Complex Network, Fractal and Kronecker Graph

Yang Lu

Preface

Nature and nature 's law hid in night God said , let Newton be! And all was light .

-Alexander Pope

Question 1

- Can we research Climate Prediction by tracing the water drop?
- Can we research Brain Mechanism by studying the neuron?
- Can we research Secret of Lives by studying microbe?
- Why?

Answer

- Of course NO!!!
- Why
 - 1. Whole is not only the accumulation of Parts
 - 2. Miracles emerge when scale up
 - Brain
 - 3. Philosophical Perspective: quantitative changes vs. qualitative changes

Question 2

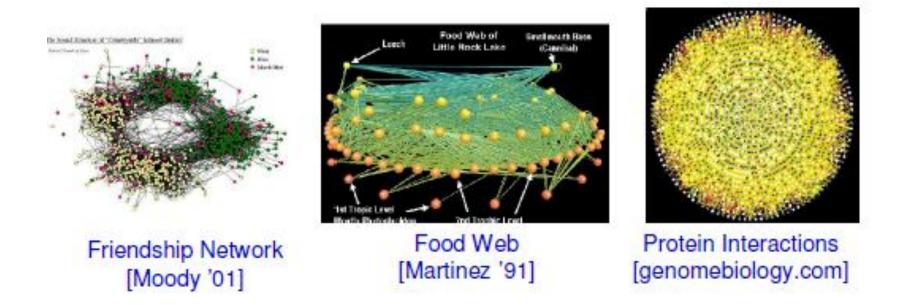
- Why shouldn't we start up to study the Macro situations?
 - Limitation of knowledge
 - Limitation of Horizon of Sight
 - Limitation of Ambition
- Actually top Scientists are on the way!!

Ant? Hawk?

How to start up ?

- Complex Network theory
- Fractal
- Application: Kronecker Graph

Networks Everywhere!



Graphs are everywhere!

Application Widespread!

- Social Network
 - Friends Recommendation
 - Potential Customers to market-to
- Epidemic Immunization
 - Control the spread of virus
- Etc.

Statistical properties of networks

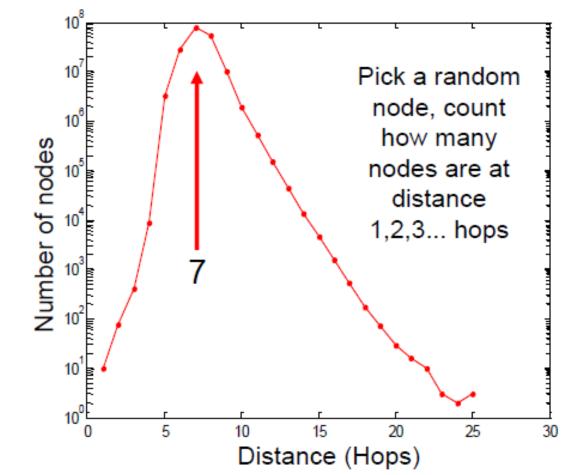
- Features that are common to networks of different types:
 - Properties of static networks:
 - Small-world effect
 - Transitivity or clustering
 - Degree distributions (scale free networks)
 - Network resilience
 - Community structure
 - Subgraphs or motifs
 - Temporal properties:
 - Densification
 - Shrinking diameter

Small-world effect (1)

- Six degrees of separation (Milgram 60s)
 - Random people in Nebraska were asked to send letters to Stockbrokes in Boston
 - Only 25% letters reached the goal
 - But they reached it in about 6 steps
- Measuring path lengths:
 - Diameter (longest shortest path): $max d_{ij}$
 - Effective diameter: distance at which 90% of all connected pairs of nodes can be reached
 - Mean geodesic (shortest) distance $l \quad \ell = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i>i} d_{ij}$

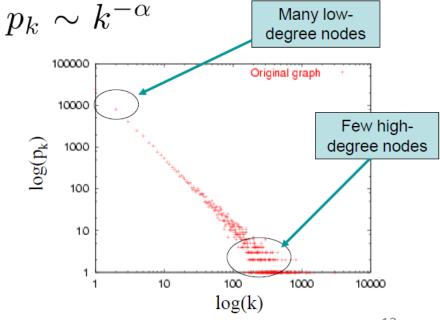
Small-world effect (2)

