innovation That Matters, Think		
Hewlett-Packard	slogan	Invent		
Google	slogan	Don't be evil		
Sun Microsystems	slogan	The network is the computer.		
General Electric	slogan	Celebrate the moments of your life,We bring good things to life		
Nokia	slogan	Connecting People		
Sony	slogan	like.no.other		
BMW	slogan	Sheer Driving Pleasure, The Ultimate Driving Machine., Freude a		
DuPont	slogan	The Miracles of Science		
NASA	slogan	For the Benefit of All		
BEA Systems	slogan	Think liquid.		
Capgemini	slogan	consulting, technology, outsourcing		
Salesforce.com	slogan	Success On Demand		
Infosys	slogan	Powered by Intellect, Driven by Values		
Computer Sciences Corporation	slogan	Experience. Results.		
Accenture	slogan	High Performance. Delivered.		
Apple Inc.	slogan	Think Different, The Computer for The Rest of Us		
Genentech	slogan	In Business For Life		
4		•		

Figure 7: Our top results for Q3





taxonomies, it contains as many as 2.7 million concepts, forming a system of worldly facts inside human minds. This enables us to better interpret user queries. Fig. 9 shows the framework of our system, which is centered around the Probase taxonomy.

More specifically, our framework is comprised of three main modules: the parser, the interpreter and the processor. When a user issues a query, the parser uses Probase to decompose the query into possible term sequences, which consist of terms of 4 different types: concepts, entities, attributes and keywords. The interpreter identifies the intent or the semantics of the term sequence based on a set of query patterns. In this paper, we focus on five most useful patterns and their combinations. The interpreter rewrites the parsed queries into a set of candidate queries by substituting abstract concepts with their specific entities. The processor ranks the candidate queries based on their likelihood, which is estimated by word association probabilities. The processor then submits top queries either to Probase or to the search engine index to obtain a list of raw results. It ranks the results in a way similar to a normal search engine before returning the final results to the user.

THE KNOWLEDGE BASE 3.

In order to better understand queries, the search engine needs to have access to a knowledge base, which knows that, for example, VLDB is a database conference, Hong Kong is an Asian city, except Florida means the other 49 states in the US, many companies have their slogans, and the slogan of Google, a well known tech companies, is "Don't be evil." Furthermore, we also need certain meta information, for example, how entities are ranked by their representativeness within a same concept (e.g., What are the top 5 Internet companies?), or how plausible is a claim (e.g., Is Pluto a planet, or a dwarf planet?)

Unfortunately, few existing knowledge bases are qualified for this purpose. This is because, first, although there exists a large number of ontologies and taxonomies, they are often domain specific, and therefore very hard to integrate. Second, universal taxonomies, including the well known Cyc [25] and Freebase [10], have a small conceptual scope: Cyc has about 120 thousand concepts while Freebase contains only about 1,500 concepts in shallow conceptual structures. This contrasts with the rich conceptual structure in a human mind.

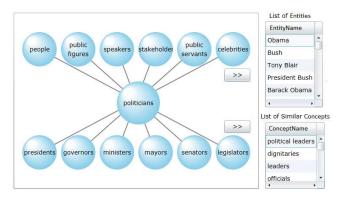


Figure 10: A fragment of Probase taxonomy

Figure 9: The framework of topic search

tive forms are also considered. In this paper, we take query rewriting to a new level by using Probase for understanding. Probase is a web-scale, automatically constructed taxonomy. Unlike other

In this work, we take advantage of the Probase taxonomy for rewriting search queries. Probase is a research project aimed at at building a universal, probabilistic taxonomy [14]. The backbone of Probase is constructed using linguistic patterns such as Hearst patterns [20]. For example, a sentence that contains "... politicians such as Barack Obama and Tony Blair ... ' can be considered as an evidence for the claim that *politicians* is a hypernym of *Barack Obama* and *Tony Blair*. Fig. 10 illustrates a snapshot of the Probase taxonomy which includes the concept "politicians", as well as its super-concepts, sub-concepts, entities and similar concepts.

Probase is unique in two aspects. First, the Probase taxonomy is extremely rich. The core taxonomy alone (which is learned from 1.68 billion web pages and 2 years' worth of Microsoft Bing's search log) contains around 2.7 million concepts. The rich set of super-concepts, sub-concepts, and similar concepts of *politicians* shown in Fig. 10 is an example. Indeed, with 2.7 million concepts obtained directly from Web documents, the knowledge base has much better chance to encompass as many concepts in the mind of humans beings as possible. As shown in Fig. 11, at least 80% of the search contains concepts or entities that appear in Probase.

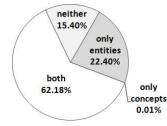


Figure 11: Concepts and entities in search (Bing search log)

Second, the Probase taxonomy is probabilistic, which means every claim in Probase is associated with some probabilities that model the claim's plausibility, ambiguity, and other characteristics. The probabilities are derived from evidences found in web data, search log data, and other available data. Because of the probabilistic framework, it is natural for Probase to integrate information from other data sources, including other ontologies. It also enables Probase to rank the information it contains. For example, it can answer questions such as "What is the top 5 Internet companies?", or "How likely is Pluto a planet vs. a dwarf planet?"

