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ABSTRACT
Auditory scene recognition is the process of recognizing the con-
text of audio clips from a set of predefined class labels. In this
paper, we introduce a new event based scene recognition frame-
work. Different from traditional approaches which train statistical
models from samples of the same set of scenes, our framework
doesn’t require any such labeled training data. Instead, using a
comprehensive concept knowledge base, we are able to develop a
vocabulary of audible event terms and use them to query for shorter
audio samples of such primitive events from the web. The frame-
work then automatically mines the event-scene distribution from
large amount of online TV or movie transcripts. Combined with the
Gaussian mixture model learned from the event samples, this event-
scene probability model allows us to automatically infer the most
likely scene of any input audio. Despite that no training samples
of the original scenes are used, the framework achieves 10-scene
classification accuracy closely on par with the best-performing ma-
chine learning technique reported by the latest IEEE AASP scene
recognition challenge in 2013.
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1. INTRODUCTION
Auditory scene recognition (ASR) [39] is the problem of classify-
ing an audio sample into one of a set of predefined complex scenes,
each of which may comprise of multiple simple sound events. Ex-
amples of such scenes include “street”, “supermarket”, “restau-
rant”, “park”, etc. A “street” scene might include simple sound
events such as engine noises, car honking, sirens, people walking,
and traffic signal beeps.

ASR finds many applications in mobile devices, robotics, criminal
investigation and national security. For example, with ASR, a cell
phone can detect that it is in a meeting and automatically turn down
the volume; or plays appropriate music when in different environ-
ment to match the activity or mood of the user. Another example is

crime investigation. Law enforcement team can use ASR to recog-
nize the background context of audio recordings from wire-tapping,
phone conversations, and other sources. In the past, it takes hu-
man experts many hours to repeatedly sieve through many audio
recordings with ad hoc accuracy. ASR automates this process and
significantly improves the effeciency of crime solving.

ASR is an interesting problem because i) audio sensors are one
of the most inexpensive sensors to build and deploy and they are
already deployed in almost every smart phone; ii) these sensors as
well as conventional audio recording have created a large amount
of digitized audio information and much of this is readily available
online; iii) the amount of information in even high-quality audio
information is much smaller than images and videos and hence it
is easier to store and process; and iv) the past century has seen
remarkable progress in digital signal processing and there are many
mathematical tools for (pre)processing audio signals (either mono
or stereo). For these reasons, it appears that we have the necessary
ingredients for solving this important problem.

However, ASR still presents a few major challenges. First, even
to human beings, recognizing a scene from an audio clip is not an
easy task. Peltonen et al. [40] remarked that the best humans can
do for classifying into 25 different scenes is just 70%. Second, even
though a number of successful techniques have been developed for
speech recognition, these techniques cannot be directly applied to
auditory scene recognition, despite their similarities, because hu-
man speech is made up of limited number of phonemes as basic
units, whereas environmental scenes have much larger variations.
Thus, understanding and recognizing environmental audio scenes
is a much harder problem. Third, while it is well known that hu-
mans recognize scenes by detecting simple events [40, 24], it is still
difficult to separate the events from a mixture of signals or sources
[13]. Therefore, most machine learning based approaches do not
attempt to recognize the simple events in an input sample, but in-
stead train models of the scenes directly from samples. Such ap-
proaches have so far met limited success (with best accuracy close
to humans [19]) because a complex scene can have so many varia-
tions that large number of labeled training samples are required to
build an accurate model; but such training samples can be hard to
obtain.

In this paper, we adopt a big-data, knowledge driven approach in
which we derive knowledge about the relationships between a scene
and its constituent events from large text corpus and comprehensive
concept and word taxonomies. This allows us to building scene-
event mappings for virtually any environmental scenes without su-
pervised training. Then separately, we can train auditory detection



models for each primitive events such as car honks and dog barks,
from audio clips from the web. With these primitive models, we
will then be able to detect the probability distributions of events
in an input audio sample, and thus infer the likelihood of a partic-
ular scene according to the scene-event map. For this paper, we
focus our attention on mono audio samples, but techniques devel-
oped here can be readily adapted to stereo sounds.

The main contributions of our work are:

• This paper is first-of-its-kind research which combines text
mining with audio event detection into an unsupervised au-
ditory scene recognition framework that requires no human
intervention. Therefore it can be used to handle large number
of scenes and scenes for which very few audio samples are
available (Section 3).

• We leverage a large number of online movie and TV scripts
to train probabilistic models of common scenes based on au-
dible concepts. This approach can scale up to very complex
and unusual scenes. While we showcase this technique us-
ing movie and drama scripts, more scenes can be modeled
from other textual corpuses such as novels, news and even
the general web pages (Section 3.1 and Section 3.2).

• We propose a method to cluster audio event training data
where each cluster represents a particular type of that even,
e.g., a certain species of dog for the “dog” event, or a cer-
tain aspect of an event. The clustering approach effectively
removes noises in the training data and improves the quality
of the models for the primitive events (Section 3.3).

