
Toward Topic Search on the Web

Yue Wang, Hongsong Li, Haixun Wang, Kenny Q. Zhu
Microsoft Research Asia

ABSTRACT
Traditional web search engines treat queries as sequences of key-
words and return web pages that contain those keywords as results.
Such a mechanism is effective when the user knows exactly the
right words that web pages use to describe the content they are
looking for. However, it is less than satisfactory or even downright
hopeless if the user asks for a concept or topic that has broader and
sometimes ambiguous meanings. This is because keyword-based
search engines index web pages by keywords and not by concepts
or topics. In fact they do not understand the content of the web
pages. In this paper, we present a framework that improves web
search experiences through the use of a probabilistic knowledge
base. The framework classifies web queries into different patterns
according to the concepts and entities in addition to keywords con-
tained in these queries. Then it produces answers by interpreting
the queries with the help of the knowledge base. Our preliminary
results showed that the new framework is capable of answering var-
ious types of topic-like queries with much higher user satisfaction,
and is therefore a valuable addition to the traditional web search.

1. INTRODUCTION
Keyword based search works well if the users know exactly what

they want and formulate queries with the “right” keywords. It does
not help much and is sometimes even hopeless if the users only
have vague concepts about what they are asking. The followings
are four examples of such “conceptual queries”:
Q1. database conferences in asian cities
Q2. big financial companies campaign donation
Q3. tech companies slogan
Q4. winter vacation destinations except florida

Although the intentions of these queries are quite clear, they are
not “good” keyword queries by traditional standard. In the first
query, the user wants to know about the database conferences lo-
cated in Asian cities, without knowing the names of the conferences
or cities. In the second query, the user asks which big financial
companies are involved in campaign donation. In the third query,
the user wants to find out the various slogans of tech companies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

In the fourth query, the user tries to get information about winter
vacation places excluding Florida.

Figure 1: Google results for Q1

Figure 2: Google results for Q2

Fig. 1 through 4 show the top results returned by Google and
Bing for these four queries. None of these results render meaning-
ful answers to the actual questions implied by the queries. Most of
them are likely to be considered irrelevant by the user. These results
were returned merely because they contain some of the keywords
in the queries. For example, the top two results in Fig. 1 have noth-
ing to do with Asian cities, or database conferences. In Fig. 2, the
words “financial” and “finance” appear in various places but are not
related to financial companies. Fig. 3 happens to return a page with
a list of company slogans, not because these are tech companies
but because one of the company names contains the word “tech”.
Fig. 4 shows that Bing does not understand the meaning of “except
florida” and returns pages that are about vacations in Florida.

Apparently, database conferences, asian cities, big financial com-
panies and winter vacation destinations, etc. are abstract concepts
(or semantic classes) while slogan can be regarded as an attribute
of tech companies. None of these are keywords in the traditional
sense. Traditional search engines are good at handling entities in

Figure 3: Bing results for Q3

Figure 4: Bing results for Q4

these classes (e.g. VLDB as an entity of database conferences),
because these entities can be exactly matched as keywords. But in
reality, quite a significant percentage of web queries are not entity
only queries. Our statistics from the Bing search log of the last two
years suggests that about 62% of the queries contain at least one
conceptual class term (see Fig. 11). To better serve such concep-
tual queries, we need to understand concepts in web pages.

In this paper, we present a framework that leverages a probabilis-
tic knowledge base and query interpretation techniques to improve
web search on concept-related web queries. We previously built
a knowledge base, named Probase [14], which was automatically
constructed by integrating information from web pages and other
more reliable data sources such as Freebase [10] and Wordnet [16].
With 2.7 million concepts, 16.2 million entities and over 5 thousand
attributes, it represents an enormous amount of sometimes fuzzy
and inconsistent concepts of worldly facts in human minds, all or-
ganized in a hierarchical structure with subsumption, similarity and
other relations. With the help of Probase, we can identify concept
and attribute terms in queries and interpret them by replacing the
concepts with their most likely entities, and hence formulate more
accurate keyword-based queries. The results of these new queries
from the traditional search engines can then be ranked and pre-
sented to users, in addition to normal keyword queries.

Fig. 5 shows the top search results of the query “database confer-
ences in asian cities” from our prototype system. These results do
not contain the keywords “database conferences” or “asian cities”,
but instead directly gives information about three recent VLDB
conferences that were actually hosted in Asia. This information
is a lot more targeted and relevant from the user perspective. Fig. 6
gives the top results for query “big financial companies campaign
donation” on our system. Our system correctly links Citigroup and

Figure 5: Our top results for Q1

Figure 6: Our top results for Q2

Merrill Lynch, two of the largest financial institutes with contribu-
tions to political campaigns. When serving the query “tech com-
panies slogan”, our prototype system realizes that the information
is immediately available from the taxonomy, and hence presents all
the slogans it knows directly in a table, which is shown in Fig. 7.
Fig. 8 pinpoints accurately some of the top winter vacation desti-
nations other than Florida, such as Mexico and Hawaii.

It is important to note that the lack of a concept-based search
feature in all mainstream search engines has, in many situations,
discouraged people from expressing their queries in a more natural
way. Instead, users are forced to formulate their queries as key-
words. This makes it difficult for people who are new to keyword-
based search to effectively acquire information from the web.

The proposed framework is not meant to replace the existing
keyword based search, but complements keyword search as we can
now handle some of “non-keyword” queries as well. This frame-
work therefore represents a significant step toward a new genre of
search on the web — topic search.

