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ABSTRACT
Query suggestion is a useful tool to help users formulate bet-
ter queries. Although this has been found highly useful glob-
ally, its effect on different queries may vary. In this paper, we
examine the impact of query suggestion on queries of differ-
ent degrees of difficulty. It turns out that query suggestion is
much more useful for difficult queries than easy queries. In
addition, the suggestions for difficult queries should rely less
on their similarity to the original query. In this paper, we
use a learning-to-rank approach to select query suggestions,
based on several types of features including a query perfor-
mance prediction. As query suggestion has different impacts
on different queries, we propose an adaptive suggestion ap-
proach that makes suggestions only for difficult queries. We
carry out experiments on real data from a search engine.
Our results clearly indicate that an approach targeting diffi-
cult queries can bring higher gain than a uniform suggestion
approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: query for-
mulation

General Terms
Algorithms, Experimentation, Measurement

Keywords
Difficult queries, adaptive query suggestion, query sugges-
tion evaluation

1. INTRODUCTION
It is often difficult for users to compose appropriate queries

in Web search. Even if a query expresses well the right in-
formation need from the point of view of human beings,
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the query can still fail to retrieve the desirable documents.
This is the case for the query “what’s in fashion”, which
clearly describes the information need on learning the cur-
rent fashion trends. However, most top search results are
irrelevant, as shown in the top results from Google (http:
//www.google.com) in Table 1: the second result is irrele-
vant while the third one is not authoritative enough. The
query is difficult because the current search methods can-
not find the desired documents effectively. To be general,
we consider all the queries with a low NDCG score difficult
queries as in [17]. The low NDCG scores could be due to
several reasons: the query’s key terms mismatch those in the
desired documents; the query is too general, the query is too
narrow, and so on. No matter what the underlying reason
is, one can alleviate the problem by suggesting appropriate
alternative queries to the user, which can perform better in
search.

Query suggestion is a technique which can assist users to
interactively refine queries. However, most previous work
on query suggestion, such as [29, 23, 7, 8], tries to identify
alternative queries that bear a strong similarity or relevance
to the original query. For easy queries, the suggested queries
can often result in good search results, as is also the case for
the original query. In such cases, query suggestion is less
crucial, and can even be annoying sometimes (imagine, for
example, the case when a user submits a very good query,
but becomes uncertain when a number of alternatives are
suggested). However, for difficult queries, it is critical but
much harder to suggest queries that perform well. For ex-
ample, for the same example query “what’s in fashion”, the
suggestions “what’s in fashion 2010” and “what’s in fashion
for men” are both relevant , but they are not more effective
than the original query, as will be shown in Table 4. To be
useful, a suggested query should not only be relevant to the
original query, but also allow to better retrieve the desired
documents.

Query reformulation is another technique aiming at im-
proving the relevance of search results. Different from query
suggestion, query reformulation is performed automatically
on the original query without explicit interactions with the
user. In such a setting, one should make sure that the au-
tomatic reformulation has a high precision. In practice, it
is often limited to replacing some original query terms by
correcting misspelled words, or suggesting some more fre-
quently used terms that are slightly different from the origi-
nal terms in morphology. However, such a replacement does
not apply to the difficult queries we target in this paper such
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Table 1: One example of a difficult query, a better suggestion, and their top three search results returned by
Google in November 4, 2011.

Query: “what’s in fashion” Suggestion: “latest fashion trends”

Fashion - Women’s Fashion - Fashion Website Fashion - Women’s Fashion - Fashion Website
Get a look at 2011 women’s fashion. ELLE is the leading ... Get a look at 2011 women’s fashion. ... for seasonal ...
www.elle.com/Fashion www.elle.com/Fashion
Quiz: What’s Your Fashion Style? Fashion Trends and News on Style.com
What’s Your Fashion Style? Find out what your likes ... NEW ON STYLE.COM. fashion shows. Spring 2012 ...
www.lhj.com/lhj/quiz.jsp?quizId=/.../WhatsYourStyleQuiz... www.style.com/trendsshopping/
Celebrity Fashion|What’s hot|High Street Style Tips... Trends - Fashion Trends (Vogue.com UK)
OUR Fashion Ed’s top fashion and beauty picks ... Get a look at 2011 women’s fashion. ... for seasonal ...
www.thesun.co.uk/.../Celebrity-Fashion-Whats-hot-High-S... www.vogue.co.uk/fashion/trends

as “what’s in fashion”, in which all the words are spelled cor-
rectly and are quite frequent.

In this paper, we do not intend to design a system that
solves the problem of difficult queries alone; rather we pro-
pose an interactive suggestion method that adaptively sug-
gests alternative queries when this is necessary or useful,
namely for difficult queries. The goal is to suggest more ef-
fective queries for them. As an example, a good suggestion
for the original query “what’s in fashion” is “latest fashion
trends”, which both corresponds well to the original search
intent and leads to better search results, as shown in Table 1.

As we hinted earlier, query suggestion can be useful in
some cases (especially difficult queries), but annoying in
some others (especially easy queries). It is then natural to
determine when it is useful to perform query suggestion and
to use it only for the useful cases. To do this, we use a regres-
sion model to predict the retrieval performance of queries
and then return suggestions according to the query difficulty.
Experimental results show that our adaptive query sugges-
tion approach significantly improves the uniform query sug-
gestion.