• Our ASR framework achieves average accuracy of 42% on
a 10-scene classification data set. This is on par with the
best performing method from AASP Challenge using train-
ing data of the scenes themselves (Section 5).

2. THE ASR PROBLEM
The input of the ASR problem is a digital audio clip A, and a set
of terms S that describe different auditory scenes, such as “street”,
“supermarket”, “train station”, etc. The output of the problem is a
classification label l ∈ S which best characterizes the context or
scene under which A was recorded. This is a typical multi-class
classification problem.

An audio clip in this paper is a single channel, monaural discrete
signal wave such as in Figure 1. Stereo sound can be merged into
mono sound and become input to our problem as well.

Figure 1: A waveform of an audio clip recorded in a toilet

Traditional machine learning approach to solving ASR is to first ob-
tain audio clip samples labeled with scenes from S, and then learn
statistical models from audio features extracted from the training

Table 1: Possible Audible Event Terms from Probase
Concepts Entities
sound barking dog, music, classical
noise siren, traffic, light
animal dog, cat, snake
sound effect chorus, gunshot, delay
musical instrument guitar, oboe, trumpet

samples. However, because auditory scenes can be complex and
come in large variety, large number of labeled samples are required
to train an accurate model. What’s more the clips are required to
be long enough to accommodate sufficient features, hence both the
training and storage costs are high. For uncommon scenes, accept-
able training samples are hard to obtain.

Previous research has shown that, human beings recognize auditory
scenes not only by global features but, more critically, by detecting
important events associated with the scene. For the “toilet” scene
in Figure 1, the distinctive audible events or objects that are often
detected by humans are “urine”, “running water” and “hand dryer.”
The advantage of recognizing auditory scenes by their constituent
events, is that these basic events usually has shorter durations thus
more training samples available, and are relatively easier to train.
The goal of this paper is to follow this exact intuition, and infer
auditory scenes without training samples of the scenes. The key
challenges would be i) detecting the sound events from long audio
inputs, and ii) relating basic sound events to the correct scene. We
do this by a hybrid technique that combines text mining with audio
signal modeling.

3. APPROACH
Our ASR framework can be roughly divided into two parts: the
text modeling and the audio modeling. In the text modeling part,
we seek to derive probability distribution of predefined auditory
scenes given a primitive audible event concepts. For example, the
distribution of event “car” may be

Pr(street|car) = 0.6

Pr(station|car) = 0.2

Pr(park|car) = 0.18

Pr(cafe|car) = 0.02

We obtain such probability distribution by first collecting a va-
cabulary of audible event concepts such as “car honk” and “en-
gine”, and then by mining the relationships between these concepts
and the scene terms from large volume of text corpus, in particu-
lar, movie and TV drama transcripts. In the audio modeling part,
we first download audio samples of all audible events from our
vacabulary and then train Gaussian Mixture Models (GMMs) for
each event using the corresponding samples. During the end-to-
end scene recognition phase, the input audio clip is segmented into
pieces, and passed to an inference engine, which infers the proba-
bility distribution on events for each segment. Finally, based on the
event-scene relations obtained in the text modeling part, the engine
determines the most likely scenes. Figure 2 shows an overview
of our system. Next, we describe the different components of our
framework.

3.1 Build a Vocabulary of Audible Concepts
We create the audible concept vocabulary by a bootstrapping itera-
tive process. Each iteration involves a “growing phase” which en-



Figure 2: The Auditory Scene Recognition Framework

large the current pool of audible concepts by including additional
terms from both an online sound search engine and a knowledge
base, and a “filtering phase” which removes some of the terms
which are deemed inaudible from the current pool, using the same
sound search engine. The iterations stop when no new terms can be
added after the filter phase. The final pool of concepts become the
vocabulary of audible events.

The knowledge base we use for this purpose is called Probase[44],
which is a probabilitic taxonomy of terms organized in hypernymy-
hyponymy (isA) relations1. Each isA pair (c, e)2 is associated with
a frequency which is the number of evidences that support this isA
relation in a large text corpus, and two probability scores known
as typicality, defined by P (e|c) and P (c|e), which are calculated
from the statistics of the occurrences of terms e and c in the corpus.

We start the bootstrapping process by creating an initial pool of
seed candidate event terms. These initial terms were the k most
typical hyponyms (by typicality P (e|c)) under the terms such as
“sound”, “noise”, “musical instruments”, etc. Table 1 gives the
some examples of these candidate audible events terms discovered
from Probase. One can see that not all of these terms are truly
audible events (those italicized terms in the table). We will remove
such noises in the later filtering phase.