4. OUR APPROACH

Our topic search framework contains the following modules.

4.1 Query Parsing

We regard a search query as a sequence of *terms*. We are interested in five kinds of terms: terms that describe a specific object, which we call *entities*; terms that describe a collection of things, which we call *concepts*; terms that describe a property of one or more objects, which we call *attributes*; terms that consist of other non-trivial types of words, which we call *keywords*; and finally a special kind of terms that modify a class of things, which we call *auxiliary modifiers*. Table 1 gives some examples of each type of terms which are highlighted.

The first three types are usually noun phrases, while the keyword terms are often verbs, adjectives or any combinations of other terms that are not recognized as one of the first three types. The last type is special patterns consisting of an auxiliary term (such as "besides", "except", "including", etc.) plus one or more noun phrases.

Formally, we represent a raw query by an array of words, that is, $q[1,n] = (w_1, \dots, w_n)$. We parse it into a sequence of terms, where each term is an entity, a concept, an attribute, or an attribute value in the Probase taxonomy, or simply a keyword otherwise. Specifically, we represent a parsed query as $p[1,m] = (t_1, \dots, t_m)$,

Term Type	Examples
Entity	Citigroup ICDE in Hong Kong Hong Kong area
Concept	companies big financial companies campaign donation database conferences in asian cities
Attribute	tech companies slogan Hong Kong area movies director
Keyword	Oracle acquire Sun big financial companies campaign donation what's the date today
Auxiliary Modifiers	winter vacation destinations except Florida IT companies besides Microsoft and Google asian cities other than Singapore and Hong Kong

Table 1: Query Terms and Examples

where each t_k is a consecutive list of words in the raw query, i.e., $t_k = q[i, j] = (w_i, w_{i+1}, \dots, w_j).$

Clearly, there may exist many possible interpretations of a query, or multiple different parses. For example: query "*president george bush fires general batiste*" can be parsed as

[president] (george bush) fires [general] (batiste) [president] george [bush fires] [general] (batiste) (president) (george bush) fires [general] (batiste)

where () denotes an entity, [] a concept, <> an attribute. The reason of multiple parses is because both *george bush* and *bush fires* are valid terms in Probase. Further more, *president* can either be a concept, which refers to all presidents, or a specific entity in the political leader concept. The parser needs to return all meaningful parses from a query.

For an *n*-word query, there are $2^{(n-1)}$ possible parses which is expensive to compute. We first introduce a greedy algorithm to solve this problem. Then we improve this algorithm using a dynamic programming approach. The greedy algorithm contains three steps: (1) find all possible terms; (2) find all correlations among terms; (3) use a scoring function to find one meaningful parse in a greedy manner.

First, we find all terms in a query. For a sequence of n word, there are n(n+1)/2 possible subsequences. We check each of them to see if they are concepts, entities or attributes. We give a term t a *score* according to its type and length:

$$s_{term}(t) = w_{term}(t) \cdot w_{len}(|t|) \tag{1}$$

where |t| is the number of words in t, $w_{term}(t)$ is the weight function defined as:

$$w_{term}(t) = \begin{cases} w_e, & \text{if t is an entity} \\ w_c, & \text{if t is a concept} \\ w_a, & \text{if t is an attribute} \\ 0, & \text{otherwise} \end{cases}$$

and

$$w_{len}(x) = x^{0}$$

where w_e , w_c and w_a are constants, and $w_e > w_c$. We let $\alpha > 1$ to bias toward longer terms.

Next, we consider the correlations among terms. Currently we focus on three kinds of correlations: Entity-Attribute, Concept-

Attribute, and Concept-Entity. We use R_1 - R_2 to denote the correlation between one R_1 term and several R_2 terms. For example, "<population> of (china)" is an instance of Entity-Attribute correlation, and "[tech companies] <slogan> and <founder>" is an instance of Concept-Attribute correlation. Note that terms in a correlation do not have to be physically adjacent to each other, which means keywords can be mixed with correlated terms, e.g. "[presidents] and their <wives>".

Based on terms and term scores, we define *block* and *block score*. A block is either a correlation or a single term. The block score is defined as:

$$s_{block}(q[i,j]) = \max_{i',j'} \{ w_{block}(p[i',j']) \cdot \sum_{k=i'}^{j'} s_{term}(t_k) \}$$
(2)

where p[i', j'] is a term sequence parsed from q[i, j], and

$$w_{block}(p[i', j']) = \begin{cases} w_{e-a}, & \text{if } p[i', j'] \text{ is an E-A correlation} \\ w_{c-a}, & \text{if } p[i', j'] \text{ is a C-A correlation} \\ w_{c-e}, & \text{if } p[i', j'] \text{ is a C-E correlation} \\ 1, & \text{otherwise} \end{cases}$$

where w_{e-a} , w_{c-a} and w_{c-e} are all greater than 1. The above formula rewards blocks with a term correlation, and if there is no correlation, the block score is equal to the sum of term scores.

Finally, after finding all possible terms and blocks, we greedily select the block with the highest score. Once a block is selected, all blocks it overlaps with are removed.