In addition to proposing an effective query suggestion
method that targets difficult queries, we also propose some
new measures to evaluate the quality of query suggestion,
which we call Max@n (the maximal NDCG using the first n
suggestions) and SDCG@n (the discounted cumulative gain
using the first n suggestions). Compared to the measures
used in previous studies, these measures can better reflect
the use of query suggestions by end users.

The contributions of this work are twofold. First, to our
best knowledge, it is the first time that query suggestion
is studied specifically to help difficult queries. Second, we
successfully demonstrate that our adaptive approach signifi-
cantly improves the retrieval effectiveness of original queries
and outperforms the current state of the art.

The remainder of this paper is organized as follows. We
briefly review related work in Section 2. We propose two
new evaluation measures in Section 3. Then, we describe
our proposed approach for difficult queries in Section 4 and
evaluate the approach in Section 5. The adaptive query
suggestion approach is described and tested in Section 6.
Finally, we present concluding remarks and future work in
Section 7.

2. RELATED WORK
Our work is related to query suggestion, query reformula-

tion and query performance prediction. We will review some
work in these three areas.

2.1 Query Suggestion
In the past decade, many approaches have been proposed

to perform query suggestion. Much work takes advantage
of click-through information from query logs and leverages
co-clicked URLs to identify related queries. For example,
[6] constructed a bipartite graph based on click-through and
clusters similar queries by assuming that queries for which
the same documents are clicked on are similar. Here, clicked
documents are considered as representing the user’s search
intent. [32] further extended the approach by also taking
into account the content words of the queries. Therefore,
queries in the same cluster are both similar to each other
and share the same search intent. Baeza-Yates et al. [2]
proposed to cluster similar queries by considering queries
along with the text of their clicked URLs. Given an ini-
tial query, the queries from its cluster can be considered as
possible suggestions.

In recent years, other types of useful information have
been included into the bipartite graph. Mei et al. [24]
proposed to compute hitting time on a large-scale bipar-
tite graph mined from click-through data. Then candidate
queries are ranked by the hitting time. Cao et al. [8] clus-
tered queries into concepts and then by mapping user query
sessions to concept sessions, they enhanced query sugges-
tion by considering enriched contextual information. In [23],
the authors proposed a query suggestion framework includ-
ing two parts: The offline part builds a query similarity
graph by user-query and query-click bipartite graphs; The
online part applies a ranking algorithm to the query simi-
larity graph and then suggests latent semantically relevant
queries to users. To tackle the problem of rare query sugges-
tion, Song et al. [28] built two bipartite graphs by leveraging
both click and skip information from query logs and used an
optimal random walk and combination model to determine
query correlations.

Most of these approaches focus on enhancing user search
experiences by providing related queries to expand searches
[29]. The evaluation measure commonly used reflects whether
the suggested queries are relevant to the original query. As
we argued, a useful query suggestion is not only relevant, but
also more effective. This is particularly important for diffi-
cult queries. To cope with this requirement, we will propose
a new evaluation methodology in this paper.

2.2 Query Reformulation
Query reformulation techniques are widely used to modify

user queries in order to improve retrieval effectiveness. Tra-
ditional methods include pseudo relevance feedback, which
adds some terms extracted from the top ranked documents
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into the query [22, 30, 33]. Recent work exploits query
logs to collect reformulation candidates. In [20], the authors
identify query-level and phrase-level candidate substitutions
for user queries by mining session data. Candidates are
ranked according to two relevance measurements, i.e., “pre-
cise rewriting” and “broad rewriting”. To address the prob-
lem of term mis-specification and under-specification within
a query, Wang and Zhai [31] define two novel term associ-
ation patterns, i.e., context-sensitive term substitution and
term additions, and propose a method to discover these pat-
terns by analyzing term co-occurrences in query logs. Gao
et al. [15] propose a ranker-based search query speller that
gathers correction candidates from query logs and then use
a ranker trained from manually annotated data to rank the
candidates. Guo et al. [16] propose a unified CRF model
for query refinement by incorporating four independent tech-
niques for query correction.

Anchor text is an alternative data source for query refor-
mulation. It has been observed that there is a similarity
between search queries and anchor texts [13]. Therefore,
Kraft and Zien [21] propose a method to generate refine-
ments for queries by mining anchor texts. They also employ
a ranking algorithm for combining multiple factors to se-
lect query refinements. By using anchor texts to simulate
click-through data of query log, Dang and Croft [12] employ
the approaches described in [25, 31] to reformulate queries.
Their results show that anchor texts are at least as effective
as a real query log for this purpose.

The refinement work usually outputs alternative queries
that will most likely change the user query’s search results.
To ensure high precision, the previous work often performs
changes that are safe and hesitates to do risky refinements.
The same technique can be hardly applied to difficult queries,
for which more different suggestions are needed.

2.3 Query Performance Prediction
Query performance prediction is the task of estimating

the quality of the search results for a query. Recently, a
number of predictors have been proposed for this task [11,
1, 34, 10, 35, 36]. Carmel et al. [9] conducted a comprehen-
sive comparison among these predictors over several TREC
benchmarks and further discussed several methods for comb-
ing different predictors to obtain performance enhancement.
Different from previous predictors evaluated on TREC-like
collections, Balasubramanian et al. [5] propose an effective
and efficient query performance prediction technique for real
Web search that uses aggregates of retrieval scores and re-
trieval features. Our work is in the same setting. Therefore,
we will use a similar approach to determine difficult queries
in Section 6.