In the growing phase, we enrich the current pool by adding related
terms from two sources. We first query a sound search engine for
each existing terms in the pool. The resulting clips for each query
(e.g., “hunt dog”) carry tags such as “labrador” and “puppy”. All
such terms which exist in Probase as entities (i.e., as e in an isA
pair) and are not already in the current pool are considered new
candidates. We further expand the set of new candidates by clus-
tering them under different super-concepts. During clustering, we
represent each new term as a vector if its super-concepts in Probase
and compute distance between any two by Cosine similarity. This

1Hypernymy relation, also known as concept-entity relation, is the
most important relation in Probase, but there are other relations as
well.
2Here c stands for a concept and e stands for an entity and the two
are related by isA relation: e isA c.

way, we could group different variants of dogs together under the
concept “dog”. Since these variants are probably audible, we de-
duce that other entities under “dog” are also audible, and therefore
add the most typical entities under “dog” which are not in the pool
as new candidate terms as well. Figure 3 illustrate this process.

Figure 3: Expansion using Probase

In the filtering phase, every new candidate term from this iteration
is searched in the sound search engine. We look at the information
of the returned audio clips for each term. All clips which are shorter
than 0.1 seconds or longer than 30 seconds are removed, because
these are usually not a single event by our experience. Finally we
filter out terms which have fewer than 10 resulting clips, and keep
the rest in our pool and go on to the next iteration.

3.2 Build Event-Scene Probability Model
This section decribes how to compute the conditional probability
P (scene|event), for the given n scenes in question and all terms
in the event vocabulary. We first extract fragments of text corre-
sponding to the input scenes from large number of TV drama or



movie transcripts, and then extract audible events from the text. Fi-
nally we compute the probability model between events and scenes.

3.2.1 Extraction of Scene Contexts
Because movies and TV dramas contain large number of scenes
which coincide with the audio scenes of interest, in this paper, we
choose to use these transcripts as our primary source to obtain the
event-scene relations. Table 2 shows a subset of dramas and movies
which were considered as data sources3.

Table 2: Selected Movies/TV Transcripts
Title Type Length
The Big Bang Theory TV 126 episodes
Friends TV 229 episodes
How I Met Your Mother TV 135 episodes
Prison Break TV 23 episodes
Lost TV 118 episodes
Sherlock TV 6 episodes
Family Guy TV 104 episodes
South Park TV 232 episodes
Arrested Development TV 22 episodes
Scrubs TV 150 episodes
Modern Family TV 84 episodes
House M.D. TV 177 episodes
Supernatural TV 167 episodes
The Vampire Diaries TV 82 episodes
Firefly TV 11 episodes
True Blood TV 34 episodes
Seinfeld TV 179 episodes
Wall-E Movie 97 minutes
V for Vendetta Movie 132 minutes
Twilight Movie 121 minutes
Toy Story Movie 81 minutes
Titanic Movie 194 minutes
Kung Fu Panda Movie 92 minutes
King-Kong Movie 187 minutes
I am Sam Movie 132 minutes
The Avengers Movie 142 minutes
Avatar Movie 162 minutes
2012 Movie 158 minutes
500 Days Of Summer Movie 95 minutes
E.T. Movie 115 minutes

... Elliott and Mike walk down the driveway.
They are on their way to school.
They discuss E.T., arguing about how smart he is.

[This is just a transition scene.]

EXT: STREET: DAY

Mike and Elliot walk towards a bus stop where a group of children are
waiting.
Mike’s friends torment Elliott about his "goblin." ...

Figure 4: A Snippet from the Transcript of Movie E.T.

The advantage of using drama transcripts here is that most of them
have clear indications of entering or leaving a scene such as in Fig-
ure 4. We can make use of such patterns to extract the text context
of a scene such as “street.” as well as its noun synonyms, e.g., “av-
enue” and “boulevard.”, from WordNet [33]. In addition, because
event terms that occur in human conversations are not necessarily

3Movie scripts were downloaded from http://www.imsdb.
com, while TV series transcripts were downloaded from http:
//simplyscripts.com/tv.html.

events that happen in that scene, we remove all conversations which
also have clear patterns from the context.

3.2.2 Extraction of Events from Contexts
Contexts extracted in Figure 4 may contain event terms such as
“walk”, “bus” and “children” that find exact match in our vocabu-
lary. The vocabulary also contains compound terms such as “open
door”, “ring bell” which may not find exact match in the context.
To extract as many events as possible from the context, besides ex-
act matches for terms in the vocabulary, we also parse the context
using a dependency parser, and pay special attention to the follow-
ing relations: direct object, indirect object, noun compound mod-
ifier, nominal subject and passive nominal subject. Each of these
relations relates either a noun and a verb, or between two nouns.
The reason we focus on these dependencies is that sound is gener-
ally made by a motion or action and its agent or recipient (single
verb or verb-noun cases) or some object (single noun or noun-noun
cases such as “coffee cup”) alone. A word pair (w1, w2) with the
above five relations from the context is considered an audible event,
if there is a compound event termw1w2 orw2w1 in the vocabulary.

3.2.3 Event-scene Distribution
Our problem is to classify an input audio clip into one of n pre-
defined scenes. The intuition is that humans recognize a scene
by its most important, and distinctive events. We model this by
P (scene|event). For example, if flushing the toilet is a very dis-
tinctive event for the scene “toilet”, then we expectPr(toilet|flush)
is significantly higher than Pr(other_scene|flush).

