
Who’s Watching TV? An algorithm for analyzing
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Abstract— TV is usually watched by a group of people and TV
program service provider collects viewing history from a single
TV. It’s important and interesting to know how many persons is
in front of TV and who’s watching the TV now. In this paper,
we proposed a novel and efficient algorithm to discover who’s
watching TV and how many persons in front of TV from TV
watching sequence. Experimental results show that our algorithm
works efficiently and effectively.

I. I NTRODUCTION

Group behavior in website has became more and more
common. Lots of users share a common account but behavior
in their own preferences. However, such group behavior is a
disaster for recommendation system on website especially for
E-Commerce website. A family with an single AMAZON ac-
count but buy different types of book is a typical example. The
recommendation system will mislead by this group behavior.
It will recommendation wrong items to the user logining with
this account or even reveal others users’ private interest to the
current user.

Group behavior doesn’t appear only in website but also
in real life. Usually there is a supermarket shopping card
for a family. Family member brings this shopping card to
supermarket and purchases his favorite goods. Supermarket
date center will record purchasing history for every shopping
card for business intelligence propose. However, the recorded
history is generated by a group behavior which will lead to
wrong recommendation or influence the accurate of business
analysis.

Another common group behavior generating scenario is
watch TV. Usually TV is shared by family members. The
watching sequence comes from one person or multiply per-
sons.For instance, after Dad has watched news report, the
son occupies the TV and begin watching Cartoon. The users
switch is so smooth without any explicit indication. Even
worse, for some famous and interesting shows, the TV is
watching by all family members. The preference recorded in
history thus becomes extremely noisy. However, with the rapid
development of digital television technology, TV watching
sequence could be record by large TV program provider and
then becomes an extremely valuable data set which could be
used for TV show recommendation and census. But group
behavior may significantly affect analysis process.

For database perspective, the records generated by group
behavior are usually mixing with the normal record in a single
table. All records have an unique account ID. So after grouping
by the account ID, all records from a single account could be
fetched. However, for data mining tasks, mining algorithmsor

mining experts are interested in real users instead of account
users because lots of algorithms and programs are real user
based. If the input records are from different users even with
the same account ID, these algorithms and programs will never
work correctly. For example, the classification algorithms
such as C4.5 and Maximum likelihood will be dramatically
influenced by different users with single account ID because
these classification algorithms will mislead by totally different
user preferences.

And by our common sense, we know there isn’t a guarantee
that there is always an one-to-one correspondence between
account user and real user. Thus, splitting history record
generated by group behavior will be significant to scientific
community.

However, there are no method to deal with history record
generated by group behavior. This is not only because the
problem is easy to ignore but also the problem is hard to
solve. First of all, there are no explicit user switching signal
in the sequence. For some observers, They may never discover
preference user switching unless we tell them. Secondly, we
don’t have background knowledge about the users behind this
sequence. That is, we don’t know how many persons they have
and we don’t have profiles for each of them. Thirdly, even for
human observer, it’s hard to judge the preference switchingis
an appearance of a new user or a current user switching his
preference. Last but not least, we even don’t have an explicit
description for the items they touched.

In this paper, we propose an novel splitting algorithm which
will split records generated by an account to corresponding
real users. The algorithm will not only tell how many real
users hidden in the sequence but also cluster the records to
corresponding real users. The preliminary result shows that
our splitting algorithm works both efficiently and effectively.
In TV watching sequences test, for some sequences our algo-
rithm achieves almost 90% precision and the overall splitting
precision is almost 70%. On the other hand, our algorithm
works in O(n2) complexity which would be quite quick in
modern person computer.

II. RELATED WORD

Time-series analysis is an active area of research and relates
to our watching sequence splitting task.

Discovering sequential patterns was first introduced in [1]
and [2]. Especially in [1], the author proposes three algorithms
to mine sequential patterns in transaction database. The mined
patterns is a maximal sequence with user-specified minimum
support.