The main contributions of this paper are:
1. a large-scale, automatically constructed taxonomy is used for

web search;
2. the new framework better understands user queries by pattern

matching and query interpretation using the concepts and en-
tities in the taxonomy;

3. our experiments show that this conceptual search framework
provides additional values for topic-related queries and sig-
nificantly improves user experiences with web search.

In the remainder of this paper, we will first give an overview of
the topic search framework (Section 2), followed by the introduc-
tion of Probase (Section 3). Section 4 details the proposed frame-
work, and Section 5 presents the evaluation of the system. This is
followed by some most related work (Section 6) and the conclusion
(Section 7).

2. OVERVIEW
In web search, limited query rewriting techniques are used to find

a term’s alternative forms, so that documents containing the alterna-

Figure 7: Our top results for Q3

Figure 8: Our top results for Q4

Figure 9: The framework of topic search

tive forms are also considered. In this paper, we take query rewrit-
ing to a new level by using Probase for understanding. Probase
is a web-scale, automatically constructed taxonomy. Unlike other

taxonomies, it contains as many as 2.7 million concepts, forming
a system of worldly facts inside human minds. This enables us to
better interpret user queries. Fig. 9 shows the framework of our
system, which is centered around the Probase taxonomy.

More specifically, our framework is comprised of three main
modules: the parser, the interpreter and the processor. When a
user issues a query, the parser uses Probase to decompose the query
into possible term sequences, which consist of terms of 4 different
types: concepts, entities, attributes and keywords. The interpreter
identifies the intent or the semantics of the term sequence based on
a set of query patterns. In this paper, we focus on five most useful
patterns and their combinations. The interpreter rewrites the parsed
queries into a set of candidate queries by substituting abstract con-
cepts with their specific entities. The processor ranks the candidate
queries based on their likelihood, which is estimated by word asso-
ciation probabilities. The processor then submits top queries either
to Probase or to the search engine index to obtain a list of raw re-
sults. It ranks the results in a way similar to a normal search engine
before returning the final results to the user.

3. THE KNOWLEDGE BASE
In order to better understand queries, the search engine needs to

have access to a knowledge base, which knows that, for example,
VLDB is a database conference, Hong Kong is an Asian city, except
Florida means the other 49 states in the US, many companies have
their slogans, and the slogan of Google, a well known tech com-
panies, is “Don’t be evil.” Furthermore, we also need certain meta
information, for example, how entities are ranked by their represen-
tativeness within a same concept (e.g., What are the top 5 Internet
companies?), or how plausible is a claim (e.g., Is Pluto a planet, or
a dwarf planet?)

Unfortunately, few existing knowledge bases are qualified for
this purpose. This is because, first, although there exists a large
number of ontologies and taxonomies, they are often domain spe-
cific, and therefore very hard to integrate. Second, universal tax-
onomies, including the well known Cyc [25] and Freebase [10],
have a small conceptual scope: Cyc has about 120 thousand con-
cepts while Freebase contains only about 1,500 concepts in shallow
conceptual structures. This contrasts with the rich conceptual struc-
ture in a human mind.

Figure 10: A fragment of Probase taxonomy

In this work, we take advantage of the Probase taxonomy for
rewriting search queries. Probase is a research project aimed at at
building a universal, probabilistic taxonomy [14]. The backbone
of Probase is constructed using linguistic patterns such as Hearst
patterns [20]. For example, a sentence that contains “... politicians
such as Barack Obama and Tony Blair...” can be considered as

an evidence for the claim that politicians is a hypernym of Barack
Obama and Tony Blair. Fig. 10 illustrates a snapshot of the Probase
taxonomy which includes the concept “politicians”, as well as its
super-concepts, sub-concepts, entities and similar concepts.

Probase is unique in two aspects. First, the Probase taxonomy is
extremely rich. The core taxonomy alone (which is learned from
1.68 billion web pages and 2 years’ worth of Microsoft Bing’s
search log) contains around 2.7 million concepts. The rich set of
super-concepts, sub-concepts, and similar concepts of politicians
shown in Fig. 10 is an example. Indeed, with 2.7 million concepts
obtained directly from Web documents, the knowledge base has
much better chance to encompass as many concepts in the mind of
humans beings as possible. As shown in Fig. 11, at least 80% of
the search contains concepts or entities that appear in Probase.

Figure 11: Concepts and entities in search (Bing search log)

Second, the Probase taxonomy is probabilistic, which means
every claim in Probase is associated with some probabilities that
model the claim’s plausibility, ambiguity, and other characteristics.
The probabilities are derived from evidences found in web data,
search log data, and other available data. Because of the proba-
bilistic framework, it is natural for Probase to integrate information
from other data sources, including other ontologies. It also enables
Probase to rank the information it contains. For example, it can
answer questions such as “What is the top 5 Internet companies?”,
or “How likely is Pluto a planet vs. a dwarf planet?”

4. OUR APPROACH
Our topic search framework contains the following modules.

4.1 Query Parsing
We regard a search query as a sequence of terms. We are inter-

ested in five kinds of terms: terms that describe a specific object,
which we call entities; terms that describe a collection of things,
which we call concepts; terms that describe a property of one or
more objects, which we call attributes; terms that consist of other
non-trivial types of words, which we call keywords; and finally a
special kind of terms that modify a class of things, which we call
auxiliary modifiers. Table 1 gives some examples of each type of
terms which are highlighted.

The first three types are usually noun phrases, while the key-
word terms are often verbs, adjectives or any combinations of other
terms that are not recognized as one of the first three types. The
last type is special patterns consisting of an auxiliary term (such
as “besides”, “except”, “including”, etc.) plus one or more noun
phrases.