3. QUERY SUGGESTION AND QUALITY
MEASURES

In this section, we first formulate the problem of query
suggestion for difficult queries. Then we define measures to
evaluate how good a suggestion list is for a difficult query.

3.1 Query suggestion problem
Query suggestion can be formulated as a two-step pro-

cess: First, given a query q, a set of candidate queries
C = {c1, c2, . . . , cm} for suggestion are identified; then the
candidates are ranked according to some quality criterion.

Similar to the Probability Ranking Principle (PRP) [27],
the best suggestion list can be seen as the one in which the
suggested queries are ranked in decreasing order of their rel-
evance probability P (rel = 1|q, c), in which rel = 1 means
relevance, q is the original query and c refers to a candidate.
We then choose at most n (n < m) top candidate as sugges-
tions to q, denoted by Cs =< cs1 , cs2 , . . . , csn >. The key
problem is to find an optimal function r(q, ci) to estimate
P (rel = 1|q, ci).

This is the standpoint taken in many previous studies.
The measurements proposed are based on direct human judg-
ments [29, 23, 7, 28, 8] or indirect human judged resources
like Open Directory Project (ODP) data [23, 3]. For exam-
ple, for each pair of the original query and a suggestion, as-
sessors are given the queries and their corresponding search
result pages side-by-side, and asked to make a binary deci-
sion of whether two queries are related [29].

As we discussed previously, a useful suggestion should be
the one that improves the search effectiveness. Therefore, we
change the previous relevance probability to the usefulness
probability P (useful = 1|q, c). For example, although both
“what’s in fashion for men” and “latest fashion trends” are
relevant to the query “what’s in fashion”, the latter is more
effective, thus its usefulness is higher. We will define two
measures to reflect the usefulness in the next subsection.

Some measures in a similar vein have been used in query
reformulation. For example, [12] used the metric preci-
sion@n, which is the fraction of top n retrieved documents
that are relevant, to measure the quality of a refined query.
In this paper, we will assume that our goal is to improve
NDCG@k. Accordingly, we propose two measurements Max@n
and SDCG@n to measure the effectiveness of a suggestion
list.

3.2 Quality measures

3.2.1 Evaluating an individual suggestion
We use the judged document set of an original query q,

which is pooled from several popular search engines, to eval-
uate a query suggestion csi . Instead of precision@n, we
choose NDCG to evaluate an individual suggestion, which
is commonly used for Web search. Given an original query
q, we have a set of documents, denoted as D, judged by
human assessors. Then, NDCG@k is defined as DCG@k

IDCG@k
,

where DCG@k is calculated by as follows:

DCG@k =
k∑

i=1

2rating(i) − 1

log(1 + i)
(1)

Here rating(i) is the relevance rating of the document
at position i. In our experiments, we have five grades of
relevance, i.e., perfect, excellent, good, fair, and bad, cor-
responding to the ratings 4, 3, 2, 1, and 0, respectively.
IDCG@k is the ideal discounted cumulated gain which is
produced by the perfect ordering of D.

We evaluate the retrieval performance of a suggestion csi
by calculating NDCG@k measure for the list of retrieved
documents S(csi) based on the judgments of D. Note that
although on average there are more than 100 documents
judged for each original query, there are still some un-judged
documents retrieved by suggested queries. We regard these
un-judged documents as irrelevant, or bad, as is commonly
done in IR evaluation.
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3.2.2 Evaluating a suggestion list
Based on the NDCG measure of a single suggestion, we

can measure the quality of a suggestion list. Usually search
engines show at most ten suggestions for a query in rows at
the bottom of search results or a list on the left side bar. The
suggestion list is usually short so that the users can easily
go through it and choose a suggestion that looks promising.
Given a list of n suggestions, it is impossible to tell which
of them will be selected by the user. Therefore, we use
the maximum NDCG@k achievable by these n suggestions,
denoted by Max@n, as a quality measure of the list.

For example, for an original query, the NDCG@3 values
of its top five suggestions are:

< 0.4, 0.6, 0.5, 0.7, 0.2 >

Then Max@1 is 0.4; Max@2 is 0.6; Max@3 is 0.6; Max@4 is
0.7; and Max@5 is 0.7. By connecting these Max@n points,
we can use a monotonically increasing curve to describe
these values.

We also use the metric SDCG@n to measure the over-
all quality of a suggestion list, which assumes that the user
scans the suggestion list from top to bottom. This is sim-
ilar to the assumption used in the general DCG measure.
SDCG@n is defined as follows:

SDCG@n =

n∑
i=1

NDCG@k(i)

log(1 + i)
(2)

Here n is the total number of suggestions in a suggestion
list and NDCG@k(i) is the quality of the suggestion at po-
sition i.

As search engines often return less than ten suggestions
for a query, it is unfair to compare them with our methods
if they return less suggestions. Thus, we choose Max@n
and SDCG@n with n ≤ 5 as our main metrics and use the
queries with at least five suggestions in our experiments.

