<div dir="ltr"><span style="color:rgb(0,0,0);font-family:Helvetica;font-size:medium">Hi adapters,</span><div style="color:rgb(0,0,0);font-family:Helvetica;font-size:medium"><br></div><div style="color:rgb(0,0,0);font-family:Helvetica;font-size:medium">
In tomorrow's seminar, I'll talk about causal relation extraction.</div><div style="color:rgb(0,0,0);font-family:Helvetica;font-size:medium"><br></div><div style="color:rgb(0,0,0);font-family:Helvetica;font-size:medium">
Causal relation extraction is an important task in many natural language processing applications, such as semantic parsing, decision prediction and Question Answering. I'll give you an outline of approaches and techniques in this area. I'll also show you an simple and specific framework which uses "causal association metric" to detect and extract the causations between noun phrases. </div>
<div style="color:rgb(0,0,0);font-family:Helvetica;font-size:medium"><br></div><div style="color:rgb(0,0,0);font-family:Helvetica;font-size:medium">PS: The location is SEIEE-03-528, and we'll begin at 4 PM. </div><div style="color:rgb(0,0,0);font-family:Helvetica;font-size:medium">
<br></div><div style="color:rgb(0,0,0);font-family:Helvetica;font-size:medium">Hope you enjoy it!</div><div style="color:rgb(0,0,0);font-family:Helvetica;font-size:medium"><br></div><div style="color:rgb(0,0,0);font-family:Helvetica;font-size:medium">
Cheers,</div><div style="color:rgb(0,0,0);font-family:Helvetica;font-size:medium">Jessie</div></div>