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Abstract

This paper studies the problem of auto-

matic detection of rumors on Sina Weibo,

the popular Chinese social network. Tra-

ditional feature-based approaches extract

features from the rumor message, its au-

thor, as well as the statistics of its re-

sponses to form a flat feature vector. This

ignores the propagation structure of the

messages and has not achieved very good

results. We propose a graph-kernel based

hybrid SVM classifier which captures the

high-order propagation patterns in addi-

tion to semantic features such as topics and

sentiments. The new model achieves out-

standing classification accuracy of 91.3%

on randomly selected Weibo dataset.

1 Introduction

Microblogging has taken over the Internet as one

of the most popular forms of online social net-

working. Many of the microblogs carry uncon-

firmed, false, or even malicious information, and

when they get spread around quickly, they become

rumors. There is no uniform definition of rumors

according to social scientists. In our work, a rumor

is a widely circulated statement about an object,

event or issue, which is inconsistent with facts or

known scientific evidences. By this definition, a

stand-alone microblog which has not been spread

around is not a rumor. Some “urban legends”

such as “Coke can dissolve a tooth overnight” are

considered rumors here because they are proven

to be false. But discussions about personality by

horoscope signs are not rumors because they can

not be easily refuted by existing sciences. Recent

past has witnessed many incidents of online ru-

mors causing massive public fear and social un-

rest. Consequently, automatic detection of ru-

mors on social network has gathered substantial

research interest.

While some researchers have worked previ-

ously on Twitter1 (see Section 5), this paper fo-

cuses on rumor detection for Sina Weibo2, for

which only limited research has been done (Yang

et al., 2012; Sun et al., 2013; Bao et al., 2013).

Automatic detection of rumors is generally a

hard problem, because without proper background

knowledge or concrete, official evidence against,

even human being cannot distinguish between the

truth and the rumor. Consider the following two

postings from Sina Weibo (translated from origi-

nal messages in Figure 1 and Figure 2):

• #Warning, please repost!# You should never crush a
rove beetle if it lands on your skin. Rove beetles contain
venom which kills people for sure! Tell your children
and friends that it’s better to just gently blow it away.
Doctors remind you that if you come across a rove bee-
tle, never smash it with hands! @UrbanExpressOffi-
cialWeibo @DLTV2LifeChannel @NewYouthWeb ...

• #Don’t crush it with hands!# Rove beetles have been
discovered in a school of Wenzhou. According to a doc-
tor, rove beetle doesn’t bite human beings, but once the
venom in its body comes in contact with human skin,
it can quickly cause blistering and skin infection espe-
cially if you scratch it. If you ever touch the venom of
rove beetle, please clean the skin with soap water or
4% baking soda solution and seek help at local hospi-
tal immediately.

Both messages quote the word of doctors, in-

clude vivid photos, and have comparable number

of reposts, which makes them hardly distinguish-

able. However, the first posting is a rumor while

the second is not. The truth is, venom of rove bee-

tle does not kill people but can result in skin in-

fection. Such knowledge is hard to come by for

1http://www.twitter.com
2http://www.weibo.com



脏猫吃臭鱼：全球发出警示！请传出去！隐翅虫，在你身上

时绝对不要打，她身上有毒液，接触到皮肤，就死定了！ 跟

你的孩子、朋友讲，万一身上有这虫，用嘴巴轻轻吹走就好。

绝对不要用手打。医生特别提醒，市民遇到毒隐翅

虫，千万不能拍打！@城市直通车官方微博 @丛熊

壮 @DLTV2生活频道 @海力网 @新青年网站

Figure 1: Rumor about Rove Beetle

温州都市报  【遇到这种虫子千万别用手拍】温州市区一学

校近日出现隐翅虫，附一医医生介绍，该虫不会蜇人，但是它

体内有毒液，打死后毒液流出来，会迅速导致人体皮肤起泡、

化脓，并且成片扩展，越抓越严重。不小心沾染上毒

隐翅虫的毒液，可用肥皂水或4%苏打溶液或10%氨水

反复清洗皮肤，并尽快到正规医院接受治疗。

Figure 2: Non-rumor about Rove Beetle

average people, which explains why some inno-

cent people repost rumors and inadvertently help

their spread. The detection task is even harder for

computers, because the two messages contain very

similar keywords such as “rove beetle”, “crush”,

“venom”, “skin” and “doctor”. Existing natural

language processing techniques can easily confuse

the two messages due to their similarities.