4. OUR APPROACH
In this section, we describe our approach to address the

problem of query suggestion for difficult queries. Figure 1
shows the work flow of our approach.

Given a query q, we first retrieve candidates based on
clicks and query terms. Then we use a search system to ob-
tain search result pages for the original query q and candi-
dates {c1, c2, . . . , cm} 1 . For each pair of q and ci, we extract
features to predict how well the candidate will perform. Our
proposed features are extracted from queries, candidates,
and their search result pages. Next, we apply a ranking
model f(xci) to estimate P (useful = 1|q, ci). The model is
learned on a training set composed of difficult queries. Fi-
nally, we sort the candidates by their estimated scores and
return top n candidates as suggestions.

We will describe the above processes in detail in the fol-
lowing subsections.

4.1 Retrieving Candidates
Candidates can be collected from many data sources. In

our work, we mine query clusters from click-through data
and retrieve candidates based on query clusters.

First, we build a click-through bipartite graph from the
search logs collected on Bing (http://www.bing.com) from

1Note that the search results of the candidates can be
prefetched offline.

q

S(q)

{c1, c2, …, cm}

{S(c1), S(c2), …, S(cm)}

Retrieve candidates

Search

{xc1, xc2, …, xcm}

{f(xc1), f(xc2), …, f(xcm)}

<cs1, cs2, …, csn>

Learn/Apply a ranking model

Sort and return suggestions

Extract features

Search

Figure 1: Flowchart of generating suggestions for a
query

January 1st to March 25th, 2010. An edge eij is created
between a query node qi and a URL node uj if uj has been
clicked when users issued qi. The weight wij of edge eij is
the aggregated click number. The query qi is then repre-
sented as an L2-normalized vector, in which each dimension
corresponds to a URL. If edge eij exists, the value of the
dimension is normalized wij ; otherwise, it is zero.

Second, we apply the clustering method proposed in [8].
The algorithm creates a set of clusters as it scans through
the queries. For each query q, the algorithm first finds the
closest cluster C, and then tests the diameter of C ∪ {q}.
If the diameter is not larger than Dmax, q is merged into
C. Otherwise, a new cluster is created with q as its first
member.

Third, we divide queries in each query cluster into intent
groups. When examining query clusters, it is observed that
the search intents of some queries in a query cluster are al-
most the same. Despite the slight difference in their forms,
they can be safely treated as duplicates to one another. This
phenomenon is mainly caused by misspellings, with or with-
out stop words, different tenses, equivalent syntax, and so
on. For example, “jet bleu”, “jetbue” and “jetb” share the
same intent with “jetblue”. It is annoying if we show these
misspelled or duplicate queries as suggestions. To solve this
problem, we apply a sequence of transformation operations,
such as spelling correction, stop words removal, stemming,
and term sorting, to all queries in each cluster and then
group two queries together if their edit distance after the
transformation operations is less than a threshold. Then,
we select the most frequent query in each group to be the
group leader, which will be returned as a candidate on behalf
of the whole group.

Given an original query q, we identify the query-cluster
map to find the cluster containing q. All the group leaders
in the cluster are returned as candidates for q.

4.2 Extracting Features
We extract some features to measure how well candidate

ci performs. These features will be used within a learning-
to-rank framework (see the next section). The features are
extracted from 〈q, S(q), ci, S(ci)〉, where S(q) and S(ci) are
search results returned by Bing for q and ci respectively. In
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our experiments, we use the first page containing top ten
search results for each query.

Our proposed features can be divided into four categories:
match features, cross match features, similarity features and
an estimated NDCG feature.

4.2.1 Match Features
The match features aim to measure how well a candidate

matches its own search result. Our intuition is that only
well-matched candidates are qualified to be suggestions.

Match features are extracted from ci and S(ci). As each
result in S(ci) is usually composed of three parts: title, snip-
pet, and URL, we calculate match features for each of them.
Take title as an example. Given the candidate ci and a title
Ti,j , which is the title of the j-th result in S(ci), we first re-
move stop words by Fox’s list [14] and stem terms by Porter
Stemmer [26]. Then we count how many times a term tk of
ci occurs in the title and normalize the term frequency (TF)
by the length of title in words:

MatchScore(ci, Ti,j) =
∑
tk∈ci

TF (tk, Ti,j)

length(Ti,j)
(3)

Finally, we calculate the feature of TitleMatch by ag-
gregating all titles from the top N results and discounting
MatchScore by the position of the title as follows:

T itleMatch =
N∑

j=1

MatchScore(ci, Ti,j)

log(j + 1)
(4)

Similar to TitleMatch, we also calculate the features of
SnippetMatch and URLMatch. The three features compose
our match features.

4.2.2 Cross Match Features
The cross match features aim to measure how well a candi-

date’s search result S(ci) matches the original query q. The
intuition is that a search result S(ci) that matches better
the original query is more likely to correspond the original
query’s information need.

Cross match features are extracted from q and S(ci). Sim-
ilar to the match features, we calculate three features based
on title, snippet, and URL. For example, MatchScore(q, Ti,j)
represents the cross match feature on the title of the j-th re-
sult in S(ci). TitleCrossMatch can be computed as:

T itleCrossMatch =

N∑
j=1

MatchScore(q, Ti,j)

log(j + 1)
(5)

SnippetCrossMatch and URLCrossMatch can be computed
similarly.