Jiong Yang et al.[3] proposes a method to calculate asyn-
chronous periodic pattern that may be present only within a
subsequence and whose occurrences may be shifted due to
disturbance.

The surprising sequential pattern discovery is proposed
in[4]. In this paper, the author focus on mining surprising
periodic patterns in a sequence of events. The concept of
information gain is proposed to measure the overall degree
of surprise of the pattern within a data sequence.

Bettini et al.[5] proposed an algorithm to discover temporal
patterns in time sequennces. The paper introduces event struc-
tures that have temporal constraints with multiple granularities,
defines the pattern-discover problem with these structures, and
studies effective algorithms to solve it. The basic components
of the algorithm includes timed automata with granularities
and a number of heuristics.

Xianping Ge et al.[6] proposed a novel and flexible ap-
proach based on segmental semi-Markov model to automat-
ically detect specific patterns or shapes in time-series data.
The pattern of interest is modeled as a K-state segmental
hidden Markov model where each state is responsible for the
generation of a component of the overall shape using a state-
based regression function.

Jiawei Han et al.[7] developed an efficiet method for
mining multiple-level segment-wise periodicity in time-related
database by exploring data cube, bit-array, and the apriori
mining techniques.

Valery Guranlnik et al.[8] proposed an event detection
approach from time series data. The proposed methods uses an
iterative algorithm that fits a model to a time segment, and uses
a likelihood criterion to determine if the segment should be
partition further. Meanwhile, the technique is independent of
regression and model selection methods. Experimental results
show that the proposed method is more robust than using
visual inspection.

An efficient incremental algorithm for identifying distinctive
subsequences in multivariate, real-valued time series is de-
scribed and evaluated in [9]. The application of this algorithm
includes financial time series gathered prior to significant
declines or advances in the stock market, time series produced
by the monitors in an intensive care unit for patients who die,
and traces of the behavior of unauthorized users of computer
systems.

In [10], the author proposed an suite of methods for mining
partial periodicity in time series database. Partial periodicity,
which associates periodic behavior with only a subset of all
the time points, is less restrictive than full periodicity and thus
covers a broad class of applications.

III. PROBLEM DEFINITION

In our discussion, TV watching sequence refers to a channel
switching sequence generated from a TV. The switching
records in the sequence are arranged according to the switch-
ing in time. And between any two switching records, the
switching out time of the first records may or may not be the
same as the switching out time. If the two times are different,

it means the TV isn’t watched by any users in this duration.
An illustration is depicted in table I.

Channel Start Time End Time
Channel 1 22:00:00 22:00:30
Channel 2 22:30:40 23:00:00
Channel 3 23:00:00 23:30:00

... ... ...
Channel 1 23:45:00 23:48:00

TABLE I

TV WATCHING SEQUENCEEXAMPLE

Then given a TV watching sequence, the problem is defined
as finding how many users have watched the TV and finding
the corresponding watching record for each of them. Figure 1
illustrates the problem.

Fig. 1. Problem Illustration

IV. BASEL INE ALGORITHM

The baseline algorithm to finish the splitting task is
content-based algorithm. Given the program viewing sequence,
content-based algorithm generates similarity matrix whose
entry is the similarity between the two programs considered.
The algorithm then uses an unsupervised clustering algorithm
to cluster the programs. Here, we use hierarchical agglomer-
ative clustering algorithm as the underlying algorithm. After
clustering, we could split the sequence into different users.
However, we still don’t know how many users behind this
sequence.