Much of the previous work on rumor detec-

tion focuses on extracting large number of lexical

and semantic features from the original message

and responses, and learn a model from labeled

data (Castillo et al., 2011; Qazvinian et al., 2011).

While they do consider the relationships among

a thread of messages, they limit themselves to a

flat summary of statistics about the message prop-

agation patterns, such as the total number of re-

posts, depths and degrees of the propagation tree,

etc. They do this for the convenience of construct-

ing feature vectors for machine learning. Such

approach is over-simplistic because it ignores the

internal graphical structure of the message trans-

mission as well as the differences among the users

along that structure. Our key insight is that most

rumors can be identified not only by what the ru-

mor says, but also by the way people respond to

it and who these people are. The propagation pat-

terns, combined with the topics of the thread and

the sentiment of the responses, can give strong in-

dications whether the original message is the truth

or fiction.

The main contributions of this paper are sum-

marized below:

• We model the pattern of message propagation

as a tree, which not only reflects the relation

among reposts and their authors but also the

temporal behavior and the sentiment of re-

posts. The tree can be simplified to adapt to

the space and time requirement of the system

(Section 3.1).

• We propose a random walk graph kernel to

model the similarity of propagation trees. Re-

sults suggest that the propagation of rumors

can be distinguished from non-rumors (Sec-

tion 3.2).

• We combine graph kernel and radial basis

function kernel, together with other novel

features to build a hybrid SVM classifier

(Section 3.3 and Section 3.4). Our experi-

ments show the hybrid model achieves su-

perior classification accuracy of 91.3% vs.

those reported in previous work (Section 4).

2 Problem Definition

Sina Weibo is a social network in which a user can

follow some other users (called friends), and be

followed by some other users (called followers).

A follower receives messages posted by his or her

friends and can respond by reposting to the mes-

sages.

We model the Weibo data as a forest W of mes-

sage propagation trees. A propagation tree T =
〈V, E〉 is akin to a message thread on forums or

bulletin boards. Each node m in V represents a

text message posted on Weibo which contains 140

Chinese or Latin characters. m is associated with

meta data 〈u, t, c, i〉, where u is the creator of

the message, t is the time stamp of the message,

c is the type of client from which the message is

sent (e.g., web, mobile, etc.), and i is the set of

optional images which are posted along with the

text. The user information u contains additional

attributes of the user such as gender, number of

friends and followers, number of messages posted

in the past, last time of post, etc. The root node

of a tree is called “original message”, while all the

other nodes in the tree are called “reposts”, as they

are the responses to either the original message or

other reposts. If there is a directed edge from m1

to m2, then m2 is a response to m1. For example,

the following is the initial part of a thread where

m1 is the original message, and “//@user1” means

a response to user1.

- m1 (user1): When a rove beetle is on your skin, don’t
crush it or your skin will fester.

- m2 (user2): Really? I never saw it before! //@user1



- m3 (user3): Thanks for the warning. //@user1

- m4 (user4): That sounds awful! What is rove beetle?
//@user2

- m5 (user5): It’s true. I’ve been bitten once. //@user2

Figure 3 illustrates the corresponding propagation

tree.

m1

m2 m3

m4 m5

Figure 3: A Partial Propagation Tree

In this paper, rumors and non-rumors only refer

to the original Weibo messages and not reposts.

An original message is either a rumor or a non-

rumor. Our problem is, given a message propaga-

tion tree T =〈V, E〉 as well as the meta data asso-

ciated with V , return whether root(T ) is a rumor

or not.

3 Approach

Our general approach is based on an SVM clas-

sifier using a hybrid kernel function which com-

bines a novel random walk graph kernel and a nor-

mal radial basis function (RBF)(Buhmann, 2003).