4.2.3 Similarity Features
The similarity features are other features trying to mea-

sure the similarity between a candidate and the original
query. This similarity is measured on the candidate’s search
result S(ci) and the original query’s search result S(q). On
the one hand, as we want S(ci) to satisfy the original query’s
information need, the topic of S(ci) should not drift too
much away from S(q). On the other hand, S(ci) would fail
to provide new and better results if it is too similar to S(q).

To cover the two aspects, we extract three similarity fea-
tures on the result pages, URLs and domains. PageSimilar-
ity tries to prevent from a possible topic drift. It is calcu-
lated by the cosine similarity between the vectors of S(q) and

S(ci). The vectors are formed by terms in the search results
after stopword removal and stemming. TF-IDF formula is
used to weigh the terms. URLSimilarity is estimated by the
number of common URLs between S(q) and S(ci) and Do-
mainSimilarity is based on the number of common domains,
which are derived from URLs, between the two search re-
sults.

4.2.4 Estimated NDCG Feature
As we discussed earlier, difficult queries are more in need

of suggestions. The estimated NDCG feature tries to cap-
ture, to some extent, how relevant a set of search results is to
the original query, by which we want to reflect the difficulty
of the query. This estimate is made using the sets of search
results from different query formulations. The intuition is
that, if a document appears in the top search results of many
candidates, a.k.a. voted by many candidates, it is very likely
to be relevant. Therefore, an estimate of relevance can be
obtained for each search result.

Given q, the top search results of q’s candidates form a
search result collection

⋃m
i=1 S(ci). For each unique docu-

ment in the collection, we count the number of times that
the candidates return it among top ten as the document’s
estimated relevance ratings. For a candidate ci, every docu-
ment in S(ci) will have an estimated rating. Consequently,
we can calculate the estimated NDCG for the candidate us-
ing Equation 1, in which rating(i) is the estimated relevance
rating instead.

4.3 Learning to Rank Suggestions
We use a pairwise learning-to-rank method, RankSVM

[19] to rank the candidates. RankSVM focuses on the rela-
tive order between two items in a ranking list and its ob-
jective of learning is to directly minimize the number of
item pairs with reverse order. Given a list of candidates,
RankSVM outputs the prediction score for each candidate,
which can be used to rank candidates by sorting them on
the prediction score in descending order.

Formally, suppose a candidate set C = {(xi, yi)|xi ∈
R

d, yi ∈ R1} and let yi be the retrieval performance, e.g.,
NDCG@3, of a candidate xi. The ranking function has the
form:

f(x) =

l∑
i=1

(−αi)yiK(xi,x) + b∗ (6)

where K(·) is the kernel function. In our experiments,
we choose the RBF (radial basis function) kernel. Notice
that RankSVM tries to rank queries according to its search
effectiveness (yi) rather than their relevance or relatedness
to the original query. A higher-ranked candidate is the one
that is more effective in search. This allows us to capture
the desired usefulness.

We define the error function for incorrect pairwise order-
ing as follows [4]:

Θf (xi,xj) =

{
1, if sign((f(xi)− f(xj)) �= sign(yi − yj)

0, otherwise

(7)
Then, the optimal ranking function f∗ can be learned by

minimizing the overall ranking errors:

f∗ = argmin
f

∑
xi∈C

∑
xj∈C

Θf (xi,xj) (8)
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Note that we only use the difficult queries, which perform
worse than a threshold (e.g., 0.4 in this paper) in terms of
NDCG@3, in a training set to learn ranking models.

5. EXPERIMENTS ON SUGGESTION AP-
PROACHES

In this section, we conduct experiments on a set of real
Web search queries to evaluate the effectiveness of our pro-
posed approach and compare it with several baseline ap-
proaches.

5.1 Data Collection
The dataset collected contains about 10,000 real Web queries

from the search logs of Bing. On average, each query has
more than 100 documents judged in five relevance grades.
As our evaluation will use the top 5 suggestions, to be fair,
we discard the queries for which the baseline approaches or
our approach returns less than five suggestions. Finally we
have 4,068 queries for experimentation.

We fetch top three search results from Bing for each of
the original 4,068 queries, and calculate NDCG@3 to mea-
sure how difficult each original query is. We divide the
original queries into 10 bins according to their NDCG@3
values:[0, 0.1), [0.1, 0.2), . . . , [0.9, 1]. The number of queries
in each bin is shown in Figure 2. As we can see, there are a
quite large number of queries (1,019) in the four lowest bins
below 0.4. These queries account for around 25% of the total
queries. Their low NDCG values indicate that it is difficult
to retrieve relevant documents for them with the original
queries, and they need better suggestions to improve search.
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Figure 2: Distribution of original queries in different
bins of retrieval performance

For all the 4,068 original queries, our approach identifies
638,391 suggestion candidates from the three-month search
log. On average, each original query has about 157 candi-
dates. Again, we fetch the top three search results from the
search engine for each candidate and compute their NDCG@3
values based on the relevance judgments of the original query.
If a candidate has a higher NDCG@3 value than its origi-
nal query, it is an improved candidate. Figure 3 shows the
average number of candidates and improved candidates per
original query in each NDCG bin. As we can see, there are
a larger number of improved queries in the lower bins than
in the higher bins. For the [0, 0.1) bin, each query has 33
improved candidates on average. The number of improved
candidates decreases progressively as the original queries be-
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Figure 3: Number of candidates per query and num-
ber of improved candidates per query in different
bins

come easier. For the original queries in the bins of [0.8, 0.9)
and [0.9, 1], almost none of their candidates is better than
the original ones. This is not a surprise because search en-
gines already perform very well in returning relevant docu-
ments for the easy queries, and hence there is less space left
for further improvement. The above observation supports
our conjecture that query suggestion is more necessary for
difficult queries. It is on difficult queries that we can obtain
large improvements on search effectiveness.