Usually, there are less than 5 persons in a family. So we
guess there arek(1 ≤ k ≤ 5) members in front of TV and
force HAC[11] algorithm to generatek clusters. We compare
the confidence of the clustering result with regard to different
k value. Then, we select the most confident clustering result
as splitting result and the correspondingk as the number
of members in front of TV. Pseudocode for content-based
algorithm is depicted in Algorithm 1

However, there are two main shortcomings of content-based
algorithm. First of all, for a single user, he may have multiple
interests. For example, a doctor may both like scientific
program and news report. However, hierarchical agglomerative
clustering algorithm tends to cluster scientific program and
news report to different clusters. Thus the algorithm loses



Algorithm 1 Content-based Algorithm

1: sim[][] = double[progSize][progSize]
2: userSize = −Infinity
3: maxPurity = −Infinity
4: listOfClusters = NULL
5: for all i ∈ candidateClustersSize do
6: for all prog1 ∈ progList do
7: for all prog2 ∈ progList do
8: sim[indexof(prog1)][indexof(prog2)] =

contentSimilarity(prog1, prog2)
9: end for

10: end for
11: clusters = HAC(sim[][])
12: purity = calcPurity(clusters)
13: if maxPurity < purity then
14: userSize = i
15: maxPurity = purity
16: listOfClusters = clusters
17: end if
18: end for

a lot of accuracy. Secondly, two different users may share
a common interest. For example, a doctor and a lawyer
may both like news report. But hierarchical agglomerative
clustering algorithm usually clusters all news reports into a
single cluster. Thus, the algorithm couldn’t distinguish the
news report belonging to doctor or lawyer.

V. OUR APPROACH

Before we discuss our approach for splitting TV watching
sequence, we give some definitions and heuristics first.

Definition 1:Prob(S|P1, P2) is the probability that program
P1 and programP2 viewed by the same viewer.

Definition 2: Bi-gram Program Pair refers to any two
adjacent programs in the viewing sequence.

Definition 3: Time Continuity Group refers to a sub-
sequence of the viewing sequence such as for any bi-gram
program pairs from this sub-sequence the end time of the first
program is equal to the start time of the second program.

Heuristic 1:If tow programs are watched continuously, then
they are likely be watched by a single viewer.

Heuristic 2:If two programs are watched continuously and
the switching time is the start time of the second program,
then they are most probably watched by a single viewer. An
illustration is depicted in figure 2

Fig. 2. Illustration of Heuristic 2

A. Mining Prior Knowledge

According to Heuristic 1 and Heuristic 2, we could
mine some prior knowledge from given viewing sequences.
The first knowledge leant from given viewing sequences is
Prob(S|P1, P2) if P1 and P2 are viewed continuously. The
second knowledge leant from given viewing sequences is
Prob(S|P1, P2) if P1 and P2 are viewed continuously and
the start time of programP2 is between the threshold and
switching time. The algorithm for mining these two knowledge
is depicted in algorithm 2.

Algorithm 2 Mining Prior Knowledge
1: bigramCount = 0
2: h1Count = 0
3: h2Count = 0
4: index = 0
5: while index < prog.size()− 1 do
6: first = prog.get(index)
7: second = prog.get(index+ 1)
8: inc(bigramCount); inc(index)
9: if CHECKH1(first, second) == true then

10: inc(h1Count)
11: if CHECKH2(first, second) == true then
12: inc(h2Count)
13: end if
14: end if
15: end while

Usually, the collected viewing sequences are unlabeled.
Thus, before the mining prior knowledge algorithm processing,
we need first select some sequences and label them as the
training set. After we generate a training set, we could carry
out the mining algorithm and get two prior probabilities.
The mining task could be repeated for different training set
and different time. Averaged result could be treated as prior
knowledge.

B. Markov Chain Model

By using prior knowledge, we’ve already got some useful
information to help us finish the splitting task. However,
we find the bi-gram program pair which could be used
for generating prior knowledge is very few. Yet, we notice
that some programs are viewed continuously. For example,
programP1,P2,P3 are continuous to each other. From mining
prior knowledge algorithm, bi-gram program pairs<P1,P2>
and <P2,P3> are assigned probability value to help the
splitting task. However, by our common sense, we know the
program pair<P1,P3> would also be useful because these two
programs are sticked by time continuity. In order to mining
probability like Prob(S|P1, P3), we came up with a Markov
chain model[12][13][14][15].

There is a type of random process which could be charac-
terized as memory-less. We call such random process Markov
process. And if the state set is finite we call the Markov
process Markov chain.