The graph kernel assesses the similarity between

different propagation trees while the RBF kernel

computes the distance between two vectors of both

traditional and high level semantic features. In this

section, we will first introduce the labeled propa-

gation tree structure as well as the random walk

kernel, then present 8 new features used in the

RBF kernel, and finally show how to combined the

two kernels into a hybrid SVM kernel.

3.1 Propagation tree

For the purpose of the random walk graph ker-

nel, we enrich the propagation tree in Figure 3

by adding additional information which represents

the type of user of each message and the opin-

ion and sentiment toward the original message.

The resulting propagation tree3 will be used in the

graph kernel computation.

3Note that this data structure contains only part of infor-
mation contained in the message propagation tree model in
Section 2. The remaining information will be used in the
RBF kernel.

We divide the users into two types: opinion

leaders and normal users. Opinion leaders are

those influential users whose opinions dominate

their followers(Bodendorf and Kaiser, 2009). A

user is considered an opinion leader if

# of followers

# of friends
> α (1)

where α > 1 and # of followers ≥ 1000. We thus

label each node of the tree as p if it comes from an

opinion leader and n otherwise.

We label the edge from mi to mj , called ej
4,

with a triple vj = (θ(s), θ(d), θ(t)), where s is

approval score of mj which indicate approval or

agreement, while d is the doubt score of mj which

indicate doubts and suspicion, and t is the overall

sentiment score in mj . We defer the computation

of s, d and t to Section 3.3. θ is a damping function

defined by

θ(x) = 2−ρtx,

where t is the time stamp difference in days be-

tween the original message and mj , and ρ is a pa-

rameter between 0 and 1. The shorter the time

period, the more intense the response is. Figure

4 shows such a labeled propagation tree in which

all reposts are sent in the same day as the origi-

nal message. Once the triple is extracted from the

message, message id mi can be removed from the

nodes for simplicity.

p

p n

n n

(0,1,-1) (0,0,0)

(1,0,1)(0,0,-1)

Figure 4: Example of Labeled Propagation Tree

Our intuition is that patterns can be discovered

from the labeled propagation tree which helps dis-

tinguish rumors from non-rumors. For example,

Figure 5 compares the partial labeled trees rooted

from the two messages about rove beetles in Fig-

ure 1 and Figure 2. Despite the lexical similar-

ity of the two original messages, the rumor (a) is

reposted and supported by many opinion leaders

at first before normal users take over the propaga-

tion; conversely the non-rumor (b) is initially re-

posted by a majority of normal users. This shows

4Since the parent of mj is unique, ej uniquely identifies
the edge between mj and its parent.



that the influence of multiple opinion leaders can

quickly create a “hype” which is followed by or-

dinary users.

p

p

(1.2,0,-1)

n

(a)

n

(-1,0,-2.5)

p

(1,0,1)

p

(1,0,1)

n

(0.5,0,-1)

n n n

(1,0,-1.5) (1,0,0.5) (0,-1,1) (-1,0,0)

p

n

(1,0,-0.5)

n

p

(1,0,-1)

n

(1,0,-1)

n

(0.5,0,1)

n n n

(0.5,0,1) (1,0,-1.5) (1.2,0,1) (1,0,-1)

(b)

Figure 5: Tree of Rumor and non-Rumor

In a social network with 50 million active users,

a popular message can be reposted thousands of

times and the propagation tree thus gets extremely

large. To reduce the computation complexity of

graph kernel function, we develop the following

rules to simplify a tree by lumping adjacent nor-

mal user nodes together to form one super node,

and thus reduce Figure 5(b) to Figure 6:

1. If mi is the parent of mj , and both are labeled

as n, then mi, mj merge into one node mij

whose parent is the parent of mi and whose

children are the children of mi or mj ;

2. If mi is sibling of mj and both are labeled

as n then mi,mj merge into one node mij ,

whose parent is the parent of mi and mj , and

whose children are the children of mi or mj ;

3. The merged node mij has label n and the la-

bel of incoming edge eij is vij = vi + vj ;

4. Do not merge the root with any other nodes;

5. Repeat the above rules until no pair of nodes

can be merged;

6. For each super node, normalize the vector

on incoming edge by the number of ordinary

nodes merged into this super node.

p

n p

(0.8,0,-0.2) (1,0,-1)

n

(1.1,0,0)

Figure 6: Simplified Propagation Tree

3.2 Random walk graph kernel

To classify different propagation trees by SVM,

we need to calculate the similarity between trees.