As additional baselines, we also evaluate the suggestions
from two commercial search engines, SE1 and SE2, for the
original queries. For a suggestion from SE1 or SE2, we fetch
the top three search results from them to evaluate its effec-
tiveness in NDCG@3 .

5.2 Evaluating Ranking Models
We first conduct experiments to investigate the ranking

models that are learnt from different types of features. The
4,068 original queries are randomly divided into ten subsets,
and we conduct ten-fold cross validation for all learning ex-
periments in this paper. In each trial, the queries in nine
subsets are used as the training set, and the remaining sub-
set as the testing set. In order to train a RankSVM model
specifically for difficult queries, we only preserve the queries
whose NDCG values are below 0.4 in the training set. For
testing, however, we use all the original queries in order to
reflect the fact that we cannot know their NDCG values in
advance. The reported performance measures are averaged
on the ten trials.

Figure 4 shows the results measured by Max@1 for the
first six bins. Due to limited space, we do not show the
results for original queries in other bins and other Max@n,
but the trend is similar and has been clearly presented in
Figure 4. First, we find that cross match features perform
consistently better than match features. This observation
is intuitive because the cross match features capture how
well a candidate matches the original query. Second, we
observe that the estimated NDCG feature is the most sig-
nificant type in the bin of [0, 0.1), more effective than the
similarity measures. This is interesting and consistent with
our assumption that for difficult queries we need to suggest
queries that are more different from the original queries. In
contrast, when queries become easier, the similarity mea-
sures stand out as the most effective criteria. This is also
intuitive — easy queries do not need suggestions that are
very different from the original ones; otherwise, there is a
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high risk of topic drift. However, we also observe that the
combined approach that uses all types of feature (All) does
not always outperform the one using the similarity measures
only, namely in the bins [0.3, 1]. This can be explained by
the fact that the models are trained on the difficult queries
only (from bins below 0.4). During the training process,
some of the features may be over-used and their possible
negative impact on the queries in other bins may not be ob-
served during the training. It would be more appropriate
to use all the queries in the training in order to separate a
model for difficult queries from the one for easy queries. We
will leave this to future work.

The very good performance of similarity measures for easy
queries does provide a good indication that these measures
can be used as a good model for easy queries. It is then
intuitive to combine the model trained on all the features
(which performs well on difficult queries) and the one with
similarity features only.
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Figure 4: Evaluating ranking models based on differ-
ent type of features over original queries in different
bins

We propose using a variant of Borda’s ranking fusion method
[18] to combine the two models as follows:

Score(c) = λ
1√

ra(c) + 1
+ (1− λ)

1√
rs(c) + 1

(9)

where ra is the position of candidate c in the list of sug-
gestions returned by the model based on all features, and rs
is the position of c in the list returned by the model based
on similarity features. λ is a trade-off parameter to balance
the two models. The experimental results show that for a
wide range of λ, from 0.3 to 0.7, the fusion outperforms both
models. In our remaining experiments, we empirically set λ
to 0.5.

The fusion method is consistently the best among our pro-
posed methods as shown in Figure 4. This indicates that the
simple fusion method is capable of taking advantage of both
models for difficult and easy queries. We also calculate the
difference between the fusion method and the two separate
models in terms of Max@1-5 for all queries and SDCG@5
for queries in different bins. The results are shown in Ta-
ble 2 and Table 3 respectively. In all the cases except one,
the fusing approach improves the two separate models, and
the improvements are statistically significant. Therefore, we
use the fusion method as our query suggestion approach in
remaining experiments.

5.3 Comparing Our Approach with Baselines
We compare our fusion approach with several baseline ap-

proaches. We collect suggestions from SE1 and SE2 as two
additional baselines representing the current state of the art
for query suggestion in commercial search engines. Also we
randomly choose five queries from candidates to form sug-
gestions. We denote this baseline as Random. The com-
parison results are evaluated by Max@1-5 and SDCG@5,
shown in Table 2 and Table 3. As our method contains a
candidate identification step followed by a candidate selec-
tion step, in order to see the impact of each of them, we
also report the case when 5 suggestions are randomly cho-
sen from the identified candidates (Random), i.e. we only
use the first step.