If the state of random variable X forms a Markov chain,
thenP (Xn+1 = j|Xn = i) expresses the probability at time
n X is in state i and the next state of i is j. Usually the next
state only depends on the current state regardless of timen.
Then we could express the probability of state transition asa
matrix.

P = (pij) =











p00 p01 p02 · · ·
p10 p11 p12 · · ·
p20 p21 p22 · · ·
...

...
...











(1)

p
(n)
ij = P (Xm+n = j|Xm = i) expresses the probability the

next state of i is j after n step. Here n step means repeating the
strategy n times. Then given the initial probability distribution
of all objects involved in the strategy, we could find the
probability of our interested object.

From mining prior knowledge algorithm, we could know
the probabilityProb(S|P1, P2) if P1 andP2 are continuous
in time. There are two possible values forProb(S|P1, P2):

{

Prob(S|P1, P2) = α if p1 and p2 satisfy heuristic 1
Prob(S|P1, P2) = β if p1 and p2 satisfy heuristic 2

(2)
In our method, we use prior knowledgeα andβ to calculate

Prob(S|P1, P2) if P1 andP2 have time continuity relation be-
tween each other but aren’t adjacent to each other. That is, we
haveN programs in the viewing sequenceP1, P2, P3, · · · , Pn

andPi andPi+1(1 ≤ i ≤ n − 1) are bi-gram program pair.
We use Markov chain model to calculateProb(S|Pi, Pj)(i ≤
j ≤ n)

We first build the transition matrix of the Markov chain. The
matrix is depicted blow. There are two characteristics of the
transition matrix. First, according to Markov chain theory, the
sum of all probabilities in a row is equal to 1. Secondly, for
row i, expect forProb(S|Pi, Pi) andProb(Pi, Pi+1), other
probabilities are all zero for we only know the probability of
two continuous programs.

P = (pij) =



















1− α α 0 0 · · · 0 0
0 1− β β 0 · · · 0 0
0 0 1− β β · · · 0 0
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...
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... · · ·
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0 0 0 0 · · · 1− α α
0 0 0 0 · · · 0 1



















(3)
After we have built transition matrix, we could compute

Prob(S|Pi, Pj) where programPi and Pj are in the same
time continuity group andi < j ≤ n. We give the formula for
calculatingProb(S|Pi, Pj) first and then explain it.

Prob(S|Pi, Pj) = Vi × P
(j−i)[j] (4)

HereVi stands for a vector whosei-th column is 1 and other
column is 0.P (j−i) stands for the(j−i)-step transition matrix

andP
(j−i)[j] stands for thej-th column of the(j − i)-step

transition matrix.
Vi stands for the initial probability distribution of n pro-

grams. We assume only thei-th program is being viewed now.
After (j − i) times program switching, we could calculate
the probability that the user is viewing thej-th program. So,
according to Markov chain theory, the probability the user at
j-th program isVi×P

(j−i)[j]. In other words, the probability
concluded from Markov chain theory is same as the probability
that programPi andPj are viewed by same viewer, namely
Prob(S|Pi, Pj).

Noticing the special form of transition matrix, we could
simplify the calculation forProb(S|Pi, Pj). Suppose there are
k programs viewed betweenPi andPj(k = j − i − 1).Then
the formulation could be simplified as follows:

Prob(S|Pi, Pj) =

j−1
∏

k=i

Prob(S|Pk, Pk+1) (5)

Prob(S|Pk, Pk+1) has already given by mining prior
knowledge algorithm. Thus we could calculate probability
betweenPi andPj if Pi andPj are in the same time continuity
group andi < j.

By utilizing Markov chain theory, we expand prior prob-
ability to more programs. The simplified formula could give
us the probability between two programs in a time continuity
group efficiently. Meanwhile, Markov chain theory tells us this
probability is reliable. In the following sub-section, we will
use the probability which has concluded now to split viewing
sequence.