Formally, we represent a raw query by an array of words, that
is, q[1,n] = (w1, · · · ,wn). We parse it into a sequence of terms,
where each term is an entity, a concept, an attribute, or an attribute
value in the Probase taxonomy, or simply a keyword otherwise.
Specifically, we represent a parsed query as p[1,m] = (t1, · · · , tm),

Term Type Examples

Entity
Citigroup
ICDE in Hong Kong
Hong Kong area

Concept
companies
big financial companies campaign donation
database conferences in asian cities

Attribute
tech companies slogan
Hong Kong area
movies director

Keyword
Oracle acquire Sun
big financial companies campaign donation
what’s the date today

Auxiliary
winter vacation destinations except Florida

Modifiers
IT companies besides Microsoft and Google
asian cities other than Singapore and Hong Kong

Table 1: Query Terms and Examples

where each tk is a consecutive list of words in the raw query, i.e.,
tk = q[i, j] = (wi,wi+1, · · · ,w j).

Clearly, there may exist many possible interpretations of a query,
or multiple different parses. For example: query “president george
bush fires general batiste” can be parsed as

[president] (george bush) fires [general] (batiste)
[president] george [bush fires] [general] (batiste)
(president) (george bush) fires [general] (batiste)

where () denotes an entity, [] a concept, <> an attribute. The reason
of multiple parses is because both george bush and bush fires are
valid terms in Probase. Further more, president can either be a
concept, which refers to all presidents, or a specific entity in the
political leader concept. The parser needs to return all meaningful
parses from a query.

For an n-word query, there are 2(n−1) possible parses which
is expensive to compute. We first introduce a greedy algorithm
to solve this problem. Then we improve this algorithm using a
dynamic programming approach. The greedy algorithm contains
three steps: (1) find all possible terms; (2) find all correlations
among terms; (3) use a scoring function to find one meaningful
parse in a greedy manner.

First, we find all terms in a query. For a sequence of n word, there
are n(n + 1)/2 possible subsequences. We check each of them to
see if they are concepts, entities or attributes. We give a term t a
score according to its type and length:

sterm(t) = wterm(t) ·wlen(|t|) (1)

where |t| is the number of words in t, wterm(t) is the weight function
defined as:

wterm(t) =

we, if t is an entity
wc, if t is a concept
wa, if t is an attribute
0, otherwise

and

wlen(x) = xα

where we, wc and wa are constants, and we > wc. We let α > 1 to
bias toward longer terms.

Next, we consider the correlations among terms. Currently we
focus on three kinds of correlations: Entity-Attribute, Concept-

Attribute, and Concept-Entity. We use R1-R2 to denote the cor-
relation between one R1 term and several R2 terms. For example,
“<population> of (china)” is an instance of Entity-Attribute corre-
lation, and “[tech companies] <slogan> and <founder>” is an in-
stance of Concept-Attribute correlation. Note that terms in a cor-
relation do not have to be physically adjacent to each other, which
means keywords can be mixed with correlated terms, e.g. “[presi-
dents] and their <wives>”.

Based on terms and term scores, we define block and block score.
A block is either a correlation or a single term. The block score is
defined as:

sblock(q[i, j]) = max
i′, j′

{wblock(p[i′, j′]) ·
j′

∑
k=i′

sterm(tk)} (2)

where p[i′, j′] is a term sequence parsed from q[i, j], and

wblock(p[i′, j′]) =

we−a, if p[i′, j′] is an E-A correlation
wc−a, if p[i′, j′] is a C-A correlation
wc−e, if p[i′, j′] is a C-E correlation
1, otherwise

where we−a, wc−a and wc−e are all greater than 1. The above
formula rewards blocks with a term correlation, and if there is no
correlation, the block score is equal to the sum of term scores.

Finally, after finding all possible terms and blocks, we greedily
select the block with the highest score. Once a block is selected, all
blocks it overlaps with are removed.

We show the three-step greedy algorithm for parsing query “pres-
ident george bush fires general batiste” in Fig. 12. In step (1), we
identify all terms in the query and score them according to Eq. 1.
In step (2), we generate blocks based on these terms. Each term
becomes a block and their block scores equal to their term scores.
At the same time, we notice that (george bush) is an entity of con-
cept [president], so we build a C-E correlation block. Same goes
for (batiste) and [general]. In step (3), we perform greedy selec-
tion on blocks. We identify “[president] (george bush)” as the
best block among all, and remove other overlapping blocks such
as “[president]”, “(george bush)” and “[bush fires]”. Similarly we
keep block “[general] (batiste)” and remove its overlapping blocks.
As a result, the algorithm returns “[president] (george bush) fires
[general] (batiste)” as the best parse.

Figure 12: Example of greedy parsing

However, the greedy algorithm does not guarantee an optimal
parse, and it cannot return a list of top parses. As an improvement,

we propose the following dynamic programming algorithm. We
define a preference score spre f (n) to represent the quality of the
best parse of a query of n words:

spre f (n) =

n−1
max
i=0

{spre f (i)+ sblock(q[i+1,n])}, if n > 0

0, if n = 0

By memorizing the sub-solutions of spre f (n), one can produce the
parse with highest preference score. Moreover, when defining spre f (n)
as a score set of top parses, one can also obtain the top k parses.

