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Some NLP Problems
❖ Information Extraction

• Named entities recognition (NER)

• Relationships between entities

❖ Finding Linguistic Structure

• Part-of-speech tagging

• Parsing

❖ Machine Translation



Named Entity Recognition

❖ INPUT: 

• Jim bought 300 shares of Alibaba Group Holding Limited in 
September 2014.

❖ OUTPUT:

•  Jim(PER) bought 300 shares of Alibaba(ORG) Group(ORG) 
Holding(ORG) Limited(ORG) in September 2014.

❖ Named Entity Recognition(NER) is a subtask of information 
extraction that seeks to locate and classify elements in text into 
pre-defined categories: the names of PERSONs, 
ORGANIZATIONs and LOCATIONs.



Application

❖ More accurate Internet search engines

❖ General document organization

❖ Automatic indexing of books

❖ Preprocessing step to simplify tasks

❖ For more complex information extraction tasks



Problems in NE Task Definition
❖ Category definitions are intuitively quite clear, but there 

are many grey areas.

❖ Many of these grey area are caused by metonymy.

❖ Organization vs. Location : “England won the World 
Cup.” vs. “The World Cup took place in England.”

❖ Location vs. Person: “Washington is a state of the 
United States. ” vs. “Washington was the first President 
of the United States.”
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Notation

❖ An input sequence:  X= (x1, ..., xn)

❖ The output sequence :  Y = (y1, ..., yn)

❖ Typical goal: Given X, predict Y,which satisfies:

❖                                                 OR

❖ INPUT:  Jim bought 300 shares of Alibaba Group Holding Limited.

❖ OUTPUT:   PER    O        O      O      O  ORG     ORG      ORG     ORG



Current Tools

❖ The current tools:  machine learning algorithms

training data
machine 
learning 
model

test data

❖ Training and Testing:

• A multi-class classification problem: Logistic Regression, SVM



Models

Maximum 
Entropy

Hidden 
Markov 
Models

Maximum 
Entropy 
Markov 
Models

Conditional 
Random    

Field

• Label independently 

• Bias Label Problem



First Solution: Maximum Entropy Classifier

Washington(PER)

p(PER) = 0.6

p(Washington = PER) = ?

Washington(LOC)

Victoria(LOC)

Victoria(PER)

Intuition:
p(Washington = PER) = 0.3



First Solution: MaxEnt Classifier

❖ Principle:

❖ model all that is known and assume nothing about 
that which is unknown

❖ Definition: 

❖ Entropy



First Solution: Maximum Entropy Classifier

❖ Model:

❖ Conditional model p(Y|X). 

❖ Dependency:

❖ The tag probabilities depend only on the current word

❖ Probability:

❖ Berger, A. L., Pietra, Della, S. A., & Pietra, Della, V. J. (1996). A Maximum Entropy Approach to Natural Language 
Processing.

y1 y2 yn

x1 x2 xn

……

……



Indicator / Feature Function
❖ Feature functions f(x,y):

❖ Constraints:



First Solution: MaxEnt Classifier
❖ Among the models p agree with the constraints, the 

maximum entropy philosophy dictates that we select the 
distribution which is most uniform.

❖ A mathematical measure of the uniformity of a 
conditional distribution p(y|x)



First Solution: MaxEnt Classifier
❖ The constrained optimization problem is to:

❖  we seek to maximize              subject to the following constraints:Lagrange

 Multiplier



First Solution: MaxEnt Classifier

❖ There is a unique, exponential family distribution that 
meets these criteria.

❖          where



Weaknesses

• It makes Output Labels at each position 
independently! 



Second Solution: Hidden Markov Model
In simpler Markov models

(like a Markov chain) 

In Hidden Markov models 



Second Solution: HMM
y1 y2 yn

x1 x2 xn

……

……

❖ Model:

❖ Assign a joint probability p(X,Y) to 

       paired observation and label sequences

❖ The parameters trained to 

        maximize the joint likelihood of train examples

❖ Dependency:

❖ The tag probabilities depend on the current word and the previous tag

❖ Probability: 



Second Solution: HMM

❖ Model:

❖ Optimal Labeling Computation: 

❖ Efficient dynamic programming (DP) algorithms that 
solve these problems are the Forward, Viterbi, and 
Baum-Welch algorithms respectively. 



Weaknesses
❖ HMM – Tag and observed word both depend only on 

previous tag

❖ Need to account for dependency of tag on observed 
word

❖ Need to extract “features” from word & use 

❖ Lack of many overlapping features

❖ the set of all possible observations is not reasonably 
enumerable.