We compute the probability as

Pr(scene = s|event = e) =
TF (s, e)∑
s∈S TF (s, e)

, (1)

where s is a scene in the set of n input scenes S, e is an event in
the vocabulary, and TF (s, e) is the number of occurrences of e in
the context of scene s.

3.3 Train Models for Audible Events
Once we download audio samples (details in Section 4.3) for each
of the event terms in the vocabulary, we can train audio models for
each event.

3.3.1 Feature selection
To train audio models, first we need to find a good way (features)
to describe the audio data. We view an audio clip as a sequence
of logically overlapping frames, each comprised of fix number of
sample points, as in Figure 5. The amount of overlap is a parameter
of the model. A frame is the basic unit of feature extraction, in
either time or frequency domain.

Existing works[19, 4, 34, 46] reported that, in the frequency do-
main, the mel-frequency cepstrum coefficients (MFCC) feature is a
widely-used feature which is a cepstral representation of the audio
clip, i.e., a non-linear spectrum-of-a-spectrum. It is fairly robust
because it closely resembles the human auditory system’s response
to different frequency bands.

In the time domain, short-time energy is the energy measure of a
short segment of sound. It has been shown to be a simple and ef-
fective feature to distinguish active voice against silence in speech
processing[18].



Figure 5: Overlapping Audio Frames

Zero crossing rate (ZCR) is a temporal feature which measures the
rate at which the signal transits from positive to negative or back.
ZCR can be used to distinguish meaningful events from environ-
mental noise, since environmental noise usually has a larger ZCR.

In our work, we use short time energy to remove ambient noises
first. Then, we combine ZCR and MFCC as features, which will be
used in the audible events modeling next.

3.3.2 Event models
In this paper, every audible event in the vocabulary is modeled as
one or more GMMs. A GMM is a weighted sum of M Gaussian
density function, which is given by:

P (x|Θ) =

M−1∑
i=0

ci

D−1∏
d=0

1√
(2π)σi,d

e
− 1

2σ2
i,d

(xd−µi,d)2

, (2)

where x is a D-dimensional variable representing the feature vec-
tor, Θ is the parameters of GMM, including c, µ and σ. ci is the
weight of the ith mixture, with the following constraint:

M−1∑
i=0

ci = 1, (3)

while µi,d and σi,d are the mean and standard deviation of the di-
mension d of the ith mixture.

3.3.3 Model training
The audio samples downloaded for each event term in the vocabu-
lary, such as “dog” may sound very different, either because there
are various aspects of an event, or in the case of “dog”, simply
because there are different species – bull dogs certainly sound very
different from chihuahuas. To accurately models each event, in this
paper, we aim to derive multiple GMMs, each for a separate aspect
of an event.

Before we do the actual training, we first remove ambient noise
from the training clips. We compute the short time energy for each
frame of the sample:

E =
1

N

N−1∑
i=0

x2(i), (4)

where N is the number of sample points in a frame, and x(i) is the
value of ith sample point. We only retain the frames with energy
higher than average among all frames. The contiguous frames af-
ter the noise removal become segments within the event. We then

remove tiny segments which are shorter than 100ms, and further
split longer segments into 500ms-long pieces. We believe these
resulting segments may carry different aspects of the same event.

Next we put all remaining segments from all audio samples of the
same event together and cluster them. We train an interim GMM
for each segment and use KL divergence [29] as a distance measure
for clustering.

The GMM for each segment is trained by EM algorithm:

P (O|Θ) =

L−1∏
i=0

P (Oi|Θ). (5)

where Oi is the feature vector for frame i combining ZRC and
MFCC features, and L is the number of frames in the segment.
ZRC is calculated as:

Z =
1

2(N − 1)

N−2∑
i=0

(|sgn(x(i))− sgn(x(i+ 1))|), (6)

where

sgn(x) =

{
1 x ≥ 0
−1 x < 0

, (7)

and N and x(i) carry the same meaning as Equation (4).

KL divergence measures the difference between two probability
distributions:

KL(P ||Q) =

∫ +∞

−∞
ln(

P (x)

Q(x)
)P (x)dx, (8)

We estimate the integration in Equation (8) as follows to calculate
KL divergence between two segments A and B:

KL(A||B) =
1

n

L−1∑
i=0

(lnP (ai|ΘA)− lnP (bi|ΘB)), (9)

where L is the number of frames of in segment A and B, ai is the
ith frame of A, bi is the ith frame of B, and ΘA and ΘB are the
GMM parameters of segment A and B, respectively.

After clusters of segments are formed, we group the segments within
a cluster together and re-train a GMM using the features from the
combined segment for each cluster. As such, each event is asso-
ciated with one or more GMMs, each for a unique aspect of this
event.