4.2 Query Interpretation
In this module, we classify the input parsed queries into different

patterns. Our analysis on the Bing search log during the period of
September of 2007 to June of 2009 (see Fig. 11) shows that about
62% of the queries contain at least one concept term. More detailed
analysis revealed that common web queries can be classified into
a number of different patterns. The following five basic patterns
account for the majority of all the Bing queries during that period:

1. Single Entity (E)
2. Single Concept (C)
3. Single Entity + Attributes (E+A)
4. Single Concept + Attributes (C+A)
5. Single Concept + Keywords (C+K)
These patterns can be combined to form more complex patterns.

In this paper, we focus on one of them:
Concept + Keywords + Concept (C+K+C)

Table 2 lists some example queries of each pattern.

Table 2: Query Patterns and Examples
Patterns Queries

E (VLDB)
(Citigroup)

C [database conferences]
[big financial companies]

E+A (Apple) <slogan>
[Hong Kong] <country> <area>

C+A [tech companies] <slogan>
[films] <language> <tagline>

C+K [big financial companies] campaign donation
[species] endangered

C+K+C [database conferences] in [asian cities]
[politicians] commit [crimes]

Once the system determines the pattern of each parsed query, it
starts interpreting them using the following strategies. The gen-
eral approach is substituting the abstract concepts in a query with
more specific search terms such as their associated entities which
are more suitable for traditional keyword search.

For E and E+A queries, no further interpretation is necessary
since this type of queries are already specific and can be searched
directly in both Probase and the search engine index.

For a C or C+A query, it substitutes a list of top entities associ-
ated with that concept in Probase for the concept term to form a list
of E or E+A queries.

A special case is when the concept is implicitly implied by an
auxiliary modifier such as “... except florida”. Here, “florida” is
an entity in Probase, and we treat [except florida] as if it is a con-
cept. And this concept is the most representative concept in which
“florida” is an entity but with “florida” removed from it. To find
the most representative concept to an entity, we use a DF-ITF score

[1] which is a form of inverse function of the well-known TF-IDF
score [32].

For a C+K query, it replaces the concept with its associated en-
tities to form a list of Entity + Keywords queries which require no
further interpretation.

For a C+K+C query, it is considered as a extended form of C+K
queries. We replace both concepts with their associated entities to
form a list of Entity + Keywords + Entity queries. Note that the
number of such queries can be very large but we will show in the
next subsection how to reduce them to only relevant queries.

Finally, the output of the Interpreter module is a set of substituted
queries of the following 4 patterns: E, E+A, E+K and E+K+E.

4.3 Query Processing
The Processor module takes as input a set of substituted candi-

date queries, submits some or all of these queries to Probase or a
search index, and presents a final set of ranked results to the user.

For E and E+A pattern queries, the processor queries the Probase
taxonomy for all the detailed information about this particular en-
tity. This information is returned as a table which will eventually
be presented to the user as an info-box (e.g. Fig. 7).

In the rest of this subsection, we will focus on E+K and E+K+E
queries which require more complex processing. One naive ap-
proach is to submit all these substituted queries to a traditional
search engine index, combine the results, and present ranked results
to the user. However, number of such queries can be prohibitively
large because many concepts are associated with large number of
the entities. For example, Probase contains hundreds of politicians
and thousands of crimes. For query “politicians commit crimes”,
the system would generate millions of candidate substitutions even
though most of these, such as “obama commit burglary”, are not
relevant at all.

The key technical challenge is understanding user’s intent and
filtering out those substituted queries which are not relevant. We
observe that in most queries, keywords act as modifiers that limit
the scope of the accompanying concept in C+K queries, or impos-
ing a particular relationship between the two surrounding concepts
in C+K+C queries. For example by specifying “commit” in the
above example, it excludes other relationships such as “politicians
fight crimes” or “politicians victimized by crimes”.

Our proposed technique to address the above problem is compute
the word association values between an entity and a sequence of
keywords, and multiply that with the representativeness score of
this entity in the concept it belongs to, to get a relevance score for
a given query.

4.3.1 Word Association
A word association value is used to measure the associativity of

a set of words. For example, word Microsoft and word technol-
ogy have a high association value than Walmart and technology,
because Microsoft is a technology company whereas Walmart is a
supermarket presumably less “technology-savvy”. To compute the
word association value between two words, which we call two-way
association, we measure the frequency of co-occurrence of the two
words in a document among all documents or in a sentence among
all sentences in the all documents. The concept can be easily ex-
tended to association of more than two words, namely multi-way
association.

Word association values among a fixed set of words are often
precomputed and stored in a matrix for efficient runtime lookup.
Computing a two-way association matrix for a set of N words gen-
erally takes O(N2) time, while computing a multi-way matrix is
even more costly. Li [27] proposed a method to estimate multi-way

association. It uses an improved sketch method when sampling in-
verted index list of the words and then use maximum likelihood
estimation to solve the problem. Consequently, one only needs to
store the sampled inverted list of each word, instead of all the asso-
ciation values of different word combinations. However, scanning
the inverted list remains to be costly if the number of documents is
too large, especially at the scale of the entire web.

