Complex Network, Fractal and
Kronecker Graph



Preface

Nature and nature 's law hid in night
God said , let Newton be!

And all was light .

—Alexander Pope



Question 1

Can we research Climate Prediction by tracing
the water drop?

Can we research Brain Mechanism by studying
the neuron?

Can we research Secret of Lives by studying
microbe?

Why?



Answer

* Of course NO!!!
e Why
1. Whole is not only the accumulation of Parts

2. Miracles emerge when scale up
® Brain

3. Philosophical Perspective: quantitative changes vs.
qgualitative changes



Question 2

 Why shouldn’t we start up to study the Macro
situations?

— Limitation of knowledge
— Limitation of Horizon of Sight
— Limitation of Ambition

* Actually top Scientists are on the way!!



Ant? Hawk?




How to start up ?

* Complex Network theory
* Fractal
* Application: Kronecker Graph



Networks Everywhere!

Protein Interactions

Friendship Network : .
[Moody '01] [Martinez '91] [genomebiology.com]

Graphs are everywhere!



Application Widespread!

e Social Network
— Friends Recommendation
— Potential Customers to market-to

* Epidemic Immunization

— Control the spread of virus
* Etc.



Statistical properties of networks

e Features that are common to networks of
different types:

— Properties of static networks:
* Small-world effect
* Transitivity or clustering
e Degree distributions (scale free networks)
* Network resilience
e Community structure
* Subgraphs or motifs

— Temporal properties:
* Densification
* Shrinking diameter



Small-world effect (1)

e Six degrees of separation (Milgram 60s)

— Random people in Nebraska were asked to send
letters to Stockbrokes in Boston

— Only 25% letters reached the goal
— But they reached it in about 6 steps

 Measuring path lengths:
— Diameter (longest shortest path).:max d;;

— Effective diameter: distance at which 90% of all
connected pairs of nodes can be reached
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Small-world effect (2)

Distribution of shortest path lengths
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Degree distributions

* Erdos-Renyi Random Network
— The probability of Edge E;; exists is constant p

— Poisson Distribution

* Scale-free Network pp ~ kO any o
egree noaes
— ~ k_a 100000 /
p k ,.—_,\/ Original graph
— Power-law Distribution N e —
E 1000 } degree nodes
 E— \0,3; DI—



Poisson vs. Scale-free network

Poisson network
(Erdos-Renyi random graph)

Scale-free (power-law) network

- Degree
- distribution is
. Power-law

Degree distribution is Poisson
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Temporal Graph Patterns

e Conventional Wisdom:

— Constant average degree: the number of edges
grows linearly with the number of nodes

— Slowly growing diameter: as the network grows the
distances between nodes grow

e Actually:

— Densification Power Law: networks are becoming
denser over time

— Shrinking Diameter: diameter is decreasing as the
network grows
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Densification

What is the relation between the number of
nodes and the number of edges in a network?

Densification Power Law

— E(t) means edges at time t
— N(t) means edges at time t

Suppose N(t + 1) = 2 * N(t), then
E(t+1)>2*E(t)

But still obey Power-Law
E)x Nt)*,1<a <2
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Shrinking diameters

 Diameter Shrinks/Stabilizes over time!

— as the network grows the distances between
nodes slowly decrease

Internet Citations
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What is Fractal?




Fractal Dimension

* Scaling Rule Equation: N « €P:

— N is number of new sticks

— € is the scaling factor
— D is the dimension

e Thus: D =

log N

log e

I=

j=

3

O=1

gy —

H=1

N=2

H=3

0=2

H=1

H=4

H=3

b=3

N=1

H=3

N=27



Example

Q:What is the dimensionality of Sierpinski
triangle?

Jlog3
A: /log 2
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Network vs. Fractal?

 What'’s the relationship between Reality
Network and Fractal ?

* Graph Generation Model

— Kronecker graphs



Kronecker graphs

 Want to have a model that can generate a
realistic graph:
— Static Patterns
* Power Law Degree Distribution

* Small Diameter
* Power Law Eigenvalue and Eigenvector Distribution

— Temporal Patterns
e Densification Power Law

* Shrinking/Constant Diameter



ldea: Recursive graph generation

Intuition: self-similarity leads to power-laws
Try to mimic recursive graph/community growth
There are many obvious (but wrong) ways:

Kronecker Product is a way of generating self-

similar matrices
X
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Kronecker product: Graph

Intermediate stage

1 (3x3)

G

Adjacency matrix

Go = G ® G

Adjacency matrix

1| (9x9)
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Kronecker product: Definition

 The Kronecker product of matrices A and B is
given by

 We define a Kronecker product of two graphs as
a Kronecker product of their adjacency matrices

/(11_1]3 G’LQB all?nB

{1-2_1]3 “L’.Z'B afl';mB
C=A®B = , . *

NxM KxL

\aﬂtlB {_f-'rLtZZ_’B e G-'n.mB
N*K x M*L



Kronecker Graph

* We create the self-similar graphs recursively

— Start with a initiator graph G; on N; nodes and E;
edges

— The recursion will then product larger graphs
Gy, Gs, ..., G on N, nodes
 We obtain a growing sequence of graphs by
iterating the Kronecker product

G,=G10G ©...Gy
—
L times



Kronecker product: Graph

(G, adjacency matrix
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Question

* Given the real graph G

* How do we choose the parameters to match
all of these at once?