3.4 Scene Inference
To classify a new audio clips into one of the scenes, we segment
the input clip in the same way as we did for training samples. For
each segment, we compute the posterior probability of a segment
segi given an even e as

P (segi|e) =
∑
ej∈e

P (segi|Θej ). (10)

where ej is an aspect of e. In order to reduce the complexity, we
only consider top K aspects for the event, for each segment. Then
the final score for a scene s is:

score(s) =
∑
i,e

(P (segi|e)× len(segi)× P (s|e)), (11)



where len(segi) is the length (number of frames) of segment i, and
P (s|e) is given by Equation (1). The scene with the highest score
is the most likely scene for the audio clip.

4. IMPLEMENTATION AND DISCUSSION
This section discusses a few implementation details which are nec-
essary for creating a prototype system and makes some additional
remarks about our approach.

4.1 Expansion of Audible Event Terms
In the growing phase of the vocabulary construction process, we
expand the candidate pool by collecting tags or filenames of the
returned results from the sound search engine. Our source of event
terms as well as audio clips come from the following sources:

• FreeSound: http://www.freesound.org

• SoundJax: http://soundjax.com

• FindSounds: http://www.findsounds.com

• MediaCollege: http://www.mediacollege.com

• SoundRangers: http://www.soundrangers.com

The tags or keywords obtained from these engines can be noisy.
We thus lemmatize the words and remove redundant words like
“... noise”, “... sound effects”, “sound of ...”, “... ambience”. For
example, we transform “the sound of barking dog” into “barking
dog”, “churr sound” into “churr”, before matching them in Probase.
The reason we require all these new terms to be Probase entities
because we hope to find their conceptual siblings in the taxonomy
to further expand the vocabulary.

We are conservative about adding siblings of an existing candidate
event into the pool. For example, if we already have “dog”, “cat”
and “donkey” in the pool, we may be able to deduce that “animal”
is their common super-concept by clustering. However, many enti-
ties under “animal”, such as “oyster” make virtually no sound. We
only admit entities of a concept c into the pool if the proportion of
entities in c that are already in the pool is larger than a threshold,
say 0.5.

Building the audible event vocabulary is one of the most critical
steps in this work. While Probase and the sound search engine
provide indications of whether a term is audible, they are not al-
ways reliable. Also, the current approach restricts the vocabulary
to terms which are in Probase, which means some audible event
terms might be excluded.

4.2 Collection of Text Contexts
When extracting contexts for scenes in transcripts, we used a stricter
approach that guarantees the text segment being extracted indeed
describes the scene, because we match the scene word or its syn-
onyms with open scene patterns in the scripts. This, however, can
lead to insufficient number of contexts and thus unreliable event-
scene distributions or biases. Another approach is to extract scene
texts which contains the scene word or its synonyms. We didn’t
implement our system this way because while it improves the cov-
erage, it brings about much more noise. The volume of our corpus
is not statistically large enough to reflect the true dependency be-
tween the scene words and associated audible event terms. This

statistical significance, however, may be achieved by mining the
relations between the two on much larger web corpus using for ex-
ample simple co-occurrences. This is a possible direction of future
work.

4.3 Training Models for Events
We query every terms in the vocabulary in a sound search engine.4

Because the engine does fuzzy matching, not all clips returned are
about the event searched. Therefore we only keep those clips whose
title contain the original query term or all of its contituent words,
after lemmatization. Note that We do not perform synonym match-
ing here because the terms in the vocabulary maybe synonyms but
each of them will be associated with a set of audio samples.

In the current set-up, models are trained for every audible event
term, even though they are similar to each other, like “guard dog”
and “police dog”. The training process can be lengthy despite that
no annotation is required. It appears that a balanced taxonomy of
sound effects could partially ameliorate the problem, and create
more balanced trained models. Similar attempts have been made
to create such taxonomies around WordNet for both sounds [7] and
images [16]. Nevertheless, one must be reminded that the audio
model training only needs to be done once for each audible event,
and the models can be reused for classifying into different set of
scenes.

4.4 HMM vs. GMM
Besides GMM, left-to-right Hidden Markov Model has also been
widely used in speech recognition, where each hidden state of the
HMM is a GMM. HMM is not a good choice for event detection
for these reasons:

• The quality of training samples for environmental sound is
generally not as good as training samples for speech recog-
nition.

• For a given event, for example, dog barking, the training
sample may repeated several dog barks. It is not easy to
break it up into a sequence of single dog barks. Although
we can model the event as a cyclic HMM, it does not per-
form well in practice.

• For some of audio events, interestingly, if we reverse the au-
dio sample and play backwards, it can still be recognized by
human beings. Thus, markov process is not effective in de-
scribing such audio events.

• HMM is a complex model, and can lead to overfitting when
we do not have enough training data for some events.

5. EVALUATION
We evaluate our ASR system by comparing it with the official base-
line system using GMM (called Base) and a best performer using
SVM (called Best) from the IEEE AASP scene classification chal-
lenge [11] on the accuracy of classifying up to 10 scenes. In addi-
tion, we show the most popular sound events detected by our sys-
tem for each of these scenes.