C. Attribute Co-occur Matrix

By using prior knowledge and Markov chain model, we
could find Prob(S|P1, P2) if program P1 and P2 are in
the same time continuity group. However, we are interested
in Prob(S|P1, P2) for each pair of program in the view-
ing sequence. In order to calculate this probability between
any two program, we first introduce the attribute co-occur
technique[16][17][18].

The basic idea is thatProb(S|P1, P2) could be used as
the program attributes’ similarity between these two pro-
grams. And if we record all attributes’ similarity from known
Prob(S|P1, P2) then this matrix could be used as another prior
knowledge.

In our implementation, there’re 6 attributes for each pro-
gram. And for each program, the values for this attribute is
obtained from internet by an automatic extraction program.
The extraction program will start in the previous weekend
and according to downloaded schedule extract values auto-
matically.

For example, we have two attributesA1 and A2, and
there areN programs containing these two attributes. That
is, P1,P2,· · · ,Pn. Then we could expressProb(A1, A2) as
follows:

Prob(A1, A2) =

∑N−1
k=1 Prob(S|Pk, Pk+1)

N
(6)



We need two iteration to generate attribute co-occur matrix.
The first iteration extracts all attribute value into a pre-defined
attribute list. The second iteration check all program pairs and
if the two programsP1 andP2 have already been processed in
previous knowledge generation module update attribute value
pairs fromP1 and P2 with the probabilityProb(S|P1, P2).
The pseudo-code for building attribute co-occur matrix is in
algorithm 3.

Algorithm 3 Building Attribute Co-Occur Matrix
1: attrList = NULL
2: attrCo[][] = NULL
3: attrCoCount[][] = NULL
4: for all prog ∈ progList do
5: for all value ∈ prog.attribute do
6: if value /∈ attrList then
7: attrList.add(value)
8: end if
9: end for

10: end for
11: while index < progList.size− 1 do
12: first = progList.get(i)
13: second = progList.get(i+ 1)
14: for all value1 ∈ first do
15: for all value2 ∈ second do
16: attrCo[indexof(value1)][indexof(value2)]+ =

Prob(S|first, second)
17: inc(attrCoCount[indexof(value1)][indexof(value2)])
18: end for
19: end for
20: inc(index)
21: end while
22: i = 0; j = 0
23: while i < attrList.size do
24: while j < attrList.size do
25: attrCo[i][j]/ = attrCoCount[i][j]
26: inc(j)
27: end while
28: inc(i)
29: end while

Attribute co-occur matrix will serve as the final knowledge
for the following splitting task. There are two main benefits
of using attribute co-occur matrix. The first one is attribute
co-occur matrix not only concludes the knowledge we have
mined but also expand it to a more expressive and meaningful
format. The second one is attribute co-occur matrix are easy
to understand both for researchers and for machines.

And there are some alternatives for the range of attribute.
The first one is the attribute comes from the sequence con-
sidered. And the second one is attribute comes from several
sequences. If we use the second one, then we could combine
more knowledge together. And if the user behind these se-
quences are same, then this combination would great benefit
the splitting result.

In the next sub-section, we will introduction how to use

attribute co-occur matrix to buildP (S|P1, P2) for each pair
of program in the viewing sequence.

D. Probability Model

By using attribute co-occur matrix, we could find
Prob(S|P1, P2) for any two programs in the sequence. We
first give the formula for calculatingProb(S|P1, P2):

Prob(S|P1, P2) =

∑

a1∈P1,a2∈P2
Prob(S|a1, a2)

||P1|| × ||P2||
(7)

Here, ||Pi|| stands for the size of attributes for program
Pi. And from statistics perspective, equation 7 is the mean of
prior knowledge probability for all attribute pairs involved in
programP1 andP2.

It’s easy to understand this definition. The probability the
user watchesP1 and P2 is determined by the probability
of attribute pairs from these two programs. And notice that
Prob(S|a1, a2) is the probability thata1 anda2 is viewed by
a single viewer. SoProb(S|P1, P2) likes a voting result from
all attribute pairs.