We show the three-step greedy algorithm for parsing query "*president george bush fires general batiste*" in Fig. 12. In step (1), we identify all terms in the query and score them according to Eq. 1. In step (2), we generate blocks based on these terms. Each term becomes a block and their block scores equal to their term scores. At the same time, we notice that (george bush) is an entity of concept [president], so we build a C-E correlation block. Same goes for (batiste) and [general]. In step (3), we perform greedy selection on blocks. We identify "[president] (george bush)" as the best block among all, and remove other overlapping blocks such as "[president]", "(george bush)" and "[bush fires]". Similarly we keep block "[general] (batiste)" and remove its overlapping blocks. As a result, the algorithm returns "[president] (george bush) fires [general] (batiste)" as the best parse.

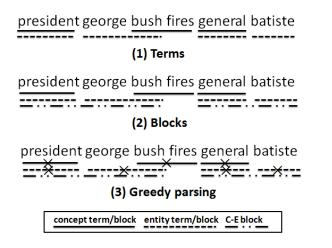


Figure 12: Example of greedy parsing

However, the greedy algorithm does not guarantee an optimal parse, and it cannot return a list of top parses. As an improvement, we propose the following dynamic programming algorithm. We define a *preference score* $s_{pref}(n)$ to represent the quality of the best parse of a query of *n* words:

$$s_{pref}(n) = \begin{cases} \prod_{i=0}^{n-1} \{s_{pref}(i) + s_{block}(q[i+1,n])\}, & \text{if } n > 0\\ 0, & \text{if } n = 0 \end{cases}$$

By memorizing the sub-solutions of $s_{pref}(n)$, one can produce the parse with highest preference score. Moreover, when defining $s_{pref}(n)$ as a score set of top parses, one can also obtain the top k parses.

4.2 Query Interpretation

In this module, we classify the input parsed queries into different patterns. Our analysis on the Bing search log during the period of September of 2007 to June of 2009 (see Fig. 11) shows that about 62% of the queries contain at least one concept term. More detailed analysis revealed that common web queries can be classified into a number of different patterns. The following five basic patterns account for the majority of all the Bing queries during that period:

- 1. Single Entity (E)
- 2. Single Concept (C)
- 3. *Single Entity* + *Attributes* (*E*+*A*)
- 4. Single Concept + Attributes (C+A)
- 5. Single Concept + Keywords (C+K)

These patterns can be combined to form more complex patterns. In this paper, we focus on one of them:

Table 2 lists some example queries of each pattern.

Table 2: 0	Query	Patterns	and	Examples	
------------	-------	----------	-----	----------	--

Patterns	Queries
Е	(VLDB)
E	(Citigroup)
С	[database conferences]
C	[big financial companies]
E+A	(Apple) <slogan></slogan>
LTA	[Hong Kong] <country> <area/></country>
C+A	[tech companies] <slogan></slogan>
Стл	[films] <language> <tagline></tagline></language>
C+K	[big financial companies] campaign donation
CTK	[species] endangered
C+K+C	[database conferences] in [asian cities]
C+K+C	[politicians] commit [crimes]

Once the system determines the pattern of each parsed query, it starts interpreting them using the following strategies. The general approach is substituting the abstract concepts in a query with more specific search terms such as their associated entities which are more suitable for traditional keyword search.

For E and E+A queries, no further interpretation is necessary since this type of queries are already specific and can be searched directly in both Probase and the search engine index.

For a C or C+A query, it substitutes a list of top entities associated with that concept in Probase for the concept term to form a list of E or E+A queries.

A special case is when the concept is *implicitly* implied by an auxiliary modifier such as "... *except florida*". Here, "florida" is an entity in Probase, and we treat [*except florida*] as if it is a concept. And this concept is the most *representative* concept in which "florida" is an entity but with "florida" removed from it. To find the most representative concept to an entity, we use a DF-ITF score

[1] which is a form of *inverse* function of the well-known TF-IDF score [32].

For a C+K query, it replaces the concept with its associated entities to form a list of Entity + Keywords queries which require no further interpretation.

For a C+K+C query, it is considered as a extended form of C+K queries. We replace both concepts with their associated entities to form a list of Entity + Keywords + Entity queries. Note that the number of such queries can be very large but we will show in the next subsection how to reduce them to only relevant queries.

Finally, the output of the Interpreter module is a set of substituted queries of the following 4 patterns: E, E+A, E+K and E+K+E.

4.3 Query Processing

The Processor module takes as input a set of substituted candidate queries, submits some or all of these queries to Probase or a search index, and presents a final set of ranked results to the user.

For E and E+A pattern queries, the processor queries the Probase taxonomy for all the detailed information about this particular entity. This information is returned as a table which will eventually be presented to the user as an info-box (e.g. Fig. 7).

In the rest of this subsection, we will focus on E+K and E+K+E queries which require more complex processing. One naive approach is to submit all these substituted queries to a traditional search engine index, combine the results, and present ranked results to the user. However, number of such queries can be prohibitively large because many concepts are associated with large number of the entities. For example, Probase contains hundreds of *politicians* and thousands of *crimes*. For query "*politicians commit crimes*", the system would generate millions of candidate substitutions even though most of these, such as "*obama commit burglary*", are not relevant at all.