4We primarily use FreeSound.org as it provides better tags and the
quality of its clips are generally better.



5.1 Experiment Setup
Our dataset consists of audio samples of 10 scenes: bar, beach,
cafeteria, church, concert, office, park, street, toilet and train.
There are 10 training clips (for Base and Best) and 10 testing clips
for each scene.5 The duration of every training clip ranges from a
few seconds to a few minutes, while all the testing clips are trun-
cated to 20 seconds long. All clips are converted to WAVE form
with a single channel, 16 bits per sample point, 384kbps bit-rate.
We did not use the IEEE AASP data because those clips generally
do not contain detectable events even to the human ear. Instead they
carry global features which are good for traditional ASR modeling.
Moreover, the training and test data appear to be similar to each
other, giving extra advantage to Base and Best.

We set the frame size to 512 sample points (20ms) with 50% over-
lap to extract audio features. The MFCC feature are extracted using
open source code written by Klautau in 2001. The implementation
is based on [14, 41, 26, 8]. We combine ZCR, 12-dimensional
MFCC and its 1st- and 2nd-order differentials (37 dimensions in
total) to train our GMM models. The number of mixtures in GMM
is set to 32.

All experiments are conducted on an 4-core6 Intel Core i7 3.4GHz
desktop computer with 32GB memory, running Windows Server
2012.

5.2 Event Detection
Our audible event vocabulary contains 2326 terms. Total number of
contexts extracted from the script corpus for the 10 scenes is 4953.
Because not all these events are significant, to simplify training,
we only keep those events which occur sufficient number of times
(0.01% out of all event terms) in at least one of the 10 scenes in
our text corpus. As a result, 184 acceptable events were found the
in these 10 scenes in the corpus and these are used to build the
even-scene distribution.

Table 3 gives 5 most probable events detected for each of the scenes.
Most of the scenes successfully have their important events de-
tected in the test samples. However, some false positive events
present, such as “bark” which exists in many scenes. The reason is
“bark” is a very popular keyword on sound search engines which
return many diverse, noisy audio samples. Consequently, the model
for “bark” is relatively coarse and thus can be erroneously detected
almost everywhere. “Station” is also detected incorrectly at several
places. This is because “station” actually is more of a scene than
a single event, since it is represented by a global ambience with
noises, vague human speech and perhaps music in the backgound.
Such global features are present in public areas. “Urine” was not
detected in the “toilet” scene because our samples don’t have it.

5.3 Classification Accuracy
Table 4 compares the recognition accuracy for each audio scene
between Base, Best and two of our variants. Classification accuracy
is defined as

Accuracy =
Number of correct labels

Total number of labels

5These clips are obtained by querying the scene words on
FreeSound.org and are available at http://202.120.38.
146/~kzhu/audio/.
6All our programs are single-threaded, so only one core is utilized
at a time.

Table 3: Top 5 Detected Events per Scene
Scene Events
street traffic engine station bark subway
office bark dish bike backpack bathroom
beach sea water sand river shore
concert applause bark tv tunnel cello
cafeteria sea subway backpack dish engine
bar pub kid station bark angel
church bell chant match cracker ghost
train station tower bathtub carriage kid
toilet water pill devil dish bath
park traffic bark engine boat bus

Here “top 1” and “top 3” refer to the correct label found in most
probable scene or in the top 3 most probable scenes. We obtain an
average accuracy of 42% for “top 1” and 67% for “top 3” in our
experiment.
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Figure 6: Recognition Accuracy vs. Number of Classes to Rec-
ognize

We then investigate how the number of scene classes affects the
recognition accuracy. We re-run the training and testing phases for
our system for every combination of 2 classes, 4 classes, 6 classes
and 8 classes and calculate the average accuracy for each 4 cases
and plot a graph in Figure 6. As expected, the accuracy is almost
80% for 2-class recognition, and gradually decreases as the number
of classes goes up.

A common metric in visualizing the quality of N-way classification
method is the confusion matrix, which shows the number of times
a test sample is classified into each of the N classes. Ideally, high
numbers should be on the diagonal of the matrix. From this matrix,
We can see that some of scenes for which the events are correctly
detected (such as “beach”, “street” and “train”) are recognized with
very high accuracy, while other scenes such as office do not have
such good luck.

6. RELATED WORK
ASR and related problem has been extensively studied in the past.
Some researchers work on sound event detection/classification/recog-
nition, which focuses on some specific sound events, ignoring the
contexts or scenes that produce the events. Other researchers work
on recognizing the contexts or scenes, but most of them use one
model for recognizing the context without detecting the sound events
therein. Recently, there has been some new efforts to use a small set
of pre-defined event to infer the context [24], which partly inspires
this paper’s research.