And if we use alternative 2 to calculate attribute co-occur
matrix, then we could getProb(S|a1, a2) from a global per-
spective. Thus the voting resultProb(S|P1, P2) will be more
accurate. The pseudo-code for calculating theProb(S|P1, P2)
is in algorithm 4.

Algorithm 4 Calculate Probability for Each Program Pair

1: prob[][] = double[progSize][progSize]
2: for all prog1 ∈ progs do
3: for all prog2 ∈ progs do
4: AttrCount = 0
5: sum = 0
6: for all a1 ∈ prog1 do
7: for all a2 ∈ prog2 do
8: inc(AttrCount)
9: sum+ = Prob(a1, a2)

10: end for
11: end for
12: prob[indexof(prog1)][indexof(prog2)] =

sum/AttrCount
13: end for
14: end for

By using voting methods to calculateProb(S|P1, P2), we
could avoid the problems discussed in baseline algorithm. For
example, if a user watches both sports program and news
program, then in our baseline algorithm, we could never
find similarity between these two programs. However, in our
approach, the algorithm could first find some prior knowledge
from the viewing sequences which connects sports program
and news program and then give us an accurate similarity score
for these two programs. And consider another case where both
two users like sports program. In our baseline approach, two
sports programs will be assigned a high similarity score but
they are not watched by a same viewer. And in our approach,



these two programs may be assigned a low probability be-
cause we could not find supporting knowledge for these two
program. So our approach solve the problem that users may
have multi-interests.

E. Clustering

We could use the generated probabilityProb(S|P1, P2) of
each program pair as the input to the clustering algorithm
to generate a set of program sub-sequences. The motiva-
tion to use clustering algorithm is straight-forward. Consider
a simple situationProb(S|P1, P2) has a large value and
Prob(S|P1, P3) has a small value andProb(S|P2, P3) has
a large value too. Then intuitively, we know that programP1

is very likely viewed by different user fromP2 andP3. We
concludeP1 is different fromP2 andP3 instead of different
interests becauseProb(S|Pi, Pj) is a prior knowledge cal-
culated in the previous section and we know this value has
already eliminated multi-interests.

Consider a more complicated example, we have a probabil-
ity matrix like:

P =













0.8 0.8 0.1 0.1 0.8
0.8 0.8 0.1 0.1 0.8
0.1 0.1 0.8 0.8 0.1
0.1 0.1 0.8 0.8 0.1
0.8 0.8 0.1 0.1 0.8













(8)

The entrypij in matrix P is the probability that item i and
j belong to the same category. From the matrix, we could see
that the probability item 1 and 2 belong to the same category
is 0.8 and the probability item 1 and 3 belong to the same
category is 0.1. For this matrix, it’s easy to see that item 1 2
5 belong to the same category and item 3 4 belong to another
category

However, when the matrix becomes very large and the
probability is a little fuzzy. It’s hard for human to find the
corresponding clusters. Thus, we need a clustering algorithm
to help us.

Hierarchical agglomerative clustering(HAC)[11] is the fun-
damental clustering algorithm in our approach. There are two
reasons we choose HAC. The first is we only have similarity
between two programs and don’t have a vector space to
represent these programs. The second is that we want to
control the number of clusters generated. HAC could fit our
requirement.

HAC first treats all programs as a single cluster and then
iteratively merges two clusters. In general, the merge operation
progress until there is only one cluster remaining. However,
we modify the stop condition to fit our requirement. In our
approach, when there areN clusters remaining, we stop the
merge operation. Figure 3 illustrates the clustering process.
There are 5 points in the set originally. And when there are 2
clusters remaining, the clustering progress stops.