There are several tree kernel functions that cal-

culate the similarity of trees based on the sub-

set tree (SST)(Collins and Duffy, 2002) or sub-

tree (ST)(Vishwanathan and Smola, 2002). While

these kernels prove to be useful in natural lan-

guage processing(Moschitti, 2006), they can not

be used for our problem because they consider two

nodes are similar only when they have the same

number of children. Whereas in this paper, if mi

is reposted a times and mj is reposted b times we

would like to consider them similar to some ex-

tent.

Instead of tree kernel, we use a random walk

graph kernel (Gärtner et al., 2003) to calculate

the similarity of trees. Because the labels of

edges in propagation tree are not discrete values

but continuous vectors, we modified original ran-

dom walk kernel so that the kernel is applicable to

graphs with continuously labeled edges(Neuhaus

and Bunke, 2006).

Given two trees T = (V,E) and T ′ = (V ′, E′),
we first calculate the direct product graph of two

trees. The direct product graph of two trees is

G× = (T × T ′) = (V×, E×), where

V× = {(v, v′) ∈ V × V ′ : label(v) = label(v′)}

E× = {((u, u′), (v, v′)) ∈ V 2
× :

(u, v) ∈ E ∧ (u′, v′) ∈ E′}

The adjacency matrix of the direct prod-

uct graph G× is A×, which is defined as

[A×](u,u′),(v,v′) = l, where

l =

{

k((u, u′), (v, v′)) if ((u, u′), (v, v′)) ∈ E×

0 otherwise

The kernel function k measuring the similarity of

nodes (u, u′) and (v, v′), which is given by

k((u, u′), (v, v′)) = kedge((u, v), (u
′, v′))

= e
−

‖v1−v2‖2

2σ2



where v1 is the vector label of e(u,v), v2 is the

vector label of e(u′,v′), and σ is a parameter.

Given the adjacency matrix A× and a weighting

parameter λ ≥ 0 we can define a random walk

kernel on T and T’ as

K×(T, T
′) =

|V×|
∑

i,j=1

[

∞
∑

n=0

λnAn
×

]

ij

= e
T (I − λA×)

−1
e

If λ < 1 and is sufficiently small then the sum will

converge.

Assuming T and T ′ contain n vertexes, then A×

is a n2×n2 matrix. Thus computing (I−λA×)
−1

directly requires O(n6) time, which is too slow. In

order to speed up, we compute the graph kernel in

two steps. First, we solve the linear system

(I − λA×)x = e

for x, then we compute etx. In the first step, we

use conjugate gradient (CG) method to solve the

linear system (Vishwanathan et al., 2006). CG

is very efficient to solve the system of equations

Mx = b if the matrix M is rank deficient. In our

work, the adjacency matrix is from the product of

two trees, which means the matrix is sparse, so the

CG solver can be sped up significantly (Wright

and Nocedal, 1999). To solve the linear system,

CG takes O(n4i) where i is the number of itera-

tions.

3.3 Features

We extract a total of 23 features from Sina Weibo

data to build a vector for RBF kernel. Some of

the features have been proposed previously (Yang

et al., 2012; Castillo et al., 2011; Qazvinian et al.,

2011) and shown to be effective. These features

are largely based on the basic characteristics of

the original message itself or its author. Besides,

we propose 8 new features in this paper, which

can boost the accuracy of classifier. We divide

these features into 3 categories: message-based

and user-based features which are extracted from

the original message and its author, and repost-

based features which are calculated from the set

of all reposts of an original message. Table 1 doc-

uments all 23 features and their brief descriptions.

Features marked with * are new features proposed

in this paper. Next we discuss the new features in

more detail.

Topic Type feature refers to the topic types of

the original message. We assume that the message

belongs to one or more topics. Since Sina Weibo

has an official classification of 18 topics5, we train

a Latent Dirichlet Allocation (LDA) (Blei et al.,

2003) model which returns an 18-topic distribu-

tion for message mi:

topic(mi) = (s1, . . . , s18)

where sj is the probability of mi belonging to

topic j.