As shown in the two tables, our fusion approach is dra-
matically better than any baseline in terms of all Max@1-5
and SDCG@5. The differences are statistically significant.
This indicates that the existing query suggestion technolo-
gies used in commercial search engines have not well solved
the problem of difficult queries. A possible reason may be
that too much emphasis is put on the similarity between
the suggestions and the original query. As we observed, the
similarity criterion does not work well for difficult queries.
To illustrate this, we show two examples in Table 4. In each
example, we show an original query and top five suggestions
returned by three approaches along with their NDCG@3 val-
ues. Given the query “what’s in fashion”, SE1 and SE2 pro-
vide some related queries that are subtopics of the query
by adding a few key terms. Unfortunately, they fail to find
better results on fashion because of the ineffective original
query terms. Our approach suggests queries that are more
different, such as “latest fashion trends” and “fashion now”,
which remove some ineffective key terms, like “what’s in”,
and add a few better ones, like “trends”, “latest”, and “now”.
In terms of NDCG@3, our suggestions can improve the re-
trieval performance from 0.1564 to 0.5307. For the query
“gallery furniture”, SE1 and SE2 provide specific furniture
brands that are related to the original query. However, there
is a clear topic drift. Our fusion approach is more effective
and the suggestions are more specific and within the scope
of the original query.

In Table 2, we observe that although our approach is the
best one among all suggestion approaches, it performs worse
than original queries in terms of Max@1 and Max@2, mean-
ing that we have to use at least 3 suggestions in order to
catch up and improve the original queries. In order to bet-
ter understand the situation, we have a closer look into the
six bins in Figure 5. It turns out that our fusion approach
works better for queries that are more difficult. For the most
difficult queries (in the bins of [0, 0.2)) there is already im-
provements on Max@1, i.e. the first suggestion is already
better than the original queries. When we extend to larger
bins in [0, 0.3), it still achieves improvement starting from
Max@2. For easier queries, it becomes more difficult to im-
prove the result by one or two suggestions only. However,
it consistently improves the original queries from Max@3.
This means that the approach is capable of proposing better
queries for these bins when we allow at least 3 suggestions.

Nevertheless, we observe a clear trend: the easier the orig-
inal query, the more difficult to propose a better suggestion.
It is then intuitive to suggest queries according to the diffi-
culty of the query. We investigate such an approach in the
next section.
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Table 2: Max@1-5 of suggestion approaches over all 4,068 queries. We conduct paired t-test for the difference
between our fusion method with any other method and bold face indicates statistically significant with p < 0.01.

Max@n 1 2 3 4 5

Fusion 0.497 0.553 0.58 0.594 0.604
All 0.442(-11%) 0.504(-9%) 0.536(-8%) 0.558(-6%) 0.573(-5%)
Similarity 0.485(-2%) 0.541(-2%) 0.568(-2%) 0.585(-2%) 0.596(-1%)
Random 0.205(-59%) 0.307(-44%) 0.372(-36%) 0.413(-30%) 0.443(-27%)
SE1 0.214(-57%) 0.296(-46%) 0.347(-40%) 0.386(-35%) 0.415(-31%)
SE2 0.172(-65%) 0.252(-54%) 0.299(-48%) 0.331(-44%) 0.357(-41%)
Original Queries 0.572(15%) 0.572(3%) 0.572(-1%) 0.572(-4%) 0.572(-5%)

Table 3: SDCG@5 of suggestion approaches over queries in different bins. We conduct paired t-test for the
difference between our fusion method with any other method and bold face indicates statistically significant
with p < 0.01.

SDCG@5 [0, 1] [0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6)

Fusion 1.358 0.456 0.451 0.63 0.805 1.104 1.36
All 1.255(-8%) 0.481(5%) 0.427(-5%) 0.585(-7%) 0.694(-14%) 1.008(-9%) 1.271(-7%)
Similarity 1.329(-2%) 0.343(-25%) 0.406(-10%) 0.575(-9%) 0.766(-5%) 1.062(-4%) 1.338(-2%)
Random 0.618(-54%) 0.245(-46%) 0.22(-51%) 0.315(-50%) 0.357(-56%) 0.482(-56%) 0.634(-53%)
SE1 0.556(-59%) 0.265(-42%) 0.242(-46%) 0.305(-52%) 0.386(-52%) 0.486(-56%) 0.574(-58%)
SE2 0.429(-68%) 0.250(-45%) 0.265(-41%) 0.321(-49%) 0.329(-59%) 0.39(-65%) 0.372(-73%)

Table 4: Two queries and their suggestions returned by our fusion approach, SE1, and SE2 together with
their NDCG@3. All suggestions are changed to lowercase.

Our Approach SE1 SE2

Query: what’s in fashion (NDCG@3=0.1564)
latest fashion trends 0.5307 what in fashion 2011 0 fashion trends 0
fashion now 0.4693 fashion what in 2010 0 what’s in fashion 2010 0.2961
hottest casual fashion trends women 0.2346 what’s in fashion now 2010 0 what’s in fashion for men 0
fashion trends women 0.2961 what’s in fashion fall 2010 0.1564 what’s in fashion for teens 0
styles cool fashion 0 what in fashion this summer 0 what’s in fashion 2009 0.1564

Query: gallery furniture (NDCG@3=0.2939)
gallery furniture address 0.3728 carson pirie scott furniture gallery 0 fingers furniture 0
gallery furniture bedroom 0.2939 ashley furniture gallery 0 ashley furniture 0
gallery furniture sales you money card 0.2346 the dump furniture store 0 star furniture 0
gallery furnisher 0.2387 macy’s furniture galleries 0 furniture store 0
gallery furniture post oak 0.2387 fingers furniture 0 hilton furniture 0

6. ADAPTIVE QUERY SUGGESTION
To make good suggestions for all the queries, it is impor-

tant to distinguish difficult queries from easy ones. A key
problem is to predict how difficult a query is. Although we
have used a simple feature (Estimated NDCG) to reflect the
query difficulty in the learning-to-rank model, there is still
the need to determine query difficulty with a more sophis-
ticated method and explicitly use it to vary the strategy of
query suggestion. We will carry out experiments using such
a prediction of query difficulty.