Distribution of shortest path lengths

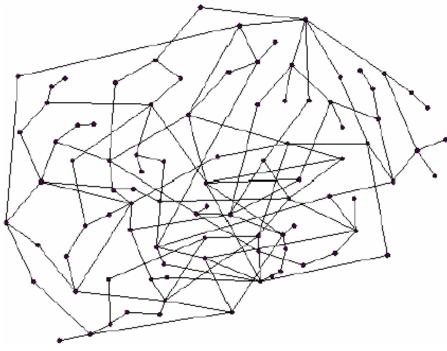


Degree distributions

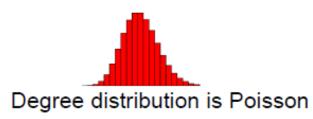
- Erdos-Renyi Random Network
 - The probability of Edge E_{ij} exists is constant p
 - Poisson Distribution
- Scale-free Network
 - $-p_k \sim k^{-\alpha}$
 - Power-law Distribution

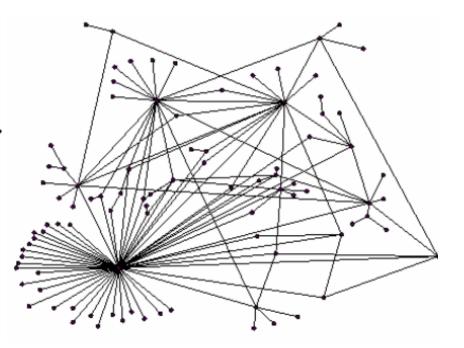


Poisson vs. Scale-free network



Poisson network (Erdos-Renyi random graph)





Scale-free (power-law) network

Degree distribution is Power-law

Temporal Graph Patterns

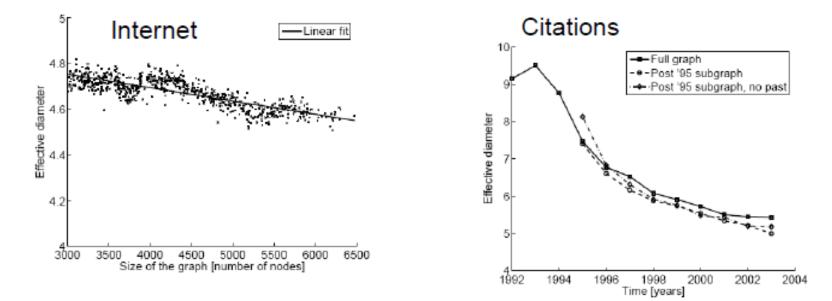
- Conventional Wisdom:
 - Constant average degree: the number of edges grows linearly with the number of nodes
 - Slowly growing diameter: as the network grows the distances between nodes grow
- Actually:
 - Densification Power Law: networks are becoming denser over time
 - Shrinking Diameter: diameter is decreasing as the network grows

Densification

- What is the relation between the number of nodes and the number of edges in a network?
- Densification Power Law
 - -E(t) means edges at time t
 - -N(t) means edges at time t
- Suppose N(t + 1) = 2 * N(t), then E(t + 1) > 2 * E(t)
- But still obey Power-Law
- $E(t) \propto N(t)^{\alpha}$, $1 \leq \alpha \leq 2$

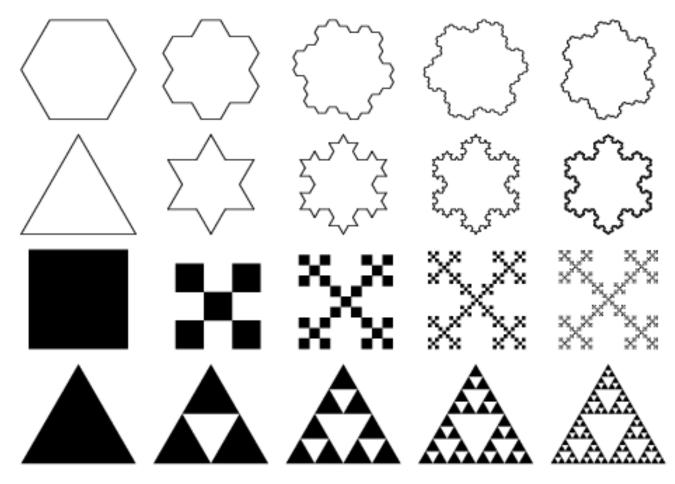
Shrinking diameters

- Diameter Shrinks/Stabilizes over time!
 - as the network grows the distances between nodes slowly decrease



What is Fractal?