The key technical challenge is understanding user's intent and filtering out those substituted queries which are not relevant. We observe that in most queries, keywords act as modifiers that limit the scope of the accompanying concept in C+K queries, or imposing a particular relationship between the two surrounding concepts in C+K+C queries. For example by specifying "commit" in the above example, it excludes other relationships such as "politicians *fight* crimes" or "politicians *victimized by* crimes".

Our proposed technique to address the above problem is compute the *word association* values between an entity and a sequence of keywords, and multiply that with the representativeness score of this entity in the concept it belongs to, to get a *relevance score* for a given query.

4.3.1 Word Association

A word association value is used to measure the associativity of a set of words. For example, word *Microsoft* and word *technology* have a high association value than *Walmart* and *technology*, because Microsoft is a technology company whereas Walmart is a supermarket presumably less "technology-savvy". To compute the word association value between two words, which we call *two-way association*, we measure the frequency of *co-occurrence* of the two words in a document among all documents or in a sentence among all sentences in the all documents. The concept can be easily extended to association of more than two words, namely *multi-way association*.

Word association values among a fixed set of words are often precomputed and stored in a matrix for efficient runtime lookup. Computing a two-way association matrix for a set of N words generally takes $O(N^2)$ time, while computing a multi-way matrix is even more costly. Li [27] proposed a method to estimate multi-way association. It uses an improved sketch method when sampling inverted index list of the words and then use maximum likelihood estimation to solve the problem. Consequently, one only needs to store the sampled inverted list of each word, instead of all the association values of different word combinations. However, scanning the inverted list remains to be costly if the number of documents is too large, especially at the scale of the entire web.

In this paper, we approximate multi-way association by combining the values of two-way association. In general, given a set of *m* words: $W = \{w_1, w_2, ..., w_m\}$, it is impossible to compute the exact word association wa(W) based only on two-way association $wa(\{w_i, w_j\})$, where w_i and w_j are any two distinct words in the *W*. This is because the co-occurrence of all words in *W* may be independent of the co-occurrence of any pair of two words in *W*. However, because an co-occurrence of *W* together implies a cooccurrence of (w_i, w_j) , for any $w_i, w_j \in W$, we have

$$wa(W) \le \min wa(\{w_i, w_j\}).$$

In other words, the minimum two-way association value provides an upper bound to the *m*-way association value. In this paper, as we will show later in the section, we are actually computing a special *m*-way association involving the words in an entity term and the words in a keyword term. In this computation, we approximate the *m*-way association, by the minimum value of the two-way association between a word in the entity and the key word, or

$$wa(\{e, w_{key}\}) \approx \min_{w_i \in e} wa(\{w_i, w_{key}\}).$$
(3)

This technique is based on the notion of pivot words. A pivot word is the most informative and distinguishing word in a short phrase or term. This word is so special to the term, that it allows people to recognize the term even without looking at the other words. Given that W contains the words from an entity term and a keyword, if two words w_i and w_j from W co-occur the minimum number of times, we argue that there is a high probability that one of them is the pivot word of the entity term and the other is the keyword. This is because the pivot word appear less frequently than the other more common words in the entity. It is even rarer for the pivot word to appear with an arbitrary keyword than with the other words in the entity. Therefore $wa(\{e_{pivot}, w_{kev}\})$ is likely to be minimum. On the other hand, because the pivot word is special and distinguishing, when it does appear in the text, it often appears in the context of the whole entity term, and therefore $wa(\{e_{pivot}, w_{key}\})$ can be used to simulate $wa(\{e, w_{kev}\})$.

We can further extend (3) to compute the association of an entity term and a sequence of keywords:

$$wa^+(\{e,k_1,\ldots,k_n\}) \approx \min_{i \in [1,n]} wa(\{e,k_i\}).$$
 (4)

To get the word association values, we first obtain a list of most frequently used words on the web (excluding common stop words) as our word list and then compute the sentence-level pairwise cooccurrence of these words. We chose to count the co-occurrence within sentences rather than documents because this gives stronger evidence of association between two words.

4.3.2 E+K and E+K+E queries

We first group the E+K and E+K+E queries by their prefix E+K. As a result, each E+K query form a group by itself; and E+K+E queries with the same prefix form a group. Next, we compute a relevance score for each group G as

$$\max_{q \in G} (wa^+(q_{e1}, q_k, q_{e2}) \times rp(q))$$

where q_{e1} , q_k and q_{e2} are the first entity, keywords and the second entity of query q (q_{e2} may be null if q is an E+K query), and rp(q)is the representativeness score of q (see Algorithm 1).