6.1 Learning to Predict Difficult Queries
Various methods have been proposed to predict query dif-

ficulty. Any effective predictor can be used in our exper-
iments. We choose to use the RAPP method proposed in
[5]. The key idea behind this approach is to use the rank-
ing scores, as well as the features that are used for ranking
documents (e.g. BM25, click and PageRank), to predict the
quality of the results. We re-implement the approach of [5].

We conduct three-fold cross validation to train a regressor
using all queries, including easy queries and difficult queries.
The predicted difficulty value for a query q is denoted by
g(q). If the query q is judged as difficult according to g(q),
we return suggestions that are generated by our fusion ap-

proach to users. This leads to an adaptive approach for
query suggestion, i.e. more query suggestions for difficult
queries than for easy queries.

6.2 Experiments on Adaptive Query Sugges-
tion

To quantitatively test the idea, we assume that a certain
suggestion budget (the number of suggestions) is allowed
for the entire query set, and our goal is to distribute the
budget on different queries according to their difficulty. The
budget is defined bym suggestion slots per query on average.
The total suggestion slots available for all our test queries is
then defined by 4, 068×m. To make our test easier, we will
assume that whenever a query is considered to be worthy
for suggestions, we propose 5 suggestions. This is in line
with our evaluation method that uses the top 5 suggestions.
Therefore, we will select to perform query suggestion on n =
4, 068×m÷ 5 most difficult queries. For the other queries,
no suggestion will be provided. This evaluation schema is
of course a simplification of the real situation; but it does
reflect the latter to some extent.

For a budget of m slots per query, we evaluate our adap-
tive query suggestion approach and the fusion approach on
the Max@ns metric. Here ns is the total number of the
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Figure 5: Effectiveness comparison among different approaches in different bins

suggestions assigned to a query. For the queries without
suggestion, we use NDCG@3 of the original query to calcu-
late Max@ns. Figure 6 shows the average Max@ns scores
of the adaptive approach (Adaptive) and the fusion ap-
proach (Fusion), along with different number of sugges-
tions: m = 1 . . . 5. We also plot the average NDCG@3 values
of all original queries (Original Query) in the figure.
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Figure 6: Comparing adaptive query suggestion
with the fusion approach and the original queries
with budget control

As shown in Figure 6, our adaptive approach consistently
outperforms the fusion approach and the original queries.
Specifically, when m is small (one or two), the fusion ap-
proach cannot suggest queries better than the original ones.
One can only find better queries when there are 3 slots or
more. This is because the slots are uniformly distributed
over all the queries, including on easy queries which do not
need suggestions. The adaptive approach successfully avoids
this problem. It can target more difficult queries for which
query suggestion is more useful. Its improvements over the

original queries are statistically significant for all budget set-
tings.

The above simulation provides a good indication that one
can gain more in targeting difficult queries for query sugges-
tion. However, we assumed an equal number (5) of sugges-
tions for all the queries whose g(q) is lower than a threshold.
In practice, this strategy can be improved by proposing dif-
ferent numbers of suggestions according to g(q). We will
leave this to future work.

7. CONCLUSION
Query suggestion is widely used by search engines. Al-

though it is found useful, the method is used uniformly on
all the queries. In this paper, we show that query suggestion
is more beneficial for difficult queries than for easy queries.
To the best of our knowledge, this is the first investigation
of query suggestion according to query difficulty.

In this paper, we used a learning-to-rank method to learn
to rank suggestion candidates by using different features.
Then an adaptive approach is proposed to provide sugges-
tions according to the estimation on query difficulty. The
experiments reported in this paper show that:

1. There is much more to gain in proposing query sug-
gestions for difficult queries;

2. To be useful, the suggestions for more difficult queries
should be less similar to the original query;

3. An adaptive suggestion according to query difficulty is
the most useful approach;

In addition to the above conclusions, we also proposed two
new evaluation measures that take into account the possible
improvements in NDCG by the suggested queries, as well
as their ranking in the suggestion list. These measures can
better reflect the use of suggestions by end users than the
previous measures.
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This work is a first step towards adaptive query sugges-
tion. There is much room for future improvements. First,
in order to gain more insights on query suggestion for the
whole spectrum of queries, we may need to train different,
difficulty-dependent, query suggestion models. That is, for
each category of queries, a specific model is trained to pre-
dict whether it is useful to suggest queries and what type of
query is the most useful. Second, the true usefulness of dif-
ferent query suggestion methods should be tested with true
users. Third, the proposed method can be used in differ-
ent tasks. For example, as we have shown, some suggested
queries lead to better search results. It is then possible to
utilize our suggestions to automatically re-rank the search
results of difficult queries.
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