6.1 Auditory Scene Recognition



Table 4: Recognition Accuracy for 10 Audio Scenes
bar beach cafeteria church concert office park street toilet train

Ours (top 1) 10% 100% 30% 40% 50% 0% 10% 30% 70% 80%
Ours (top 3) 30% 100% 70% 80% 80% 10% 50% 80% 90% 80%
Baseline 20% 40% 50% 40% 30% 10% 30% 60% 50% 30%
Best 60% 10% 40% 70% 60% 70% 10% 50% 40% 30%

Table 5: Confusion Matrix of 10 Scene Recognition
bar beach cafeteria church concert office park street toilet train

bar 1 1 2 0 2 0 0 2 0 2
beach 0 10 0 0 0 0 0 0 0 0
cafeteria 0 3 3 0 1 0 0 0 0 3
church 1 0 1 4 2 0 0 0 0 2
concert 1 0 1 0 5 0 0 0 0 3
office 0 1 4 0 2 0 1 0 1 1
park 1 2 2 1 1 0 1 0 0 2
street 0 0 2 0 1 0 0 3 0 4
toilet 0 1 1 1 0 0 0 0 7 0
train 0 0 0 1 0 0 0 0 1 8

Gaunard et al. [21] proposed an HMM-based environmental noise
recognition system. It use discrete HMM as model and linear pre-
diction cepstral coefficients (LPCCs) as features. It shows that the
system can achieve 95.3% correct rate, which outperforms human
listeners who only achieves 91.8% correct rate for classifying 5
types of environmental noise (car, truck, moped, aircraft, and train).

Peltonen et al. [39] studied the efficiency of different acoustic fea-
tures, models, and the effect of test sequence length. They pro-
posed two system using different features and models. One was
using band-energy ratio as features and trained by 1-NN classifier.
The other was using MFCC as features and trained by GMM. The
best recognition rate is around 68.4% for 26 different scenes.

Eronen et al. [19] investigated the feasibility of an audio-based
context recognition system. It showed that linear data-driven trans-
formations, i.e. Independent Component Analysis (ICA) and Lin-
ear Discriminant Analysis (LDA) could improve recognition accu-
racy slightly. Their system can achieve 58% accuracy for 24 com-
mon contexts. They also did some listening tests, and found that
human beings can achieve 69% accuracy on the same data set.

Chu et al. [10] performed an empirical feature analysis and use the
matching pursuit (MP) algorithm to obtain effective features from a
large feature set, including MFCC, LPCC, band energy ratio, zero-
crossing, energy, etc. The recognition rate of their system is 82.3%
over 14 audio contexts.

Weninger et al. [43] focus on animal vocalizations. They compared
left-to-right HMM, cyclic HMM, recurrent neural networks, and
SVM, and achieve up to 64.0% accuracy on a 5-class task, and
81.3% on a 2-class task.

One of the approaches to consider audio events in context infer-
ence is introduced by Cai et al. [4]. They proposed a flexible
framework to recognize 5 audio contexts, including excitement, hu-
mor, pursuit, fight and air-attack, using 10 predefined events. The
main technologies they used are HMM, Grammar Network, and
Bayesian network. Their system can achieve 91.7% accuracy for
event detection, and 82.4% accuracy for context inference.

Recently, another event-based audio context recognition is proposed

by Heittola et al. [24]. They use a histogram of audio events which
are detected by GMM/HMM presented in [32], where an accuracy
of 24% was obtained when classifying isolated sound events into
61 classes. After a histogram of audio events was built, context
recognition can be performed by using cosine distance to calculate
the similarity. Their system can obtain 89% accuracy when rec-
ognizing 10 audio contexts. However, they used predefined set of
events, which is equivalent to collecting all the relevant events and
their training samples in our paper, only manually!

Giannoulis et al. [23] described a public evaluation challenge7 on
acoustic scene classification and detection of sound events within
a scene. They provided an overview of systems submitted to the
challenge and summarized the results. The challenge is to clas-
sify audio clips into 10 different scenes. Chum et al. [11] pro-
posed a GMM and HMM based system, using magnitude response,
loudness, spectral sparsity and temporal sparsity as features. They
achieved accuracy of 72%. Elizalde et al. [17] proposed an i-vector
system[15, 3], together with MFCC features, which can achieve an
accuracy of 65.8%. Geiger et al. [22] introduced a SVM based
system, using many low-level features, such as MFCC, band en-
ergy, etc. An accuracy of 73% is achieved by their system using
majority voting scheme. Krijnders et al. [28] proposed a SVM
based system using tonalness as feature, achieved 53% accuracy.
Li et al. [31] developed a treebagger classifier using MFCC and
other spectral features. It can achieve 72% accuracy. Nam et al.
[35] introduced the feature learning approach to audio scene classi-
fication. They use RBM[30]and perform selective max-pooling to
form scene-level feature vector for SVM training. Their system can
achieve 75% accuracy. Nogueira et al. [36] proposed a SVM based
system using spectral, temporal and spatial features, achieve accu-
racy of 69%. Olivetti [37] proposed two approaches, dissimilarity
representation and normalized compression distance, to embed au-
dio into a vectorial feature space. A random forest[2] algorithm
was used for classification, and the system can achieve accuracy of
80%. Patil et al. [38] proposed a framework that provided a analy-
sis of the spectro-temporal modulations in acoustic signal, and built
a SVM classifier, which can achieve accuracy of 73%. Rakotoma-
monjy et al. [1] used a constant Q transform in feature extraction.
Their system can achieve 75% accuracy by applying a SVM classi-

7http://c4dm.eecs.qmul.ac.uk/sceneseventschallenge/



fier. Roma et al. [42] proposed a SVM based classifier with MFCC
feature and RQA[45] features. It can achieve accuracy of 71%.