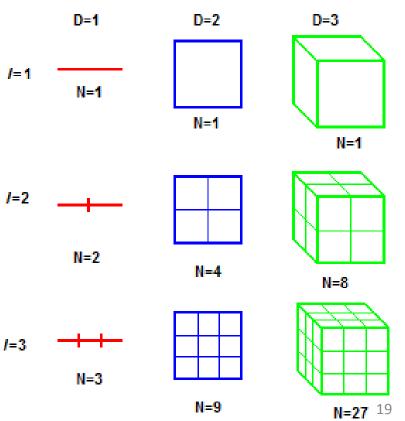
• Self-Similar



Fractal Dimension

- Scaling Rule Equation: $N \propto \epsilon^D$:
 - -N is number of new sticks
 - ϵ is the scaling factor
 - -D is the dimension

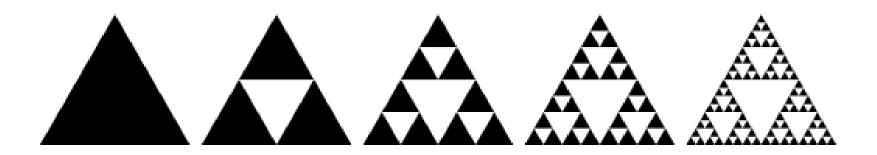
• Thus:
$$D = \frac{\log N}{\log \epsilon}$$



Example

Q:What is the dimensionality of Sierpinski triangle?

A:
$$\frac{\log 3}{\log 2}$$



Network vs. Fractal?

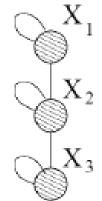
- What's the relationship between Reality Network and Fractal ?
- Graph Generation Model
 - Kronecker graphs

Kronecker graphs

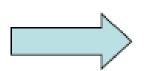
- Want to have a model that can generate a realistic graph:
 - Static Patterns
 - Power Law Degree Distribution
 - Small Diameter
 - Power Law Eigenvalue and Eigenvector Distribution
 - Temporal Patterns
 - Densification Power Law
 - Shrinking/Constant Diameter

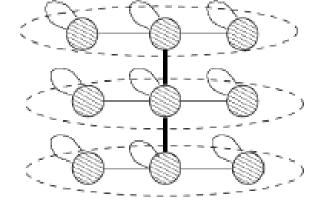
Idea: Recursive graph generation

- Intuition: self-similarity leads to power-laws
- Try to mimic recursive graph/community growth
- There are many obvious (but wrong) ways:
- Kronecker Product is a way of generating selfsimilar matrices



Initial graph





Recursive expansion²³

Kronecker product: Graph

 $\mathbf{X}_{1,1}$ Х_{1,3} $\mathbf{X}_{1,2}$ \mathbf{X}_{1} \mathbf{X}_2 $X_{2,1}$ 4 X_{2,3} X3 X_{3,1} X_{3,3} х_{3,2} Intermediate stage G, G 0 0 G, G, G, L G, G () 0 (3x3) (9x9) $G_2 = G_1 \otimes G_1$ G_1 Adjacency matrix Adjacency matrix 24

Kronecker product: Definition

- The Kronecker product of matrices A and B is given by
- We define a Kronecker product of two graphs as a Kronecker product of their adjacency matrices

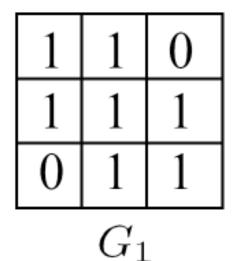
$$\mathbf{C} = \mathbf{A} \otimes \mathbf{B} \doteq \begin{pmatrix} a_{1,1}\mathbf{B} & a_{1,2}\mathbf{B} & \dots & a_{1,m}\mathbf{B} \\ a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} & \dots & a_{2,m}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}\mathbf{B} & a_{n,2}\mathbf{B} & \dots & a_{n,m}\mathbf{B} \end{pmatrix} \\ N^*Kx M^*L \qquad 25$$