We then select the top *n* groups with the best relevance scores. For the *n* groups, if a group *G* is an E+K group, we simply send the only query contained in this group to the search index and gather the results as the final results; if a group *G* is an E+K+E group, we use a two-pass procedure that accesses the search engine twice: in the first pass, we query the search engine with $\{q_{e1}, q_k\}$, *i.e.* the prefix of the group. Let us call the set of top pages thus returned *R*. We then remove from *G* all queries whose second entity, *i.e.* q_{e2} , does not appear in any of the pages in *R*. In the second pass, we send the remaining queries in *G* to search engine. Finally we collect all results from the top *n* groups and rank them according to some common search engine metric such as PageRank before returning to the user. The complete algorithm is listed in Algorithm 1.

```
Algorithm 1 Processing E+K and E+K+E Query Groups
Input: a set of E+K and E+K+E queries S; argument n.
Output: final search result set R(S).
```

1: $S_g \leftarrow \text{group } S$ by sequence prefix {E, K} 2: for all query group $G \in S_g$ do for all query $q \in G$ do 3: $wa(q) \Leftarrow wa^+(q_{e1}, q_k, q_{e2})$ 4: 5: $rp(q) \Leftarrow$ representativeness score of e1 in Probase 6: $score(q) \Leftarrow wa(q) \times rp(q)$ 7: end for $score(G) \Leftarrow \max_{q \in G} \{score(q)\}$ 8: 9: end for 10: $S_{top} \leftarrow \text{top } n \text{ groups in } S_g$ 11: $R(S) \leftarrow \emptyset$ 12: for all query group $G \in S_{top}$ do 13: if G is an E+K query group then 14: send the only query $q \in G$ to search engine 15: $R(G) \Leftarrow \text{top returned results}$ 16: else 17: $G_{filtered} \Leftarrow \emptyset$ 18: send query $q_{prefix} = \{q_{e1}, q_k\}$ to search engine for all result $r \in R(\{q_{prefix}\})$ do 19: 20: for all query $q = \{q_{e1}, q_k, q_{e2}\} \in G$ do 21: if sequence q appears in r then 22: $G_{filtered} \leftarrow G_{filtered} \cup \{q\}$ 23: end if end for 24: 25: end for $R(G) \Leftarrow \emptyset$ 26: 27: for all query $q \in G_{filtered}$ do 28: send q to search engine 29: $R(\{q\}) \Leftarrow$ returned results 30: $R(G) \Leftarrow R(G) \cup R(\{q\})$ 31: end for 32: end if 33: $R(S) \Leftarrow R(S) \cup R(G)$ 34: end for

4.4 Ranking Results

Even though the Processor module filters out most irrelevant candidate queries, the number of relevant queries can still be large. The current framework requires all results be returned from the search index before ranking and presenting the final results to the user. Since it typically takes a search index a few tenths of seconds to process one query, the above approach will result in very long end-to-end response time, and hence deliver very bad user experience. We therefore made a few optimizations for the C+K and C+K+C queries, two of the most expensive query patterns.

To do this, we set up an empty pool, and send the queries in the top n groups one by one to the search index and place results into the pool. At the same time, we pop the best result in the pool and return it to the user at regular intervals. We continue this process until sufficient results are shown to the user. Algorithm 2 describes it in detail.

Algorithm 2 Ranking

Input: a grouped and ranked query set S_g ; the number of top results n.

Output: a list of results $R(S_g)$.

```
1: pool = \emptyset
```

```
2: for i \in 1..n do
```

```
3: get results R(G_i) of the ith query group G_i in S_g
```

```
4: pool \leftarrow pool \cup R(G_i)
```

5: pop and show the best result r in pool

```
6: end for
```

5. EVALUATION

In this section, we evaluate the performance of online query processing and offline precomputation (word association). To facilitate this evaluation, we create a set of benchmark queries that contain concepts, entities, and attributes, for example, "politicians commit crimes" (C+K+C), "large companies in chicago" (C+K), "president washington quotes" (E+A), etc. For a complete list of the queries and their results, please see [1].

5.1 Semantic Query Processing

Given a query, we analyze the concepts, entities, and attributes in the query. For C+K and C+K+C queries, we rewrite the query by replacing the concepts with appropriate entities. We then send the rewritten queries to Bing using Microsoft Bing API. Note that APIs only allow 2 queries per second. We then combine their results and compare them with the result of the original query. For other types of queries (e.g., E, C, E+A and C+A), we search for relevant information in Probase, and return a table that contains entities, their attributes and values.

The computation is done on a workstation with a 16-core 2.53 GHz Intel Xeon E5540 processor and 32 GB of memory and is running 64-bit Microsoft Windows Servers 2003.

Quality of C+K & C+K+C queries

We ask three human judges to evaluate the relevancy of the results for 10 C+K and 10 C+K+C queries in our benchmark [1]. In the first experiment, for each query, we collect the top 10 search results returned by our prototype system, Bing and Google. For each result, we record majority vote ("relevant" or "not relevant") of the human judges. Fig. 13 compares the percentage of relevant results from the three systems. It shows that our prototype has a clear advantage at answering concept related queries. In addition, it also shows that results for C+K+C queries have lower relevancy than C+K queries across the three systems. This is because C+K+C queries often involve more complicated semantic relations than C+K queries.

