
Approximate Programming

Wei Li

2013. 3. 20

2013/3/19 Wei Li 1

Outline

• Background

• Why Approximate Computation

• State-of-the-art Approaches

• Problem

• Conclusion

2013/3/19 Wei Li 2

Background

• Exact computations with discrete logical
correctness requirements.

• Approximate computations aspire only to
produce an acceptably accurate
approximation to an exact output.

2013/3/19 Wei Li 3

Potential Applications

• Growth of data

– Information retrieval and analysis. Eg. Google search

– Data mining

• Stream processing

– Audio, video, image stream processing

• Machine Learning

– Recommender systems

2013/3/19 Wei Li 4

Why Approximate Computation

• Energy efficiency
– Mobile devices, servers.

• Trade-off accuracy for benefits such as
increased performance and reduced resource
consumption.

• From a higher level to address the energy-
efficiency problem

2013/3/19 Wei Li 5

Why Today

• The development of energy-efficient hardware

• The prominence of the potential applications

• The step-by-step mature of the approximate
computations

2013/3/19 Wei Li 6

Three Levels of Techniques

• Algorithmic level

– Algorithm and application

• Architecture level

– Software / hardware interface, compiler

• Implementation level

– Hardware

– Redundancy to combat unreliability

2013/3/19 Wei Li 7

State-of-The-Art

• Algorithmic level

– Program transformation

• Architecture level

– EnerJ

• Implementation level

– Architecture support for disciplined approximate
programming

2013/3/19 Wei Li 8

Algorithmic level

• Randomized accuracy-aware program
transformations for efficient approximate
computations

 POPL, 2012

2013/3/19 Wei Li 9

Accuracy-Aware Transformations

• Given a computation and a probabilistic
accuracy specification

• Transformations change the computation so
that it operates more efficiently while
satisfying the specification.

2013/3/19 Wei Li 10

Two Classes of Transformations

• Substitution transformations replace one
implementation of a function node with
another implementation.

• Sampling transformations cause the
transformed reduction node to operate on a
randomly selected subset of its inputs

2013/3/19 Wei Li 11

Example

2013/3/19 Wei Li 12

Other Technologies

• Task skipping

• Loop perforation

– Skip instructions

• Substitution of multiple alternate
implementations

2013/3/19 Wei Li 13

Architecture level

• EnerJ: approximate data types for safe and
general low-power computation

 PLDI, 2011

2013/3/19 Wei Li 14

EnerJ

• Implement a type system on top of Java with
annotations for variables and objects

• To isolate parts of the program that must be
precise from those that can be approximated

2013/3/19 Wei Li 15

Approximation

• Variables and objects

• Memory: registers, caches, main memory

• Operation: +, -, Math.sqrt(), etc.

2013/3/19 Wei Li 16

Implementation level

• Architecture support for disciplined
approximate programming

ASPLOS, 2012

2013/3/19 Wei Li 17

A Dual-Voltage Microarchitecture

2013/3/19 Wei Li 18

• Dual-voltage multiplexers

• Duplicated hardware for registers, ALU, etc. to
support approximate computation in a low
voltage.

Problem

2013/3/19 Wei Li 19

• The specification of the possibility of accuracy

– Controlled

• Redundancy in hardware design

• Neglect the overhead of switching

Can we do better?

2013/3/19 Wei Li 20

• Architecture level

– Hybrid voltage regulator

– Fuzzycall function

– Static program analysis

– Symbolic execution

AgileRegulator

2013/3/19 Wei Li 21

HPCA 2012

• Hybrid scheme of on-chip and off-chip voltage
regulator.

• Off-chip: higher power delivery efficiency, but
is not responsive

• On-chip: has much shorter latency, relatively
lower power delivery efficiency and it dictates
significant amount of chip area.

Example

2013/3/19 Wei Li 22

• Calculate Pi with Monte Carlo method

• Call a function flip_coin() 1000 times

• Return whether the coin is in the unit circle of
a square

• Specify 0.1 error rate

Example

2013/3/19 Wei Li 23

• Dependency graph to calculate the error rate
of each operation node

Example

2013/3/19 Wei Li 24

The tree has an error rate of 0.1

Each node has the same error rate

The error rate of each subtree

depends on the error rate of

its left subtree and right subtree

e = 1 – (1 - e1) * (1 - e2)

Error rate to Voltage

2013/3/19 Wei Li 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.9

0

1
.0

0

1
.1

0

1
.2

0

1
.3

0

1
.4

0

1
.5

0

1
.6

0

1
.7

0

1
.8

0

1
.9

0

2
.0

0

2
.1

0

2
.2

0

2
.3

0

2
.4

0

2
.5

0

2
.6

0

2
.7

0

2
.8

0

2
.9

0

3
.0

0

3
.1

0

3
.2

0

3
.3

0

3
.4

0

3
.5

0

3
.6

0

3
.7

0

3
.8

0

3
.9

0

4
.0

0
4

.1
0

4
.2

0

4
.3

0

4
.4

0

4
.5

0
4

.6
0

4
.7

0

4
.8

0

4
.9

0

5
.0

0
5

.1
0

5
.2

0

5
.3

0

5
.4

0

5
.5

0
5

.6
0

5
.7

0

5
.8

0

5
.9

0

e
rr

o
r

ra
te

Tclk (ns)

FPU error result

Functions containing loops ?

2013/3/19 Wei Li 26

• Leverage the symbolic execution and static
program analysis

• program analysis is the process of
automatically analyzing the behavior of
computer programs.

Static Analysis

2013/3/19 Wei Li 27

• Static analysis allows us to reason about all
possible executions of a program

– Gives assurance about any execution, prior to
deployment

• Abstract interpretation lets us scale and
model all possible runs

– But must be conservative

– Try to balance precision and scalability

Symbolic Execution

2013/3/19 Wei Li 28

• generalize testing by using unknown
symbolic variables in evaluation

• Symbolic executor executes program,
tracking symbolic state.

• If execution path depends on unknown, we
fork symbolic executor

Example

2013/3/19 Wei Li 29

• The analysis of programs by tracking
symbolic rather than actual values, a case of
abstract interpretation

Symbolic Execution

2013/3/19 Wei Li 30

• During symbolic execution, we are trying to
determine if certain formulas are satisfiable

– E.g., is a particular program point reachable?

(Figure out if the path condition is satisfiable)

– E.g., generate concrete inputs that execute the
same paths

• This is enabled by powerful SMT/SAT solvers

Conclusion

2013/3/19 Wei Li 31

• Acceptably trade-off accuracy for the benefits
of performance and resource consumption

• The State-of-the-art approaches

• To move on

– Static analysis

– Symbolic execution

Any Questions?

2013/3/19 Wei Li 32

• Acceptably trade-off accuracy for the benefits
of performance and resource consumption

• The State-of-the-art approaches

• To move on

– Static analysis

– Symbolic execution

Thanks !

2013/3/19 Wei Li 33