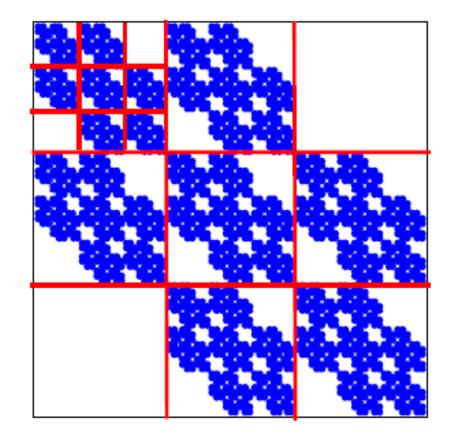
Kronecker Graph

- We create the self-similar graphs recursively
 - Start with a initiator graph G_1 on N_1 nodes and E_1 edges
 - The recursion will then product larger graphs G_2, G_3, \ldots, G_k on N_k nodes
- We obtain a growing sequence of graphs by iterating the Kronecker product

$$G_k = \underbrace{G_1 \otimes G_1 \otimes \ldots G_1}_{k \ times}$$

Kronecker product: Graph





 G_4 adjacency matrix

Question

- Given the real graph G
- How do we choose the parameters to match all of these at once?

Model estimation: approach

- Maximum likelihood estimation
 - Given real graph G

- Estimate Kronecker initiator graph Θ (e.g., $\frac{1}{1}$ $\frac{1}{0}$ $\frac{1}{1}$) which $\arg\max_{\Theta} P(G \mid \Theta)$

 X_{2} X_{3}

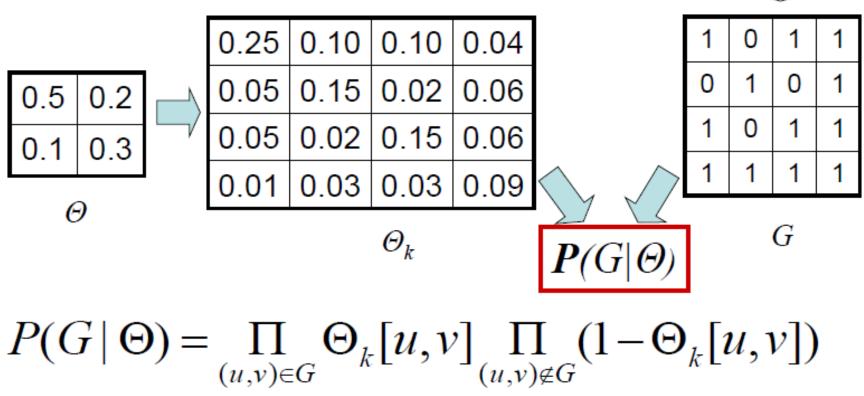
We need to (efficiently) calculate

 $P(G | \Theta)$

And maximize over 𝔅 (e.g., using gradient descent)

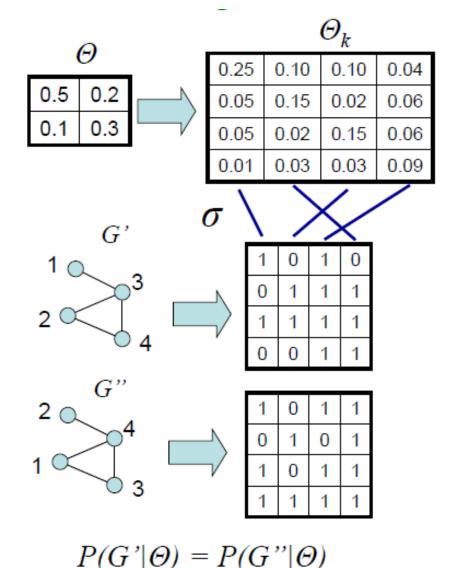
Fitting Kronecker graphs

 Given a graph G and Kronecker matrix Θ we calculate probability that Θ generated G P(G|Θ)



G

Challenge 1: Node correspondence



- Nodes are unlabeled
- Graphs G' and G" should have the same probability
 P(G'|Θ) = P(G"|Θ)
- One needs to consider all node correspondences σ

 $P(G \,|\, \Theta) = \sum_{\sigma} P(G \,|\, \Theta, \sigma) P(\sigma)$

- All correspondences are a priori equally likely
- There are *O*(*N*!) correspondences