Search Engine feature refers to the number

of results returned by web search engine when

searching for the original message and the key-

word “rumor”. Due to the limitation of query

length imposed by Google, we divide the message

into word sequences of qlmax characters 6 each.

Then each sequence qi is searched in Google by

querying “intext:qi intitle:rumor”. The final score

for the message is obtained by averaging the num-

bers for all queries.

User Type feature refers to the verified type

of author. Recently Sina Weibo not only classi-

fies users into verified and unverified, but catego-

rizes verified users into refined types. For exam-

ple, -1 means not verified, 0 means verified media

celebrities, 3 means verified official media, etc.

Avg Sentiment feature refers to the average

sentiment score of all reposts of an original mes-

sage. Each repost is first segmented into Chinese

words and has stop words removed. After that,

we calculate the sentiment score of each message

based on the sentiment lexicon of HowNet (Dong,

2007). The average sentiment score is

1

n

n
∑

i=1

NPi −NNi

|mi|

where NPi is the number of positive words and

NPi the number of negative words in mi, |mi|
is the number of words in mi, and n is the total

number of reposts for that message. Note that a

positive word can be negated by a preceding “not”

or similar words in Chinese and hence becomes

a negative word. Vice versa for negative words.

Avg doubt, Avg surprise and emoticon features

as well as the approval score s and doubt score d

in Section 3.1 are calculated similarly except the

lexicons used are specially for these categories.

5http://huati.weibo.com.
6qlmax is 32 for Google.



Table 1: Description of 23 Features

Category Feature Description

MESSAGE HAS MULTIMEDIA Whether the message includes pictures, videos or audios
SENTIMENT The average sentiment score of the message
HAS URL Whether the message contains URLs
TIME SPAN The time interval between posting time and registration time
CLIENT The type of software client used to post the original message
TOPIC TYPE∗ The topic type of the message based on LDA
SEARCH ENGINE∗ The number of search results returned by Google

USER IS VERIFIED Whether the author is verified by Sina Weibo
HAS DESCRIPTION Whether the author has personal description
GENDER The author’s gender: female or male
LOCATION Location where user was registered
NUM OF FOLLOWERS The number of people following the author at posting time
NUM OF FRIENDS The number of people the author is following at posting time
NUM OF POSTED MESSAGES The number of messages posted by the author at posting time
REGISTRATION TIME The time of author registration
USER TYPE∗ The type of author based on the verified information

REPOST NUM OF COMMENTS The number of comments on the original message
NUM OF REPOSTS The number of reposts from the original message
AVG SENTIMENT∗ The average score of sentiment based on lexicon
AVG DOUBT∗ The average score of doubting based on lexicon
AVG SURPRISE∗ The average score of surprising based on lexicon
AVG EMOTICON∗ The average score of emoticon
REPOST TIME SCORE∗ The score of reposts time

Repost Time feature is calculated from the

time difference in days between the original mes-

sage and the repost:

1

n

n
∑

i=1

2−(ti−t0)

where n is the total number of reposts, ti is the

time stamp of repost mi and to is the time stamp

of the original message. This feature represents

the timeliness of the responses.

3.4 Hybrid kernel

For traditional SVM, input data is represented as

{Xi, yi} where Xi is the feature vector. In this

work, we use {Xi, yi} to represent an original

message mi. Xi has 23 dimensions and yi is the

binary class label of rumor or non-rumor. The

RBF kernel for this binary classifier is

K(Xi,Xj) =
〈

φ(Xi) · φ(Xj)
〉

where φ denotes the feature map from an input

space to the high dimensional space associated

with the kernel function.

Moreover, every original message mi is asso-

ciated with a propagation tree Ti. In section 3.2,

we define the random walk kernel to calculate the

similarity of two trees

K×(T, T
′) = e

T (I − λA×)
−1

e

where A× is the adjacency matrix of direct prod-

uct of T and T ′. In order to normalize the ker-

nel function, we divide K×(T, T
′) by nn′ where

n and n′ are the numbers of nodes in T and T ′:

K(T, T ′) =
1

nn′
K×(T, T

′)

Therefore, the kernel function of message mi

and mj can be defined as

K(mi,mj) = βK(Ti, Tj) + (1− β)K(Xi,Xj)

where 0 < β < 1, and determines of the relative

weight of random walk kernel versus the feature

vector kernel. In the following experiments, we

use an SVM classifier based on this hybrid kernel.