In this paper, we approximate multi-way association by combin-
ing the values of two-way association. In general, given a set of
m words: W = {w1,w2, ...,wm}, it is impossible to compute the
exact word association wa(W) based only on two-way association
wa({wi, w j}), where wi and w j are any two distinct words in the
W . This is because the co-occurrence of all words in W may be
independent of the co-occurrence of any pair of two words in W .
However, because an co-occurrence of W together implies a co-
occurrence of (wi,w j), for any wi,w j ∈W , we have

wa(W)≤min wa({wi,w j}).
In other words, the minimum two-way association value pro-

vides an upper bound to the m-way association value. In this paper,
as we will show later in the section, we are actually computing a
special m-way association involving the words in an entity term
and the words in a keyword term. In this computation, we approxi-
mate the m-way association, by the minimum value of the two-way
association between a word in the entity and the key word, or

wa({e,wkey})≈ min
wi∈e

wa({wi,wkey}). (3)

This technique is based on the notion of pivot words. A pivot word
is the most informative and distinguishing word in a short phrase
or term. This word is so special to the term, that it allows people to
recognize the term even without looking at the other words. Given
that W contains the words from an entity term and a keyword, if
two words wi and w j from W co-occur the minimum number of
times, we argue that there is a high probability that one of them is
the pivot word of the entity term and the other is the keyword. This
is because the pivot word appear less frequently than the other more
common words in the entity. It is even rarer for the pivot word to
appear with an arbitrary keyword than with the other words in the
entity. Therefore wa({epivot ,wkey}) is likely to be minimum. On
the other hand, because the pivot word is special and distinguishing,
when it does appear in the text, it often appears in the context of the
whole entity term, and therefore wa({epivot ,wkey}) can be used to
simulate wa({e,wkey}).

We can further extend (3) to compute the association of an entity
term and a sequence of keywords:

wa+({e,k1, . . .kn})≈ min
i∈[1,n]

wa({e,ki}). (4)

To get the word association values, we first obtain a list of most
frequently used words on the web (excluding common stop words)
as our word list and then compute the sentence-level pairwise co-
occurrence of these words. We chose to count the co-occurrence
within sentences rather than documents because this gives stronger
evidence of association between two words.

4.3.2 E+K and E+K+E queries
We first group the E+K and E+K+E queries by their prefix E+K.

As a result, each E+K query form a group by itself; and E+K+E
queries with the same prefix form a group. Next, we compute a
relevance score for each group G as

max
q∈G

(wa+(qe1,qk,qe2)× rp(q))

where qe1, qk and qe2 are the first entity, keywords and the second
entity of query q (qe2 may be null if q is an E+K query), and rp(q)
is the representativeness score of q (see Algorithm 1).

We then select the top n groups with the best relevance scores.
For the n groups, if a group G is an E+K group, we simply send the
only query contained in this group to the search index and gather
the results as the final results; if a group G is an E+K+E group, we
use a two-pass procedure that accesses the search engine twice: in
the first pass, we query the search engine with {qe1,qk}, i.e. the
prefix of the group. Let us call the set of top pages thus returned R.
We then remove from G all queries whose second entity, i.e. qe2,
does not appear in any of the pages in R. In the second pass, we
send the remaining queries in G to search engine. Finally we collect
all results from the top n groups and rank them according to some
common search engine metric such as PageRank before returning
to the user. The complete algorithm is listed in Algorithm 1.

Algorithm 1 Processing E+K and E+K+E Query Groups
Input: a set of E+K and E+K+E queries S; argument n.
Output: final search result set R(S).

1: Sg ⇐ group S by sequence prefix {E, K}
2: for all query group G ∈ Sg do
3: for all query q ∈ G do
4: wa(q)⇐ wa+(qe1,qk,qe2)
5: rp(q)⇐ representativeness score of e1 in Probase
6: score(q)⇐ wa(q)× rp(q)
7: end for
8: score(G)⇐ max

q∈G
{score(q)}

9: end for
10: Stop ⇐ top n groups in Sg
11: R(S)⇐ /0
12: for all query group G ∈ Stop do
13: if G is an E+K query group then
14: send the only query q ∈ G to search engine
15: R(G)⇐ top returned results
16: else
17: G f iltered ⇐ /0
18: send query qpre f ix = {qe1,qk} to search engine
19: for all result r ∈ R({qpre f ix}) do
20: for all query q = {qe1,qk,qe2} ∈ G do
21: if sequence q appears in r then
22: G f iltered ⇐ G f iltered ∪{q}
23: end if
24: end for
25: end for
26: R(G)⇐ /0
27: for all query q ∈ G f iltered do
28: send q to search engine
29: R({q})⇐ returned results
30: R(G)⇐ R(G)∪R({q})
31: end for
32: end if
33: R(S)⇐ R(S)∪R(G)
34: end for

4.4 Ranking Results
Even though the Processor module filters out most irrelevant

candidate queries, the number of relevant queries can still be large.
The current framework requires all results be returned from the
search index before ranking and presenting the final results to the
user. Since it typically takes a search index a few tenths of seconds

to process one query, the above approach will result in very long
end-to-end response time, and hence deliver very bad user expe-
rience. We therefore made a few optimizations for the C+K and
C+K+C queries, two of the most expensive query patterns.

To do this, we set up an empty pool, and send the queries in the
top n groups one by one to the search index and place results into
the pool. At the same time, we pop the best result in the pool and
return it to the user at regular intervals. We continue this process
until sufficient results are shown to the user. Algorithm 2 describes
it in detail.

Algorithm 2 Ranking
Input: a grouped and ranked query set Sg; the number of top re-

sults n.
Output: a list of results R(Sg).

1: pool = /0
2: for i ∈ 1..n do
3: get results R(Gi) of the ith query group Gi in Sg
4: pool ⇐ pool∪R(Gi)
5: pop and show the best result r in pool
6: end for

5. EVALUATION
In this section, we evaluate the performance of online query pro-

cessing and offline precomputation (word association). To facilitate
this evaluation, we create a set of benchmark queries that contain
concepts, entities, and attributes, for example, “politicians commit
crimes” (C+K+C), “large companies in chicago” (C+K), “president
washington quotes” (E+A), etc. For a complete list of the queries
and their results, please see [1].