In the second experiment, we show the complementary nature of our prototype system. We show that it can pick up some relevant results that keyword based search engines will unavoidably miss. To

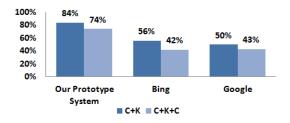


Figure 13: % of relevant results for C+K & C+K+C queries

see this, we focus on relevant results in the top 10 results returned by our prototype system. Among the top 10 results for the 10 C+K queries we use, 84 are judged relevant. The number for C+K+C queries is 74. We check whether these results will ever show up in Google or Bing. Fig. 14 shows that at least 77% of the relevant C+K results and 85% of the relevant C+K+C results in our top 10 could not be found in Bing or Google even after scanning the first 1000 results.

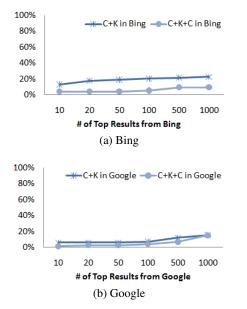


Figure 14: Bing/Google miss the relevant results in our top 10

Quality of E, C, E+A & C+A queries

For E, C, E+A, and C+A queries, we return tables instead of 10 blue links. The benchmark queries we use can be found in [1]. We ask human judges to rate the relevancy of each returned table. Fig. 15 shows the percentages of relevant results.

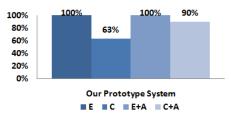


Figure 15: % of relevant results for E, C, E+A, C+A queries

Fig. 15 shows that all returned results are relevant for E and E+A queries. However, C and C+A queries have errors. We note that in

Probase, there are ambiguous terms. For example, "George Washington" is an entity under both the *presidents* and the *books* concepts. The current version of Probase obtains attribute and value information partly from Freebase by matching entity names. As a result, the attributes and associated values for "George Washington" as a book might be incorrectly attached to the same entity name under presidents. This caused some incorrect results for C and C+A queries.

Time Performance

We next evaluate the efficiency of our prototype system. Table. 3 shows the average running time of the benchmark queries in different categories. Note that the system is configured to return only the top 10 results for C+K, C+K+C, C and E patterns, and all results for the other two patterns.

Pattern	Pr.	It.	Pc.	First Result	Total
Е	0.06	0.16	0.16	0.38	0.38
C	0.33	0.23	0.32	0.88	0.88
E+A	0.15	0.16	0.08	0.39	0.39
C + A	0.16	0.66	0.15	0.97	0.97
C + K	0.12	0.50	5.24	0.62	5.87
C + K + C	0.36	1.22	13.21	2.83	14.79

Table 3: Execution Time (secs)

* Pr. = Parsing, It. = Interpretation, Pc. = Processing.

We currently use only one machine to communicate with Bing's public API to support our system. The API accepts only 2 queries per second. So we can see that C+K & C+K+C queries take much more time on processing than other queries. We improve user experience by presenting the first result as soon as it becomes available instead of showing all results at the end. Also, C+K+C queries take more time to process than C+K ones because two round trips to Bing are required for each query – one for filtering and one for final results. On the other hand, C queries take less time than E since an entity may belong to several concepts and we have to check all of them in Probase. C+A queries require more time than C queries because we need to remove entities without any attributes in a query. For the same reason, E+A queries take longer than E.

We present the traffic statistics for C+K and C+K+C queries, the only two types of queries that require communication with Bing. Table 4 shows the average number of bytes our prototype system sends to and receives from Bing. Since C+K+C queries require the system to send queries twice to the search engine, their traffic is almost twice as much as that of C+K queries. Nonetheless, the communication costs are within reasonable range.

Pattern	sent	received
C + K	270	3177
C + K + C	463	140627

 Table 4: Traffic (bytes)

5.2 Offline Precomputation

We precompute a word association matrix using SCOPE [12], an SQL-like declarative query language for efficient parallel data processing on the Cosmos platform¹ developed by Microsoft. The

¹Cosmos is a distributed storage and data processing system designed to run on clusters of inexpensive commodity servers. It provides a distributed file system and a runtime environment for deploying, scheduling and executing SCOPE jobs.

word association matrix is computed on a Cosmos cluster that contains 30 machines. Each of these machines has an 8-core 2.33 GHz Intel Xeon E5410 processor and 16 GB of memory, and is running 64-bit Microsoft Windows Servers 2003. However, our program is single threaded and hence uses only one core at a time on any of the machines.

Pivot words and word association

One assumption we made in this paper is that we can estimate the association between an entity term and a keyword using simple two-way word association. The following experiments verify this assumption.

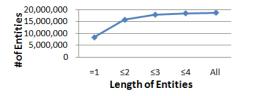


Figure 16: Number of words in Probase entities

We sampled 9,154,141 web pages (25GB on disk) from a web corpus snapshot of 366,185,148 pages for counting co-occurrences of words. We first examine the length of all the entities in Probase. Fig. 16 depicts the distribution of the number of entities in Probase over their lengths (number of words per entity). The result shows that 44.36% of the entities contains just one word, almost 84% have 2 or fewer words, and over 95% have 3 or fewer words. One-word entities, which account for almost half of all entities, are straightforward to process using 2-way word association with another keyword. For the other half of the entities which have more than 1 word, the next experiment indicates that there indeed exists pivot words in many such entities and 2-way association.