4 Evaluation

The evaluation of the hybrid SVM classifier is

composed of 4 phases: collection of Weibo data

and annotation of the original messages; tuning

parameters of the SVM model; evaluation of dif-

ferent features; and finally comparison with com-

peting methods on end-to-end results.

4.1 Dataset

We collect a set of known rumors from

Sina community management center (http:

//service.account.weibo.com), which

deals with reporting of issues including various



misinformation which we regard as certified ru-

mors. There are 11466 reported rumors between

2012/05/28 and 2014/04/11. Out of these, we keep

rumors that have at least 100 reposts which leaves

us 2601 rumors along with all their reposts up to

2014/04/11. We also randomly select 5000 other

Weibo original messages and their reposts from

Sina Weibo API. We manually filtered out mes-

sages with fewer than 100 reposts as well as ru-

mors to form a set of 2536 non-rumors. Each mes-

sage or repost contains links to the author profile

information such as age, gender, number of fol-

lowers and friends which we also crawled using

the Weibo API.

At the end of this phase, our labeled data set

consists of 2601 rumors, 2536 non-rumors7 and

about 4 millions users involved in these messages.

Of these 500 rumors and 500 non-rumors (called

small data set) are used for SVM parameter tuning

while the rest (called big data set) are used for end-

to-end cross validation.

4.2 SVM parameter tuning

By Eq. (1), α controls the number of opinion lead-

ers in the tree and hence affects the final simpli-

fied tree and the calculation of the kernel function.

Here we analyze the impact of α on the size of the

product graph in the graph kernel as well as the

accuracy of the SVM (2σ2 = 3, ρ = 0.1) obtained

through 10-fold cross validation. The SVM classi-

fier is implemented based on LIBSVM(Chang and

Lin, 2011). To suppress the effects of the vector

kernel, we set β = 1 in this experiment. The re-

sults of experiment are shown in Figure 7.

200

400

600  Avg. graph size

0 100 200 300 400 500
0.70

0.75

0.80

 Accuracy

Figure 7: Average number of vertexes in product

graph and classification accuracy vs. α

Accuracy hits the maximum when α = 20. It

is also interesting to note that as α grows, the size

of the graph converges, which indicates that when

7The labeled data set of the original messages only
is available at http://adapt.seiee.sjtu.edu.cn/

˜kzhu/rumor/.

α is large, most ordinary users have been merged

into super nodes and there are only small number

of opinion leaders in the “long tail” who have ex-

tremely large fan base. In the following experi-

ments, we set α = 20.

Next we try to tune the best β value to bal-

ance the graph kernel and the RBF kernel. For

each value of β, we train a SVM classifier (γ =
2−11, cost = 213, 2σ2 = 3, ρ = 0.1, obtained

through 10-fold cross validation) and record its ac-

curacy. The results of experiment are shown in

Figure 8.

0.0 0.2 0.4 0.6 0.8 1.0
0.75

0.80

0.85

0.90

 Accuracy
 Rumor F1
 Non-rumor F1

Figure 8: Accuracy, F1 measure for rumors and

non-rumors vs. β

Results show when β = 0.6, the hybrid kernel

achieves the best accuracy and the combination of

the two kernels performs better than each individ-

ual kernel (two ends of the graphs). In the follow-

ing experiments, we set β = 0.6.

4.3 Feature selection

To investigate the effectiveness of our new fea-

tures, we train several SVM classifiers using dif-

ferent subset of the features. We also train a classi-

fier without graph kernel function to show its use-

fulness. The small data set (4137 messages) is di-

vided into training set and test set with a ratio of

2:1. For each subset of features, we train a SVM

classifier (γ = 2−11, cost = 213, 2σ2 = 3, ρ =
0.1) on the training set and test the classifier on

the test set. The results of experiment are shown

in Table 2. Here (-)X means whole set of features

except feature X, and ALL means all features with

hybrid kernel.