5.1 Semantic Query Processing
Given a query, we analyze the concepts, entities, and attributes

in the query. For C+K and C+K+C queries, we rewrite the query by
replacing the concepts with appropriate entities. We then send the
rewritten queries to Bing using Microsoft Bing API. Note that APIs
only allow 2 queries per second. We then combine their results
and compare them with the result of the original query. For other
types of queries (e.g., E, C, E+A and C+A), we search for relevant
information in Probase, and return a table that contains entities,
their attributes and values.

The computation is done on a workstation with a 16-core 2.53
GHz Intel Xeon E5540 processor and 32 GB of memory and is
running 64-bit Microsoft Windows Servers 2003.

Quality of C+K & C+K+C queries
We ask three human judges to evaluate the relevancy of the results
for 10 C+K and 10 C+K+C queries in our benchmark [1]. In the
first experiment, for each query, we collect the top 10 search re-
sults returned by our prototype system, Bing and Google. For each
result, we record majority vote (“relevant” or “not relevant”) of
the human judges. Fig. 13 compares the percentage of relevant
results from the three systems. It shows that our prototype has
a clear advantage at answering concept related queries. In addi-
tion, it also shows that results for C+K+C queries have lower rele-
vancy than C+K queries across the three systems. This is because
C+K+C queries often involve more complicated semantic relations
than C+K queries.

In the second experiment, we show the complementary nature of
our prototype system. We show that it can pick up some relevant re-
sults that keyword based search engines will unavoidably miss. To

Figure 13: % of relevant results for C+K & C+K+C queries

see this, we focus on relevant results in the top 10 results returned
by our prototype system. Among the top 10 results for the 10 C+K
queries we use, 84 are judged relevant. The number for C+K+C
queries is 74. We check whether these results will ever show up
in Google or Bing. Fig. 14 shows that at least 77% of the relevant
C+K results and 85% of the relevant C+K+C results in our top 10
could not be found in Bing or Google even after scanning the first
1000 results.

(a) Bing

(b) Google

Figure 14: Bing/Google miss the relevant results in our top 10

Quality of E, C, E+A & C+A queries
For E, C, E+A, and C+A queries, we return tables instead of 10 blue
links. The benchmark queries we use can be found in [1]. We ask
human judges to rate the relevancy of each returned table. Fig. 15
shows the percentages of relevant results.

Figure 15: % of relevant results for E, C, E+A, C+A queries

Fig. 15 shows that all returned results are relevant for E and E+A
queries. However, C and C+A queries have errors. We note that in

Probase, there are ambiguous terms. For example, “George Wash-
ington” is an entity under both the presidents and the books con-
cepts. The current version of Probase obtains attribute and value
information partly from Freebase by matching entity names. As a
result, the attributes and associated values for “George Washing-
ton” as a book might be incorrectly attached to the same entity
name under presidents. This caused some incorrect results for C
and C+A queries.

Time Performance
We next evaluate the efficiency of our prototype system. Table. 3
shows the average running time of the benchmark queries in differ-
ent categories. Note that the system is configured to return only the
top 10 results for C+K, C+K+C, C and E patterns, and all results
for the other two patterns.

Pattern Pr. It. Pc. First Result Total
E 0.06 0.16 0.16 0.38 0.38
C 0.33 0.23 0.32 0.88 0.88
E + A 0.15 0.16 0.08 0.39 0.39
C + A 0.16 0.66 0.15 0.97 0.97
C + K 0.12 0.50 5.24 0.62 5.87
C + K + C 0.36 1.22 13.21 2.83 14.79

Table 3: Execution Time (secs)
* Pr. = Parsing, It. = Interpretation, Pc. = Processing.

We currently use only one machine to communicate with Bing’s
public API to support our system. The API accepts only 2 queries
per second. So we can see that C+K & C+K+C queries take much
more time on processing than other queries. We improve user expe-
rience by presenting the first result as soon as it becomes available
instead of showing all results at the end. Also, C+K+C queries take
more time to process than C+K ones because two round trips to
Bing are required for each query – one for filtering and one for fi-
nal results. On the other hand, C queries take less time than E since
an entity may belong to several concepts and we have to check all of
them in Probase. C+A queries require more time than C queries be-
cause we need to remove entities without any attributes in a query.
For the same reason, E+A queries take longer than E.

We present the traffic statistics for C+K and C+K+C queries, the
only two types of queries that require communication with Bing.
Table 4 shows the average number of bytes our prototype system
sends to and receives from Bing. Since C+K+C queries require
the system to send queries twice to the search engine, their traffic
is almost twice as much as that of C+K queries. Nonetheless, the
communication costs are within reasonable range.

Pattern sent received
C + K 270 3177
C + K + C 463 140627

Table 4: Traffic (bytes)

5.2 Offline Precomputation
We precompute a word association matrix using SCOPE [12],

an SQL-like declarative query language for efficient parallel data
processing on the Cosmos platform1 developed by Microsoft. The
1Cosmos is a distributed storage and data processing system de-
signed to run on clusters of inexpensive commodity servers. It
provides a distributed file system and a runtime environment for
deploying, scheduling and executing SCOPE jobs.

word association matrix is computed on a Cosmos cluster that con-
tains 30 machines. Each of these machines has an 8-core 2.33 GHz
Intel Xeon E5410 processor and 16 GB of memory, and is running
64-bit Microsoft Windows Servers 2003. However, our program is
single threaded and hence uses only one core at a time on any of
the machines.

