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Motivation

Picking an item is time-consuming for individuals

Personalized recommendation tends to be very useful

Optimize the user experience

Shortening the time will improve the throughput
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Related Work

e Collaborative Filtering
e NO personalization
e Integrated diffusion-based algorithm

e NOT online altorithm
e Can NOT give real-time response

e INTRIGUE

e Use naive polynomial formulas for scoring of items and thus
has less intelligence than machine learning based approaches
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Vision

To build an apparel recommender system framework which is ...
1. Personalized

e user rating
e purchase history, favorites, scanning time

2. Accurate

e image features
o text tags

3. Efficient

e online context: E-commerce, e.g. Taobao
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Our Approach

e System framework Overview

Dictionary

Item business sports

Image home entertainment

—
sparse coding

tags ratings
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Our Approach

Data collections

Model apparel items

Model user preference

Recommend by rating
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Data collections

e Crawl apparel items from Taobao: including both images and
textual labels

e An online website for collecting user ratings
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Model an item according to text

e Tag vector from text: binary representation

e HAC Clustering: detect the different text labels with the same
meaning
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Model an item according to image

e Do NOT care about colors

e Preprocessed to gray-scale map by morphological
manipulation using OpenCV to eliminate disturbance form
the background and people face

e K-SVD : Learn dictionary of apparels according to
classification

e Sparse representation of images to get the feature vector
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Model an item according to image

e Image preprocessing with OpenCV
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Model an item according to image

e Image preprocessing with OpenCV
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Model an item according to image

e Dictionary learned from K-SVD
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Model an item

e Combine the vector of textual labels and vector of image
features to represent an apparel item
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Model user preference

Get user preference and model it

e Judge garments with scores(1-5) based on personal
preference

e Model user preference by their actions: purchase history,
favorites collections, scanning time, etc.
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Model user preference

Map apparel item to user preference
e According to specific user

e Mix apparel vectors and textual tag vectors along with the
corresponding user ratings as training set
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Recommend by rating

e Support vector machine (Libsvm)

e Ranking by predictive rating for the specific user
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Recommendation
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Problems and solutions

e P: People’s emphasis on image and text varied. How to
weight the two vectors?

e S: SVM will automatically learn from the training set to
determine the feature influence.
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Problems and solutions

e P: Each apparel have different quantity of images which will
lead to a varied length of apparel vectors.

e S: Treat the images affiliated to the same apparel as different
apparels with the same textual tags and user rating.
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Experiment Settings

e 1772 garments : several images and text labels
e 24 volunteers

e 60 ratings per volunteer 1553 ratings in total
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Table 1: 5-Fold Cross-Validation Accuracies

ID Accuracy | ID Accuracy | ID  Accuracy

1 89.1% 9 97.1% 17 93.3%
92.5% 10 78.3% 18 94.6%
80.9% 11 82.1% 19 85.7%
88.5% 12 85.0% 20 89.4%
91.3% 13 94.1% 21 88.4%
90.0% 14 89.4% 22 89.7%
86.9% 15 93.8% 23 90.5%
89.5% 16 96.7% 24 95.2%
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Conclusions

e No similar work has done before
e Personalization meet the user’'s need
o Integrate feature representation and machine learning

e Leverage both the images and textual labels to enhance
accuracy

e Combined with e-commerce, this framework can have a very
good market prospect
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Future Work

e Provide more recommending filters under our framework

e Experiment on various aspects of our framework and provide
extensive test result for reference
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