The results show that the inclusion of the graph

kernel is the deal changer here, improving the ac-

curacy by 0.056 which is the largest among all fea-

tures. This clearly indicates that the explicit repre-

sentation of propagation tree patterns better mod-

els the rumors and non-rumors. Results also sug-

gest that TOPIC TYPE is the most effective among

all ordinary features. This is because rumors tend



Table 2: Impact of features

Accuracy R F1 NR F1

(-)TOPIC TYPE 0.865 0.872 0.857

(-)SEARCH ENGINE 0.880 0.892 0.884

(-)USER TYPE 0.894 0.897 0.890

(-)AVG SENTIMENT
(-)AVG DOUBT 0.872 0.878 0.865
(-)AVG SURPRISE

(-)AVG EMOTICON 0.887 0.891 0.884

(-)REPOST TIME SCORE 0.892 0.896 0.888

(-)GRAPH KERNEL 0.848 0.849 0.846

ALL 0.904 0.907 0.900

to concentrate on a few sensitive topics, such as

missing persons or healthy issues. The features

about sentiments also have significant impact on

the result, which means people’s opinions, espe-

cially when they are doubtful or surprised, point

to possible rumors.

4.4 End-to-end comparison

We compare our hybrid SVM classifier (γ =
2−11, cost = 213, 2σ2 = 3, ρ = 0.1) with

two other state-of-the-art rumor detection algo-

rithms(Castillo et al., 2011; Yang et al., 2012).

Castillo’s J48 decision tree is implemented using

the 16 best reported features under WEKA; Yang’s

SVM classifier was implemented using all 19 re-

ported features except locations of the messages

which are not available in our data. Besides, we

also train a SVM classifier with only graph ker-

nel (β = 1) as baseline to evaluate the classifi-

cation performance of graph kernel (Graph). For

this comparison, we compute the accuracies, pre-

cisions, recalls and F1 measures by 3-fold cross

validation on the big data set.

Table 3: Comparison of different methods

Methods Hybrid Castillo Yang Graph

Accuracy 0.913 0.854 0.772 0.770
R precision 0.905 0.853 0.773 0.773
R recall 0.922 0.854 0.776 0.763
R F1 0.913 0.854 0.774 0.768
N precision 0.920 0.853 0.770 0.766
N recall 0.903 0.854 0.768 0.776
N F1 0.912 0.854 0.769 0.771

Table 3 shows the result. Overall, the table

demonstrates that our approach outperforms the

other competitions by large margins across all

measures. Besides, the graph kernel alone has a

comparable performance to the baseline of Yang.

These results indicate that propagation tree pattern

is a critically important high-order feature for dis-

tinguishing rumors from non-rumors.

5 Related Work

Previous works on rumor detection for microblog-

ging service (either on Twitter or Weibo) have

largely modeled the problem as a binary classifi-

cation problem. Hence the primary focus has been

feature selection. In the following, we will first

discuss the features explored in the literature, and

then compare various classification methods.

5.1 Features

We divide existing features for rumor detection

into 4 types.

Linguistic Features pertain to the microblog

message text (Qazvinian et al., 2011). They range

from simple features such as message length,

punctuations, letter case, whether URLs or hash-

tags are included (Ratkiewicz et al., 2010), types

of emoticons used and POS tags (Hassan et al.,

2010) to more advanced semantic features such as

sentiment scores (Castillo et al., 2011; Qazvinian

et al., 2011) and opinion words (Kwon et al.,

2013). Previous research (Yang et al., 2012; Kwon

et al., 2013) shows that not all these features are

effective for rumor detection. The most signifi-

cant features among them are emoticons, opinion

words and sentiment scores (positive or negative).

In this paper, we used all the effective features,

plus a topic model feature and a search engine fea-

ture (see Section 3.3). These new semantic fea-

tures were not previously attempted and they turn

out to be very useful.

User Features describe the characteristics of an

individual user. These include the time and loca-

tion of the account registration, gender and age

of the user, username and avatar (Morris et al.,

2012), whether this is a verified account, number

of friends, number of followers, the description

and the personal home page of the user, number

of messages post in the past, etc. (Castillo et al.,

2011) These features are associated with the orig-

inal message to be classified in this paper. Fur-

thermore, we utilize a more refined user type than

verification status.