Pivot words and word association
One assumption we made in this paper is that we can estimate the
association between an entity term and a keyword using simple
two-way word association. The following experiments verify this
assumption.

Figure 16: Number of words in Probase entities

We sampled 9,154,141 web pages (25GB on disk) from a web
corpus snapshot of 366,185,148 pages for counting co-occurrences
of words. We first examine the length of all the entities in Probase.
Fig. 16 depicts the distribution of the number of entities in Probase
over their lengths (number of words per entity). The result shows
that 44.36% of the entities contains just one word, almost 84% have
2 or fewer words, and over 95% have 3 or fewer words. One-word
entities, which account for almost half of all entities, are straight-
forward to process using 2-way word association with another key-
word. For the other half of the entities which have more than 1
word, the next experiment indicates that there indeed exists pivot
words in many such entities and 2-way association results are very
similar to the exact results using multi-way association.

We take the 10 benchmark C+K queries [1], and for each query
generate a set of E+K candidate queries by substituting the concept
with its associated entities. We next rank this candidate set using
two different methods and compare the resulting rankings. In the
first method, which serves as a baseline, we rank the E+K queries
by the actual association values of all the words in these queries. In
other words, we compute the exact multi-way association of the en-
tity term and the keywords by counting the number of times these
words co-occur in our web corpus samples. In the second method,
we rank the same set of E+K queries by computing 2-way asso-
ciation of the pivot word and the keywords in each query using
(4) in Section 4.3.1. To find out the effectiveness of pivot words
and 2-way association, we compute the similarity between the two
rankings for each of the 10 benchmark queries using Kendall’s Tau
[15]. Kendall’s tau distance between two equi-length sequences τ1
and τ2 is:

K(τ1,τ2) = |(i, j) : i < j,(τ1(i) < τ1(j)∧ τ2(i) > τ2(j))
∨(τ1(i) > τ1(j)∧ τ2(i) < τ2(j))|

Kendall’s tau measures the number of “discordant” position pairs,
and that number is equal to the number of flip operations required
to turn the second sequence into the first sequence by Bubble sort.
We further calculate the normalized Kendall’s tau as:

K̄(τ1,τ2) = 1− K(τ1,τ2)
n(n−1)/2

Fig. 17 shows that the two rankings are similar enough across all
the benchmark queries to warrant the simulation of exact method

with the 2-way association with the pivot words. Please see [1] for
the the pivot words we discovered in these queries.

Figure 17: Normalized similarity between ideal and simulated
rankings

Figure 18: Word association scaling

Time Performance
This experiment evaluates the scalability of word association com-
putation. We varied the length of the word list, or the matrix, from
10,000 to 100,000 and measure the time it takes to compute the
n× n word association matrix on the 30-machine Cosmos cluster.
Fig. 18 shows the roughly linear scale-up graph and indicated that
14.45 hours is required to compute a 100,000 by 100,000 matrix
which was the matrix used in the actual prototype system.

6. RELATED WORK
There have been some attempts to support semantic search on

the web. Most of these are backed by some form of a knowledge
base. A well-known example is PowerSet [5] which maintains huge
indexes of entities and their concepts. This approach, however, will
not scale because updates on the entities can be extremely expen-
sive. Another noteworthy general semantic search engine is Hakia
[4] which leverages a commercial ontology and the QDex technol-
ogy. The QDex technology is unique in that it indexes paragraphs
by the embedded frequent queries (sequence of words). Hakia’s
search results on many of our benchmark queries were similar to
keyword search results, which suggest the coverage of their on-
tology is too limited to help understanding the queries. Other se-
mantic engines include WolframAlpha [6], Evri [3] and DeepDyve
[2], etc. These engines exploit human curated or automatically ex-
tracted knowledge in specific domains such as science, news and
research documents. Qiu and Cho proposed a personalized topic
search [29] using topic-sensitive PageRank [19], which emphasizes
on the analysis of user interests and the disambiguation of entities.

Understanding users’ queries and helping users formulate “bet-
ter” queries is important to document retrieval and web search.
Work in this space can be collectively referred to as query rewriting.
The relevant techniques include query parsing [18], query expan-
sion [26, 33, 17], query reduction [22, 24], spelling correction [13]
and query substitution [30, 9]. We next discuss query parsing and
query substitution, two techniques that are more closely related to
the work in this paper.

One notable example of query parsing which is required for all
the other rewriting approaches is Guo et al.’s work on named entity
recognition in queries, in which they detected entities in queries

and identified the most likely classes they belong to. They achieve
this through the use of a small human-curated taxonomy and some
off-line training, which may not be scalable to various web queries.

Radlinski et al. [30] projected web queries to a relatively small
set of ad queries, and use the search results to help compute the
similarity between two queries. Malekian et al. optimized query
rewrites for keyword-based advertising [28]. They established a
formal graph model to solve the problem. Antonellis et al. pro-
posed query rewriting through link analysis of the click graph [9]
using SimRank [21] to identify similar queries. However, all of
these approaches used a finite ad query set which does not come
close to the scale this paper is experimenting with.

Finally, some researchers experimented with indirect assistant to
users instead of rewriting the queries automatically. One body of
work is providing relevance feedback corresponding to the user’s
query [35, 8, 7]. Radlinski and Joachims analyzed query chains to
help retrieve text results [31]. These methods involve human super-
vision and requires a second search. Terra and Clarke substitutes
query terms from retrieved documents [34]. An initial retrieval for
all queries is necessary. In our framework, all query patterns ex-
cept C+K+C require just one search. Broder and his colleagues
[11] uses a taxonomy to classify web queries, but they came short
of providing any useful applications for this technique. Jones et
al. proposed a way to generate query substitutions with the help
of search logs [23]. They suggested that the difference between
two consecutive queries issued by a same user can be treated as a
candidate substitution for one another. Zhang et al. improved the
above work by using active learning and comparing click logs and
editorial labels [36, 37].