Another important thing for HAC is the merge
function[19][20][21]. Different merge function could result
different clustering result. Here, we use the following formula

Fig. 3. HAC Illustration

to calculate the similarity between the merged cluster and
other clusterings remaining in the candidate cluster list.

sim1 =
(ci + ck)

(ci + cj + ck)
× sim(i, k)

sim2 =
(cj + ck)

(ci + cj + ck)
× sim(j, k)

sim3 =
ck

(ci + cj + ck)
× sim(i, j)

sim((i, j), k) = sim1 + sim2 − sim3

(9)

Here,ci refers to the number of points in the clusteri and
sim(i, j) refers to the similarity between cluster i and cluster
j. Especially,sim((i, j), k) refers to the similarity between the
merged cluster(from cluster i and j) and cluster k. We use the
this formula to update similarity matrix because we find this
updating method could result the most balanced clusters in the
general case.

In the last part of this sub-section, we discuss the equiva-
lence between HAC clustering result with our desired splitting
result.

First considerci, cj , ck are equal to 1. Then table II gives
all possible cases that the merge process would encounter. In
table II, 1 stands for a big value and 0 stands for a small value.
For example, if sim(i,k), sim(j,k), sim(i,j) are all big values,
then sim((i,j),k) is a big value too. In probability context, if
Prob(S|Pi, Pk), Prob(S|Pj , Pk), Prob(S|Pi, Pj) all closes
to 1 then programPi, Pj , Pk are likely viewed by the same
viewer(Prob(S|Pi, Pj , Pk) closes to 1).

There are some contradictions in table II. For example, the
second column tells us programPi, Pk are likely viewed by
the same viewer and programPj , Pk are also likely viewed by
the same viewer but programPi, Pj are not likely viewed by
the same viewer. In this condition, we draw a conclusion that
programPi, Pj , Pk are all very likely viewed by the same
viewer. This result is an obvious contradiction to the given
factors. But in our approach, this contradiction could never



sim(i,k) sim(j,k) sim(i,j) sim((i,j),k)
1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 0
0 0 0 0

TABLE II

ENUMERATION OF MERGE CASES

happen because we always choose the row whose sim(i,j) =
1(HAC always chooses most similar pairs) and all sim(i,j)=1
row have no contradiction.

Whenci, cj , ck are not all 1 but they are equal to each other,
we could still use the theory above and thus the cluster result
is reasonable.

When ci, cj , ck are not equal, then there are two cases
could be discussed. First, cardinality of cluster i or cluster
j dominates the weight. Then in such condition, sim((i,j),k)
is determined by sim(i,k) if cluster i has dominate weight
and by sim(j,k) if cluster j has dominate weight because we
always let sim(i,j) be a high value. Second, cardinality of
cluster k dominated the weight. Then in such case, sim((i,j),k)
is the negative value of sim(i,j) because we don’t have enough
knowledge for judging the sim((i,j),k).

And in both case, we still guarantee that if programP1 and
P2 are very likely viewed by a same viewer then these two
programs are clustered into a single cluster.

In a conclusion, given the number of viewer and our previ-
ous calculated probability matrix, we could find corresponding
sub-sequences for each of the viewer by HAC algorithm. The
rationality of the clustering result is discussed in the last part
of this sub-section. In next sub-section, we’ll discuss howto
determine the number of viewer in front of TV.

F. Determining the number of viewers

In our approach, we use an enumeration method to de-
termine the number of viewers in front of TV because we
assume there are less than 5 viewer in a family watching the
TV concurrently.

For each number of viewers, we input this number to the
clustering algorithm. Then we will calculate the confidence
of the clustering with that input number. That is, for each
sequence, we need to run HAC algorithm for 4 times (input
number from 2 to 5), and finally we pick the number with the
largest confidence as the estimated number of viewers for this
sequence. We only need to run clustering algorithm 4 times
instead of the whole approach because the probability matrix
is common for determining the number of viewer section.

The confidence of the clustering result is calculated in the
following way 5.