We take the 10 benchmark C+K queries [1], and for each query generate a set of E+K candidate queries by substituting the concept with its associated entities. We next rank this candidate set using two different methods and compare the resulting rankings. In the first method, which serves as a baseline, we rank the E+K queries by the actual association values of all the words in these queries. In other words, we compute the exact multi-way association of the entity term and the keywords by counting the number of times these words co-occur in our web corpus samples. In the second method, we rank the same set of E+K queries by computing 2-way association of the pivot word and the keywords in each query using (4) in Section 4.3.1. To find out the effectiveness of pivot words and 2-way association, we compute the similarity between the two rankings for each of the 10 benchmark queries using Kendall's Tau [15]. Kendall's tau distance between two equi-length sequences τ_1 and τ_2 is:

$$\begin{split} K(\tau_1, \tau_2) &= |(i, j) : i < j, (\tau_1(i) < \tau_1(j) \land \tau_2(i) > \tau_2(j)) \\ & \lor (\tau_1(i) > \tau_1(j) \land \tau_2(i) < \tau_2(j))| \end{split}$$

Kendall's tau measures the number of "discordant" position pairs, and that number is equal to the number of flip operations required to turn the second sequence into the first sequence by Bubble sort. We further calculate the *normalized Kendall's tau* as:

$$\bar{K}(\tau_1, \tau_2) = 1 - \frac{K(\tau_1, \tau_2)}{n(n-1)/2}$$

Fig. 17 shows that the two rankings are similar enough across all the benchmark queries to warrant the simulation of exact method with the 2-way association with the pivot words. Please see [1] for the the pivot words we discovered in these queries.

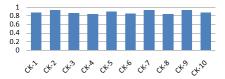


Figure 17: Normalized similarity between ideal and simulated rankings

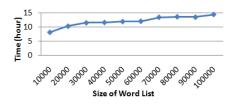


Figure 18: Word association scaling

Time Performance

This experiment evaluates the scalability of word association computation. We varied the length of the word list, or the matrix, from 10,000 to 100,000 and measure the time it takes to compute the $n \times n$ word association matrix on the 30-machine Cosmos cluster. Fig. 18 shows the roughly linear scale-up graph and indicated that 14.45 hours is required to compute a 100,000 by 100,000 matrix which was the matrix used in the actual prototype system.

6. RELATED WORK

There have been some attempts to support semantic search on the web. Most of these are backed by some form of a knowledge base. A well-known example is PowerSet [5] which maintains huge indexes of entities and their concepts. This approach, however, will not scale because updates on the entities can be extremely expensive. Another noteworthy general semantic search engine is Hakia [4] which leverages a commercial ontology and the QDex technology. The QDex technology is unique in that it indexes paragraphs by the embedded frequent queries (sequence of words). Hakia's search results on many of our benchmark queries were similar to keyword search results, which suggest the coverage of their ontology is too limited to help understanding the queries. Other semantic engines include WolframAlpha [6], Evri [3] and DeepDyve [2], etc. These engines exploit human curated or automatically extracted knowledge in specific domains such as science, news and research documents. Qiu and Cho proposed a personalized topic search [29] using topic-sensitive PageRank [19], which emphasizes on the analysis of user interests and the disambiguation of entities.

Understanding users' queries and helping users formulate "better" queries is important to document retrieval and web search. Work in this space can be collectively referred to as *query rewriting*. The relevant techniques include query parsing [18], query expansion [26, 33, 17], query reduction [22, 24], spelling correction [13] and query substitution [30, 9]. We next discuss query parsing and query substitution, two techniques that are more closely related to the work in this paper.

One notable example of query parsing which is required for all the other rewriting approaches is Guo *et al.*'s work on named entity recognition in queries, in which they detected entities in queries and identified the most likely classes they belong to. They achieve this through the use of a small human-curated taxonomy and some off-line training, which may not be scalable to various web queries.

Radlinski *et al.* [30] projected web queries to a relatively small set of ad queries, and use the search results to help compute the similarity between two queries. Malekian *et al.* optimized query rewrites for keyword-based advertising [28]. They established a formal graph model to solve the problem. Antonellis *et al.* proposed query rewriting through link analysis of the click graph [9] using SimRank [21] to identify similar queries. However, all of these approaches used a finite ad query set which does not come close to the scale this paper is experimenting with.

Finally, some researchers experimented with indirect assistant to users instead of rewriting the queries automatically. One body of work is providing relevance feedback corresponding to the user's query [35, 8, 7]. Radlinski and Joachims analyzed query chains to help retrieve text results [31]. These methods involve human supervision and requires a second search. Terra and Clarke substitutes query terms from retrieved documents [34]. An initial retrieval for all queries is necessary. In our framework, all query patterns except C+K+C require just one search. Broder and his colleagues [11] uses a taxonomy to classify web queries, but they came short of providing any useful applications for this technique. Jones et al. proposed a way to generate query substitutions with the help of search logs [23]. They suggested that the difference between two consecutive queries issued by a same user can be treated as a candidate substitution for one another. Zhang et al. improved the above work by using active learning and comparing click logs and editorial labels [36, 37].