Challenge 2: calculating $P(G|\Theta,\sigma)$

- Assume we solved the correspondence problem
- Calculating

$$P(G|\Theta) = \prod_{(u,v)\in G} \Theta_k[\sigma_u, \sigma_v] \prod_{(u,v)\notin G} (1 - \Theta_k[\sigma_u, \sigma_v])$$

 $\sigma \dots$ node labeling

- Takes O(N²) time
- Infeasible for large graphs (N ~ 10⁵)

0.25	0.10	0.10	0.04		1	0	1	1
0.05	0.15	0.02	0.06		0	1	0	1
0.05	0.02	0.15	0.06	σ	1	0	1	1
0.01	0.03	0.03	0.09		0	0	1	1
Θ					G			
Θ_{kc}				$P(G \Theta, \sigma)$)			

Model estimation: solution

- Naïvely estimating the Kronecker initiator takes O(N!N²) time:
 - N! for graph isomorphism
 - Metropolis sampling: N! → (big) const
 - N² for traversing the graph adjacency matrix
 - Properties of Kronecker product and sparsity (E << N²): N² → E
- We can estimate the parameters of Kronecker graph in linear time O(E)

Solution 1: Node correspondence

Log-likelihood

$$l(\Theta) = \log \sum P(G|\Theta, \sigma)P(\sigma)$$

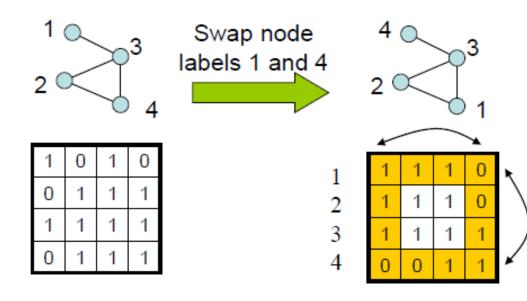
Gradient of log-likelihood

$$\frac{\partial}{\partial \Theta} l(\Theta) = \sum_{\sigma} \frac{\partial \log P(G|\sigma, \Theta)}{\partial \Theta} P(\sigma|G, \Theta)$$

• Sample the permutations from $P(\sigma|G,\Theta)$ and average the gradients

Sampling node correspondences

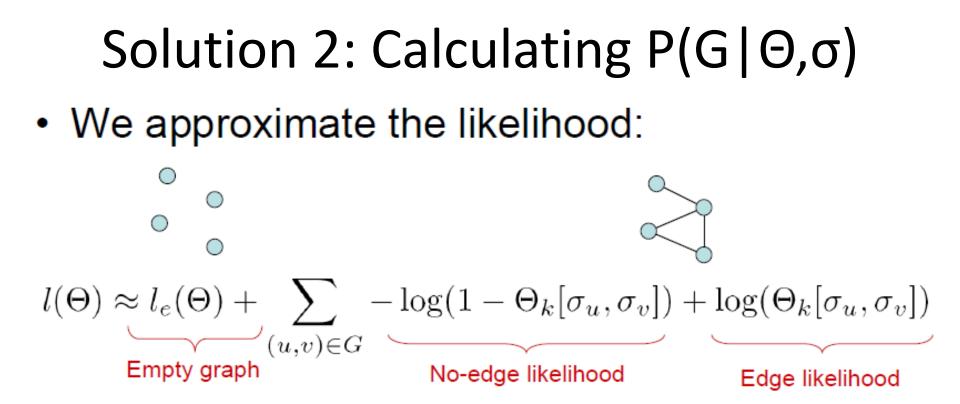
- Metropolis sampling:
 - Start with a random permutation
 - Do local moves on the permutation
 - Accept the new permutation
 - If new permutation is better (gives higher likelihood)
 - If new is worse accept with probability proportional to the ratio of likelihoods



Can compute efficiently: Only need to account for changes in 2 rows / columns

Solution 2: Calculating $P(G|\Theta,\sigma)$

- Calculating naively $P(G|\Theta,\sigma)$ takes $O(N^2)$
- Idea:
 - First calculate likelihood of empty graph, a graph with 0 edges
 - Correct the likelihood for edges that we observe in the graph
- By exploiting the structure of Kronecker product we obtain closed form for likelihood of an empty graph



- The sum goes only over the edges
- Evaluating $P(G|\Theta,\sigma)$ takes O(E) time
- Real graphs are sparse, $E << N^2$

Q & A