In this algorithm the functionSim(Pn, Pm) is calculating
the similarity between the 2 programs, including not only the
content similarity but the time similarity as well. The idea

Algorithm 5 Determining the Number of Viewers
1: Count← 0
2: Similarities← 0
3: for all clusterCi in the split resultdo
4: for all clusterCj other thanCi do
5: for all programPn ∈ Ci andPm ∈ Cj do
6: Count← Count+ 1
7: Similarities← Similarities+ Sim(Pn, Pm)
8: end for
9: end for

10: end for
11: Confidence← Similarities/Count

of this method is base on the fact that the more dissimilar
the programs in different clusters are, the more likely we are
splitting the programs watched by different users correctly.
We have once considered using inner similarity as confidence,
where we regard higher similarity within each cluster as
higher confidence. Later we find it will always select the
larger number of viewers because more clusters lead to higher
similarity, while the outer similarity approach we are using
now don’t have such problems. We will illustrate this further
in the evaluation part.

VI. EXPERIMENTAL RESULT

The prilimanary result

A. Best Match

As we have got the clustering result, a best match method
given below is deployed to evaluate the precision of the split.

Algorithm 6 Best match evaluation algorithm
Require: n clusters of programs as the resultR, m sets of

programs watched by the m people as the ground truthT
Ensure: The best match precision of the split

1: if n ≥ m then
2: T ⇐ T add (n−m) empty sets
3: else
4: R⇐ R add (m− n) empty sets
5: end if
6: precision← 0
7: for all bijection f from R to T do
8: cnt← 0
9: for all clusterr in R do

10: cnt← cnt+ numberOfIntersections(r, f(r))
11: end for
12: if match > precision then
13: precision← match
14: end if
15: end for
16: return precision

Under such evaluation, the precision is 100% when every-
thing gets right. If we do not predict the number of users



correctly (more or less users are detected), we will be charged
with a heavy penalty that some empty sets are involved such
that no result will match on them, which has a large impact
on the result.

For instance, given a sequence watched by 3 different
people who respectively watched{A, B}, {C, D}, {E, F, G}
programs, if our algorithm predicts it is watched by 2 people
with the clusters{A, B, C} and {D, E, F, G}, the precision
will be 71.4% where A, B, E, F, G are matched in the best
match.

B. Experiment Setup

We tested our approach and baseline method in 16 viewing
sequences. The 16 viewing sequences consist of 4 groups with
4 sequences in each group. The group is divided by the number
of viewer behind the sequence. The distribution of this 16
viewing sequences is depicted in figure 4.
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We test our approach for each of the test sequence.

C. Experiment Result

1) Precision of Splitting the Watching Sequence:In figure
5, we list the comparison results of our approach and baseline
approach. The comparison is from different perspective. Figure
5(a) shows that for the majority of the test sequence our
approach over-performs the base-line approach. Figure 5(b)
shows that for different group size our approach over-performs
the base-line approach.

2) Precision of Determining the Number of Viewers:In the
previous section we have talked about the algorithm 5 that we
use to determine the number of viewers behind the watching
sequence. We conduct the experiment twice, using the baseline
method and the attribute co-occur method respectively. And
we compare the result of n to both the real number of viewers
and the number with the best precision.

The result shows in 23 of the 32 sequences we are selecting
the n with the best precision, the ratio is 72%, and in 18 of the
32 sequences we are selecting the n which is correct according
to the real value, the ratio is 56%. The distribution of the n
selected is give below in graph 6.

This result infers that even if the number of viewers behind
the sequences were known in our problem, we were not going
to reach the best precision, because in some situation the
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Fig. 6. Experimental result of Determining the number of viewers algorithm

misunderstanding of the number of viewers can lead to a better
result.

This partially results from the case where some watchers are
watching programs of multiple styles that may exactly match
the style of some other viewers with relatively pure styles.

VII. C ONCLUSION

In a conclusion, we proposed a novel TV viewing sequence
splitting algorithm based on Markov Chain Model. The exper-
imental results show that our approach works both efficiently
and effectively. Meanwhile, the proposed approach could be
used to analyze more histories by modifying the model a little.
The future research direction could be making the algorithm
more accurate and eliminating the prior knowledge mining
process.
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