7. CONCLUSION
In this paper, we notice a special class of web search which we

name it “topic search” and propose an idea to support it. We use an
automatically constructed taxonomy to analyze the search log and
find that most queries are about entities or concepts. Then we notice
that we can use Probase to help us understand the queries and help
users to clear their vague concepts. By specifying the concepts into
entities and taking advantage of word association information, we
do provide additional info for traditional search engines and help
them improve the quality of topic search results.

8. REFERENCES
[1] http://research.microsoft.com/en-us/

projects/probase/topicsearch.aspx.
[2] Deepdyve. http://www.deepdyve.com.
[3] Evri. http://www.evri.com.
[4] Hakia. http://www.hakia.com.
[5] Powerset. http://www.powerset.com.
[6] Wolfram alpha. http://www.wolframalpha.com.
[7] P. G. Anick. Using terminological feedback for web search

refinement: a log-based study. In SIGIR, pages 88–95, 2003.
[8] P. G. Anick and S. Tipirneni. The paraphrase search

assistant: Terminological feedback for iterative information
seeking. In SIGIR, pages 153–159, 1999.

[9] I. Antonellis, H. Garcia-Molina, and C.-C. Chang.
Simrank++: Query rewriting through link analysis of the
click graph. In VLDB, June 2008.

[10] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
Freebase: a collaboratively created graph database for
structuring human knowledge. In SIGMOD, 2008.

[11] A. Z. Broder, M. Fontoura, E. Gabrilovich, A. Joshi,
V. Josifovski, and T. Zhang. Robust classification of rare
queries using web knowledge. In SIGIR, 2007.

[12] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: easy and efficient parallel
processing of massive data sets. PVLDB, 2008.

[13] I. Durham, D. A. Lamb, and J. B. Saxe. Spelling correction
in user interfaces. Commun. ACM, 26(10):764–773, 1983.

[14] H. W. et al. Probase: Building a probabilistic ontology from
the web. 2010.

[15] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k
lists. SIAM Journal on Discrete Mathematics, 17:134–160,
2003.

[16] C. Fellbaum, editor. WordNet: an electronic lexical database.
MIT Press, 1998.

[17] B. M. Fonseca, P. B. Golgher, B. Pôssas, B. A. Ribeiro-Neto,
and N. Ziviani. Concept-based interactive query expansion.
In CIKM, pages 696–703, 2005.

[18] J. Guo, G. Xu, X. Cheng, and H. Li. Named entity
recognition in query. In SIGIR, pages 267–274, 2009.

[19] T. H. Haveliwala. Topic-sensitive pagerank: A
context-sensitive ranking algorithm for web search. IEEE
Trans. Knowl. Data Eng., 15(4):784–796, 2003.

[20] M. A. Hearst. Automatic acquisition of hyponyms from large
text corpora. In COLING, pages 539–545, 1992.

[21] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In SIGKDD, 2002.

[22] R. Jones and D. C. Fain. Query word deletion prediction. In
SIGIR, pages 435–436, 2003.

[23] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating
query substitutions. In WWW, pages 387–396, 2006.

[24] G. Kumaran and V. R. Carvalho. Reducing long queries using
query quality predictors. In SIGIR, pages 564–571, 2009.

[25] D. B. Lenat and R. V. Guha. Building Large
Knowledge-Based Systems: Representation and Inference in
the Cyc Project. Addison-Wesley, 1989.

[26] M. E. Lesk. Word-word associations in document retrieval
systems. American Documentation, 20:27–38, 1969.

[27] P. Li and K. Church. A sketch algorithm for estimating
two-way and multi-way associations. Computational
Linguistics, 33(3):305–354, 2007.

[28] A. Malekian, C.-C. Chang, R. Kumar, and G. Wang.
Optimizing query rewrites for keyword-based advertising. In
ACM Conference on Electronic Commerce, 2008.

[29] F. Qiu and J. Cho. Automatic identification of user interest
for personalized search. In WWW, pages 727–736, 2006.

[30] F. Radlinski, A. Z. Broder, P. Ciccolo, E. Gabrilovich,
V. Josifovski, and L. Riedel. Optimizing relevance and
revenue in ad search: a query substitution approach. In
SIGIR, pages 403–410, 2008.

[31] F. Radlinski and T. Joachims. Query chains: Learning to rank
from implicit feedback. CoRR, 2006.

[32] G. Salton and C. Buckley. Term-weighting approaches in
automatic text retrieval. Inf. Process. Manage.,
24(5):513–523, 1988.

[33] G. Salton and C. Buckley. Improving retrieval performance
by relevance feedback. JASIS, 41(4):288–297, 1990.

[34] E. Terra and C. L. A. Clarke. Scoring missing terms in
information retrieval tasks. In CIKM, pages 50–58, 2004.

[35] J. Xu and W. B. Croft. Query expansion using local and
global document analysis. In SIGIR, pages 4–11, 1996.

[36] W. V. Zhang, X. He, B. Rey, and R. Jones. Query rewriting
using active learning for sponsored search. In SIGIR, 2007.

[37] W. V. Zhang and R. Jones. Comparing click logs and
editorial labels for training query rewriting. In Workshop on
Query Log Analysis: Social And Technological Challenges,
2007.