7. CONCLUSION

In this paper, we notice a special class of web search which we name it "topic search" and propose an idea to support it. We use an automatically constructed taxonomy to analyze the search log and find that most queries are about entities or concepts. Then we notice that we can use Probase to help us understand the queries and help users to clear their vague concepts. By specifying the concepts into entities and taking advantage of word association information, we do provide additional info for traditional search engines and help them improve the quality of topic search results.

8. REFERENCES

- http://research.microsoft.com/en-us/ projects/probase/topicsearch.aspx.
- [2] Deepdyve. http://www.deepdyve.com.
- [3] Evri. http://www.evri.com.
- [4] Hakia.http://www.hakia.com.
- [5] Powerset. http://www.powerset.com.
- [6] Wolfram alpha. http://www.wolframalpha.com.
- [7] P. G. Anick. Using terminological feedback for web search refinement: a log-based study. In *SIGIR*, pages 88–95, 2003.
- [8] P. G. Anick and S. Tipirneni. The paraphrase search assistant: Terminological feedback for iterative information seeking. In *SIGIR*, pages 153–159, 1999.
- [9] I. Antonellis, H. Garcia-Molina, and C.-C. Chang. Simrank++: Query rewriting through link analysis of the click graph. In VLDB, June 2008.
- [10] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively created graph database for structuring human knowledge. In *SIGMOD*, 2008.
- [11] A. Z. Broder, M. Fontoura, E. Gabrilovich, A. Joshi, V. Josifovski, and T. Zhang. Robust classification of rare queries using web knowledge. In *SIGIR*, 2007.

- [12] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. Scope: easy and efficient parallel processing of massive data sets. *PVLDB*, 2008.
- [13] I. Durham, D. A. Lamb, and J. B. Saxe. Spelling correction in user interfaces. *Commun. ACM*, 26(10):764–773, 1983.
- [14] H. W. et al. Probase: Building a probabilistic ontology from the web. 2010.
- [15] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. *SIAM Journal on Discrete Mathematics*, 17:134–160, 2003.
- [16] C. Fellbaum, editor. WordNet: an electronic lexical database. MIT Press, 1998.
- [17] B. M. Fonseca, P. B. Golgher, B. Pôssas, B. A. Ribeiro-Neto, and N. Ziviani. Concept-based interactive query expansion. In *CIKM*, pages 696–703, 2005.
- [18] J. Guo, G. Xu, X. Cheng, and H. Li. Named entity recognition in query. In *SIGIR*, pages 267–274, 2009.
- [19] T. H. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. *IEEE Trans. Knowl. Data Eng.*, 15(4):784–796, 2003.
- [20] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In COLING, pages 539–545, 1992.
- [21] G. Jeh and J. Widom. Simrank: a measure of structural-context similarity. In *SIGKDD*, 2002.
- [22] R. Jones and D. C. Fain. Query word deletion prediction. In SIGIR, pages 435–436, 2003.
- [23] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitutions. In WWW, pages 387–396, 2006.
- [24] G. Kumaran and V. R. Carvalho. Reducing long queries using query quality predictors. In SIGIR, pages 564–571, 2009.
- [25] D. B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project. Addison-Wesley, 1989.
- [26] M. E. Lesk. Word-word associations in document retrieval systems. *American Documentation*, 20:27–38, 1969.
- [27] P. Li and K. Church. A sketch algorithm for estimating two-way and multi-way associations. *Computational Linguistics*, 33(3):305–354, 2007.
- [28] A. Malekian, C.-C. Chang, R. Kumar, and G. Wang. Optimizing query rewrites for keyword-based advertising. In ACM Conference on Electronic Commerce, 2008.
- [29] F. Qiu and J. Cho. Automatic identification of user interest for personalized search. In WWW, pages 727–736, 2006.
- [30] F. Radlinski, A. Z. Broder, P. Ciccolo, E. Gabrilovich, V. Josifovski, and L. Riedel. Optimizing relevance and revenue in ad search: a query substitution approach. In *SIGIR*, pages 403–410, 2008.
- [31] F. Radlinski and T. Joachims. Query chains: Learning to rank from implicit feedback. *CoRR*, 2006.
- [32] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. *Inf. Process. Manage.*, 24(5):513–523, 1988.
- [33] G. Salton and C. Buckley. Improving retrieval performance by relevance feedback. *JASIS*, 41(4):288–297, 1990.
- [34] E. Terra and C. L. A. Clarke. Scoring missing terms in information retrieval tasks. In CIKM, pages 50–58, 2004.
- [35] J. Xu and W. B. Croft. Query expansion using local and global document analysis. In SIGIR, pages 4–11, 1996.
- [36] W. V. Zhang, X. He, B. Rey, and R. Jones. Query rewriting using active learning for sponsored search. In *SIGIR*, 2007.
- [37] W. V. Zhang and R. Jones. Comparing click logs and editorial labels for training query rewriting. In Workshop on Query Log Analysis: Social And Technological Challenges, 2007.