6.2 Sound Event Detection
Sound event detection is to detect some pre-defined sound events
in a long audio sample. Usually, a large number of labeled audio
samples of events are use as training data.

Heittola et al. [25] proposed a context-based sound event detec-
tion system. They used the ground truth of the context of audio to
help them detect the sound events in the audio. They modeled the
context using GMM, and the sound events were modeled as 3-state
left-to-right HMMs. It is shown that there system can benefit from
the context information.

Some work focus on specific sounds, such as gunshots[12], birds[20],
etc. Some work focus on context-based sound event detection,
which only consider about specific sounds, like kitchen[27], bath-
room[9], etc. Their work usually train GMM, HMM or SVM mod-
els as classifiers.

We use sound event detection as a part of our work. Instead of
directly training models from audio samples, we break the audio
into several short segments. Then we cluster those segments and
train a GMM for each cluster.

6.3 Audio Processing Using Knowledge
Cano and Koppenberger[5] proposed a solution to automate audio
annotation. Sound samples are gathered and are tagged with unam-
biguous concepts in WordNet. A 20-nearest-neighbor classifier is
trained to annotate more audio samples using normalized Manhat-
tan distance. Based on 15 sound effects, an annotation test on 261
audio files showed an accuracy of 91%.

Based on this trial, the authors further built sound effect taxon-
omy[7] and processed audio retrievals [6] on it. For the taxnomy[7],
they implemented a classification scheme for sound effect manage-
ment on top of WordNet, which solves the ambiguity inherent to
natural language. This system both regulates the labels for anno-
tation, and leads to a robust framework for sound information re-
trieval. Futher, the researchers presented a sound effect retrieval
system [6] that incorporates content-based audio techniques and
semantic knowledge provided by WordNet.

7. CONCLUSION
In this paper, we present a novel hybrid framework which combines
text mining and audio signal processing for recognizing auditory
scene. This framework is unsupervised in the sense that no manual
labeling of the audio training data is needed. Instead of training
audio scene data directly, like most existing work does, we train
GMMs on primitive audible events which are downloaded from
online sound search engines. Then the framework leverages large
text corpus of online TV and movie transcripts to mine statistical
models between a scene and its constituent events. Experiments
for 10-scene classification showed promising results of 42% accu-
racy which is higher than the baseline and state-of-the-art methods
reported at recent IEEE AASP scene recognition challenge.
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[34] D. Mitrović, M. Zeppelzauer, and C. Breiteneder. Features
for content-based audio retrieval. Advances in computers,
78:71–150, 2010.

[35] J. Nam, Z. Hyung, and K. Lee. Acoustic scene classification
using sparse feature learning and selective max-pooling by
event detection.

[36] W. Nogueira, G. Roma, and P. Herrera. Sound scene

identification based on mfcc, binaural features and a support
vector machine classifier.

[37] E. Olivetti. The wonders of the normalized compression
dissimilarity representation.

[38] K. Patil and M. Elhilali. Multiresolution auditory
representations for scene classification.

[39] V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi, and
T. Sorsa. Computational auditory scene recognition. In
Acoustics, Speech, and Signal Processing (ICASSP), IEEE
International Conference on, pages 1941–1944, 2001.

[40] V. T. Peltonen, A. J. Eronen, M. P. Parviainen, and A. P.
Klapuri. Recognition of everyday auditory scenes:
potentials, latencies and cues. PREPRINTS-AUDIO
ENGINEERING SOCIETY, 2001.

[41] J. Picone. Signal modeling techniques in speech recognition.
Proceedings of the IEEE, 81(9):1215–1247, Sep 1993.

[42] G. Roma, W. Nogueira, P. Herrera, and R. de Boronat.
Recurrence quantification analysis features for auditory
scene classification.

[43] F. Weninger and B. Schuller. Audio recognition in the wild:
Static and dynamic classification on a real-world database of
animal vocalizations. In Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference
on, pages 337–340, May 2011.

[44] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A
probabilistic taxonomy for text understanding. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 481–492. ACM,
2012.

[45] J. P. Zbilut and C. L. Webber. Recurrence quantification
analysis. Wiley encyclopedia of biomedical engineering,
2006.

[46] Z. Zeng, X. Li, X. Ma, and Q. Ji. Adaptive context
recognition based on audio signal. In Pattern Recognition,
2008. ICPR 2008. 19th International Conference on, pages
1–4, Dec 2008.


