Approximate Programming

Wel Li
2013. 3. 20

2013/3/19 Wei Li

Outline

Background

Why Approximate Computation
State-of-the-art Approaches
Problem

Conclusion

Background

e Exact computations with discrete logical
correctness requirements.

* Approximate computations aspire only to
produce an acceptably accurate
approximation to an exact output.

2013/3/19 Wei Li

Potential Applications

e Growth of data

— Information retrieval and analysis. Eg. Google search
— Data mining

* Stream processing
— Audio, video, image stream processing

* Machine Learning

— Recommender systems

2013/3/19 Wei Li 4

Why Approximate Computation

* Energy efficiency
— Mobile devices, servers.

* Trade-off accuracy for benefits such as
increased and reduced

* From a higher level to address the energy-
efficiency problem

2013/3/19 Wei Li

Why Today

* The development of energy-efficient hardware
 The prominence of the potential applications

* The step-by-step mature of the

2013/3/19 Wei Li 6

Three Levels of Techniques

e Algorithmic level
— Algorithm and application

e Architecture level

— Software / hardware interface, compiler

* Implementation level
— Hardware
— Redundancy to combat unreliability

2013/3/19 Wei Li

State-of-The-Art

* Algorithmic level

— Program transformation

 Architecture level

— Ener)

* Implementation level

— Architecture support for disciplined approximate
programming

2013/3/19 Wei Li

Algorithmic level

 Randomized accuracy-aware program
transformations for efficient approximate
computations

POPL, 2012

Accuracy-Aware Transformations

e Given a computation and a probabilistic

* Transformations change the computation so
that it operates more efficiently while
satisfying the specification.

2013/3/19 Wei Li 10

Two Classes of Transformations

* Substitution transformations replace one
implementation of a function node with
another implementation.

* Sampling transformations cause the
transformed reduction node to operate on a
randomly selected subset of its inputs

2013/3/19 Wei Li

11

Example

n

~3 (0—a) S

1=1

f(z) = x - sin(log(z))

Other Technologies

* Task skipping
* Loop perforation
— Skip instructions

e Substitution of multiple alternate
implementations

2013/3/19 Wei Li

13

Architecture level

* Ener): approximate data types for safe and
general low-power computation

PLDI, 2011

2013/3/19 Wei Li

14

Ener)

* Implement a type system on top of Java with
annotations for variables and objects

* To isolate parts of the program that must be
from those that can be

final long N

final long T

Approximation

and

* Memory: registers, caches, main memory
* Operation: +, -, Math.sqrt(), etc.

2013/3/19 Wei Li

16

Implementation level

* Architecture support for disciplined
approximate programming

ASPLOS, 2012

2013/3/19 Wei Li

17

A Dual-Voltage Microarchitecture

* Dual-voltage multiplexers

hardware for registers, ALU, etc. to
support approximate computation in a low
voltage.

2013/3/19 Wei Li 18

Problem

 The specification of the possibility of accuracy
— Controlled

* Redundancy in hardware design
* Neglect the

2013/3/19 Wei Li

19

Can we do better?

* Architecture level
— Hybrid voltage regulator
— Fuzzycall function

2013/3/19 Wei Li

20

AgileRegulator

HPCA 2012

* Hybrid scheme of on-chip and off-chip voltage
regulator.

. higher power delivery efficiency, but
IS not responsive

: has much shorter latency, relatively
lower power delivery efficiency and it dictates
significant amount of chip area.

Example

Calculate Pi with method
Call a function flip_coin() 1000 times

Return whether the coin is in the unit circle of
a square

Specify 0.1 error rate

Example

public static int coin()
final int R = 1;
double x = r'le:x:t[:h:jutzule|()
double y = nextDouble() ;

double d = sqgrt(pow(x - R, Z2) + pow(y - R, 2)) - R;
if (d == @) return 1;
return ©;

to calculate the error rate
of operation node

Example

The tree has an error rate of 0.1 / \
Each node has the same error rate sqrt R

The error rate of each subtree l

+
depends on the error rate of / \

its left subtree and right subtree POW pow

e=1-(1-el)*(1-e2) / \R / \R
AN

0,
Q0
(O
L
O
>
O
=
O,
s
(O
. -
. -
O
. .
. .
LL]

FPU error result

0.9

0.8

~
o

Qo
o

no<
o o

9}el J0JJo

"
o

0.2

0.1

06°'S
08'S
0L's
09°'S
0S's
or's
0¢'s
0c's
0T's
00's
06'v
08’y
oLV
09’y
0s'v
or'v
oev
ocy
oT'v
00'v
06'¢
08¢
0L’¢
09°¢
0s'€
(0783
(01383
0zt
oT'€
oo'e
06'¢
08¢
0L'¢
09'¢
0S¢
ov'¢c
oe'¢
o0c'e
0T'¢
00°¢
06T
08T
0L'T
091
0S'T
or't
0€T
0ct
0Tt
00T
060

Tclk (ns)

Functions containing loops ?

* Leverage the symbolic execution and static
program analysis

e program analysis is the process of
automatically analyzing the behavior of
computer programs.

2013/3/19 Wei Li 26

Static Analysis

e Static analysis allows us to reason about all
of a program

— Gives assurance about any execution, prior to
deployment

lets us scale and
model all possible runs

— But must be conservative

— Try to balance precision and scalability

Symbolic Execution

e generalize testing by using unknown
symbolic variables in evaluation

* Symbolic executor executes program,
tracking symbolic state.

 |f execution path depends on , We
fork symbolic executor

2013/3/19 Wei Li 28

Example

1. iInta=qa,b=B,c=Y;
2. /l symbolic
3.intx=0,y=0,z=0;
4. if (a) {

5. X=-2;

6. }

7. if(b<5){

8. if(la&&c) {y=1;}
9. zZ2=2;

10.}
11.assert(x+y+z!=3)

x=0, y=0, z=0
|

N
X=-2 B<5

| 7 N\
B<5 SOAY v

/N t/ \f -aa(B=5)
z=2 Vv y= -

‘l/ an(B=5) | |

an(B<5) e v

X =0A(B<5) Ay
\ ~an(B<5) Ay

path condition

Symbolic Execution

* During symbolic execution, we are trying to
determine if certain formulas are
— E.g., is a particular program point reachable?
(Figure out if the path condition is satisfiable)

— E.g., generate concrete inputs that execute the
same paths

* This is enabled by powerful SMT/SAT solvers

Conclusion

e Acceptably for the benefits
of performance and resource consumption

* The approaches

* To move on
— Static analysis
— Symbolic execution

2013/3/19 Wei Li 31

Any Questions?

e Acceptably for the benefits
of performance and resource consumption

* The approaches

* To move on
— Static analysis
— Symbolic execution

2013/3/19 Wei Li 32

Thanks |

111111111