Model estimation: approach

« Maximum likelihood estimation
— Given real graph G

— Estimate Kronecker initiator graph @ (e.g.,[i]

which .
arg max P(G | ©)
®
« We need to (efficiently) calculate

P(G|©)

« And maximize over @ (e.g., using gradient
descent)
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Fitting Kronecker graphs

« Given a graph G and Kronecker matrix © we o
calculate probability that @ generated G P(G|©®) C<I
Iy
0.25/0.10(0.10]0.04 110111
05|02 | \]0.05]0.1510.02|0.06 01 1]0]1
01losl 7]0.05/0.02(0.15]0.06 11011
B 0.01/0.03|0.03|0.09 \/Z 1
- — G
O P(G|O)|
P(G|O)= II O,|u,v] II (1-0O,u,v])
(uv)eG (u.v)eG



Challenge 1: Node correspondence

2 O
0.25|0.10 | 0.10 | 0.04 « Nodes are unlabeled

0502 0.05 | 0.15 | 0.02 | 0.06 -, o
0103 :> « Graphs G’ and G” should

005|002 (015 0.06

001003 003 000 have the same probability

P(G’|©) =P(G”|O)
N

1 « One needs to consider all
Ny
C\{WB 0

0

) 1 node correspondences o
2o ) [l
4 1

: P(G|®) =Y P(G|0,0)P(c)

0| = =3

Gra
T{O]1]1
2 4 T « All correspondences are a
10 L> ol T priori equally likely
3 .
ANRER * There are O(N/)
correspondences

P(G’|@) =P(G”|O) 31



Challenge 2: calculating P(G|©,0)

Assume we solved the correspondence problem
Calculating

P(G|®)= 1I O,oc,,0,] II (1-0,[c,.0,])

(u.v)eG (2v)eG

o... hode labeling
Takes O(N?) time

Infeasible for large graphs (N ~ 10°)

0.25|0.10 | 0.10 | 0.04 110 (1|1
0.05 | 0.15 | 0.02 | 0.06 01|01
0.05 | 0.02 | 0.15 | 0.06 0 110111 |1
0.01 | 0.03 | 0.03 | 0.09 00|11

P(G|O, o)
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Model estimation: solution

* Naively estimating the Kronecker
initiator takes O(N/N-) time:
— N/ for graph isomorphism
« Metropolis sampling: N/ = (big) const
— N- for traversing the graph adjacency
matrix

 Properties of Kronecker product and sparsity
(E<<N°): N2 FE

* We can estimate the parameters of
Kronecker graph in linear time O(E) .



Solution 1: Node correspondence
* Log-likelihood

[(©) = log ) P(CG|O.0)P(0)

« Gradient of log-likelihood

5 . dlog P(Glo, ©)
210) = > °5 P(c|G, O)

a

« Sample the permutations from
P(0|G,®) and average the gradients



« Metropolis sampling:
— Start with a random permutation
— Do local moves on the permutation

e LS D —

Sampling node correspondences

— Accept the new permutation

« If new permutation is better (gives higher likelihood)
 If new is worse accept with probability proportional to

1 6

3
2 C
4

Swap node
labels 1 and 4

1|0
011
111
0|1

1
1
1
1

0
I
I
I

the ratio of likelihoods

T o I

4
13

2 C
1

T

0
0
1
1

— | =i [ = | =

1
I
1
0

O = | = | =

Can compute efficiently:
Only need to account for
changes in 2 rows /
columns
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Solution 2: Calculating P(G| ©,0)

» Calculating naively P(G|©,0) takes O(N-)
* |dea:

— First calculate likelihood of empty graph, a
graph with O edges

— Correct the likelihood for edges that we observe
in the graph
* By exploiting the structure of Kronecker

product we obtain closed form for likelihood
of an empty graph
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Solution 2: Calculating P(G| ©,0)

+ We approximate the likelihood:

O
O O\('\
® O<I
O O
(©) = 1.(0)+ Y —log(l - Oklow; ovl) + log(B o, ov])
' (u,v)EG ~
Empatyr graph No- edge I|kellhcod Edge likelihood

* The sum goes only over the edges

« Real graphs are sparse, E << N-
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Q&A