Structural Features pertain to either the mes-

sage propagation tree or the user friendship net-

work. All existing works (Castillo et al., 2011;

Qazvinian et al., 2011; Mendoza et al., 2010) fo-

cus on the numeric summary of such graph struc-



tures, e.g., the total number of nodes (i.e., mes-

sages or users) in the graph, maximum or average

depth of the graph, the degree of the root and the

maximum or average degree of the graph. Most

of the works treat each node (either message or

user) equally and hence only derive such generic

statistics. Recently, some researchers (Jin et al.,

2013; Bao et al., 2013) adapted the epidemiolog-

ical models to rumor detection, and group users

into population compartments such as susceptible

(S), infected (I) and skeptic (Z), etc. Users transit

from one compartment to another as they choose

to or not to repost a topical message. Structural

features under these models are slightly more re-

fined as the they keep the counts for each com-

partment separately. Our approach adopts some

of these features but we advocate that the ac-

tual graph structure of the message propagation

is more explicit thus important than the summary

statistics. But since the graph can be very big, we

distinguish the messages posted by opinion lead-

ers or normal users and propose a way to simplify

the graph so it can be used efficiently in a graph

kernel.

Temporal Features look at the time stamps of

the messages and compare them with the time of

the original post or the time when the author was

first registered (Castillo et al., 2011). More ad-

vanced models use these times to detect sudden

spikes in the volume of responses or periodicity of

such spikes (Kwon et al., 2013). Researchers also

use time to calculate rates of population change

among the compartments in epidemiological mod-

els (Jin et al., 2013; Kwon et al., 2013). We use

the time between a repost and the original mes-

sage as a damping factor to indicate the strength

of the sentiments in the response. Thus responses

which are posted long after the original message

have little effect on rumor identification.

In addition to the above 4 types, there are also

miscellaneous features like type of software client

used to post a message, location from which a

message is posted, etc.

5.2 Classification Methods

Most of existing research uses common super-

vised learning approaches such as decision tree,

random forest, Bayes networks and support vec-

tor machine (SVM). Castillo et al. reported that

different methods produce comparable results but

decision tree is the best for 608 topics (equivalent

to our original messages), with a classification ac-

curacy of 89% under 3-fold cross validation. More

recently, Kwon et al. (Kwon et al., 2013) consid-

ered random forest to outperform other methods

with 11 features on 102 topics each with at least

60 tweets. Although they reported 90% accuracy

under 2-fold cross validation, their data set is rela-

tively small. Our paper proposes a hybrid SVM

classifier which combines a random walk graph

kernel with normal RBF kernel using 23 features

including 8 new features. Our experiments show

that its performance is superior against the state-

of-the-art methods and features used by Castillo et

al. and Yang et al.

Okazaki et al.(Okazaki et al., 2013) instead

used unsupervised approach for extracting false

information after the 2011 Japan earthquake and

tsunami. They designed a set of linguistic pat-

terns for correction or refutation statements, ex-

tracted the text passages that match the correction

patterns and clustered them into different topics.

At last, they selected a representative passage for

each topic as the rumor.

Finally, research that adapts epidemiological

models (Jin et al., 2013; Bao et al., 2013) to ru-

mor detection generally define ordinary differen-

tial equations (ODEs) on the rate of user popu-

lation changes and fit non-linear functions to the

data. By observation of the function curves of dif-

ferent population compartment, they then manu-

ally design a classification function to tell rumors

from non-rumors.

6 Conclusion

This paper studies the problem of automatically

detecting rumors on China’s popular microblog-

ging service, Sina Weibo. We develop a graph-

kernel-based SVM classifier which combines the

features from the topics of the original message,

the sentiments of the responses, the message prop-

agation patterns, and the profiles of the users who

transmit this message around. Our results show

that the repost pattern of rumor and non-rumor

is very different, which makes the random walk

graph kernel very useful in detecting rumors. The

combination of random walk kernel and RBF ker-

nel performs better than each of them alone, with

a superb accuracy of 0.913.
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