Third Solution: Maximum Entropy Markov Model

y1 y2 yn

x1 x2 xn

……

……

❖ Model:
❖ Defines a discriminative process. 

❖ Conditional model p(Y|X). 

❖ Dependency:

❖ The tag probabilities depend on the current word and the previous 
tag 

❖ Probability:

❖ Mccallum, A., Freitag, D., & Pereira, F. (2001). Maximum Entropy Markov Models for Information 
Extraction and Segmentation.



Third Solution: MEMM
❖ Model:

where 

❖ Parameter Estimation:

❖ Generalized Iterative Scaling algorithm

❖ Optimal Labeling Computation: 

❖ Viterbi algorithm to find the highest probability tag sequence



Weaknesses
❖ Bias Label Problem

p(1-1-1-1) = 0.4*0.45*0.5=0.09

p(2-2-2-2) = 0.2*0.3*0.3=0.018

p(1-2-1-2) = 0.6*0.2*0.5=0.06

p(1-1-2-2) = 0.4*0.55*0.3=0.066
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Fourth Solution: Conditional Random Field 

❖ Model:

• Conditionally-trained

• Undirected graphical 
model

❖ Probability:

y1 y2 yn

x1 x2 xn

……

……

A standard linear-chain CRF structure

where there are M feature functions



Fourth Solution: CRF 
❖ Model:

❖ Parameter Estimation:

❖ Improved Iterative Scaling algorithm

❖ Optimal Labeling Computation: 

❖ Viterbi algorithm to find the highest probability tag 
sequence



Weakness

❖ High complexity

❖ Expensive training cost



Current Status of NER
❖ Quote from Wikipedia

• “State-of-the-art NER systems produce near-human 
performance. For example, the best system entering 
MUC-7 scored 93.39% of f-measure while human 
annotators scored 97.60% and 96.95%”.

Truth: The NER problem is still not solved. Why? 

❖ Wow, that is so cool! At the end, we finally solved something! 
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The problem:domain over-fitting 
❖ The issues of supervised machine learning algorithms:

• Need Labeled Data 

❖ What people have done for NER: Labeled large amount of data 
on news corpus.

❖ However, it is still not enough. The Web contains all kind of data

• Blogs, Novels, Biomedical Documents, . . . 

• Many domains! 

❖ We might do a good job on news domain, but not on other 
domains... 



Domain Adaptation
❖ Many NLP tasks are cast into classification problems 

❖ Lack of training data in new domains

❖ Domain overfitting 



Another Example: Visual data

From the movie “Transcendence”

Training and Learning

• people, faces
• chair
• tables
• monitor
• book
• scene: office, lab
• action: sitting, talking



Train…Learn…Test

From the movie “Transcendence”

• people, faces
• chair
• tables
• monitor
• book
• scene: office, lab
• action: sitting, talking



Real Scenarios



Domain Adaptation v.sTransfer Learning

Transfer Learning - Across Categories

Domain Adaptation - Same Categories



Terminology

❖ Source Domain: the domain we know a lot

❖ Target Domain: the domain we do not know (or know 
very little) I we want to evaluate on target domain 



Possible Solution?
1. Don’t care (The current solution) 

❖ Bad performance 

2. Annotate more data 

❖ Annotate data for the new domain?  Need create data for each new domain 

3. Build a generic corpus? 

❖ Wikipedia

❖ Good, still not cover all possible solutions. For example, NER for a company.

❖ Not sure about the performance 

4. Special design algorithms (for each domain) 

5. Good, but need to redesign for every domain

6. Our Focus: General purpose adaptation algorithms 



Feature-based approaches 

Hal Daume ́ III  (2007). Frustratingly Easy Domain Adaptation. In Proc. of ACL



Feature Augmentation approaches  

❖ Idea: take each original feature and make three versions of it 
• Src-specific, tgt-specific, and general 

• Src data has only src-specific and general features; 
• tgt data has only tgt-specific and general features. 

❖ Advantage: 
• Build just one model. No need to build multiple models and 

then choose the “weights” by cross validation. 
• Easy to extend to multiple source domains 
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Inclusion
❖ NER Task is easy to solve, but still remaining Cross Domain problems

❖ Sequence Classifier Models can solve same domain problems quite 
well.

❖ However, an important problem( Domain adaptation ): We only have 
limited amount of labeled data for news data but there are so many 
other domains.

❖ Existing Solutions: 

• Feature Augmentation 

• Instance Weighting

❖ Many open problems 

• Better techniques

• How to combine those 
techniques 

• Multiple domains adaptation



END

THANK YOU !


