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Abstract

This paper studies the problem of commonsense
causal reasoning. We propose a framework to auto-
matically harvest a network of causal-effect terms
from a web corpus. We then encode a causal direc-
tion and strength on the network based on lexico-
syntactic analysis of sentences. Based on this net-
work, we propose an algorithm to detect events
from sentences and compute the causal strength be-
tween events. We validate our framework using SE-
MEVAL benchmark called COPA, outperforming
all the reported results of existing state-of-the-arts.

1 Introduction
Commonsense causal reasoning aims at understanding the
causal dependency between concepts or events in our daily
life. To illustrate the problem, we present a question from
Choice of Plausible Alternatives (COPA) evaluation[12],
which consists of one thousand multiple-choice question-
s requiring common causal reasoning to answer correctly.
Specifically, each question is composed of a premise and t-
wo alternatives, where the task is to select the more plausible
alternative as a cause (or effect) of the premise.

Premise:I knocked on my neighbor’s door.What hap-
pened as an effect?

Alternative 1:My neighbor invited me in.

Alternative 2:My neighbor left her house.

Commonsense causal reasoning has been actively studied,
as such understanding is crucial in text understanding, natural
language processing, artificial intelligence and other fields.
From the above example, we can observe that a key challenge
is harvesting common sense causal knowledge that the action
of knocking causes that of invitation.

Existing work can be categorized by how such knowledge
is harvested. First category is data-driven approach of har-
vesting causality from web corpus. Best known results in
this category leverage Pointwise Mutual Information (PMI)
statistic[21] between words in the premise and alternative, to
identify the pairs with high correlation. In our example, we
can expect that two wordsknockandinviteco-occur frequent-
ly in web documents, which indicate a potential causality.

Though PMI has been an effective indicator in prior liter-
ature, it suffers from the following limitations: First, lexical
co-occurrence can be a false alarm. In our example,door
andhouseare also observed frequently together, but identify-
ing this pair as causality leads to falsely identifying the sec-
ond sentence as a result. This observation suggests that term
causality from lexical co-occurrence alone is somewhat noisy
and harvesting from causal lexico-syntactic patterns would
avoid collecting house and neighbor as a causal pair. Sec-
ond, co-occurrence is undirectional, while direction is crucial
in causality. COPA task is directional such that our exam-
ple question can be asked in another direction, that is, asking
what is a cause of knocking. In this direction,call can be a
strong cause, but it cannot be a result, though PMI statistic
would model the two directions equally likely.

Second category, pursuing the opposite emphasis of depth
in understanding sentences, seeks to overcome the limita-
tion of the first approach. These approaches build on deep-
er lexico-syntactic analysis of sentences, to identify knocking
and inviting in our examples asevents, and determine whether
causality between two events hold. Alternatively, Concept-
Net [13] leverages human efforts to encode causal events
as common sense knowledge. However, these approaches,
building on human and heavy analysis, inherently lack cov-
erage, compared to the first category, which is reported to
outperform the second[12].

In contrast, our goal is to pursue both breadth and depth
in modeling commonsense causality. To pursue breadth, we
propose a data-driven approach of harvestingterm causality
networkfrom a large corpus. To pursue depth, we conduc-
t lexico-syntactic analysis of the sentences to extract events
and identify events that are strongly causal using the causality
network and other semantic resources such as WordNet[22].
Our approach overcomes the two limitations of existing data-
driven approaches, with the following novel contributions:

• We harvest term causality network, selectively from
causal lexico-syntactic patterns, effectively pruning out
false causality observed from lexical co-occurrence.
This network encodes both causal direction and strength
between terms.

• We redefine causal strengthu → v to reflect direction-
s, by combining conditional probability ofu being the
cause of the pairwise causality andv being its effect.



• To quantify causality between phrases, we aggregate ter-
m causality leveraging both syntactic and semantic un-
derstanding on the premise and the alternatives. For syn-
tactic understanding, we parse sentences to extractevent
from premise and alternatives, consisting of head word-
s in verb and objects. For semantic understanding, we
leverage semantic knowledge on each term in the event
obtained from WordNet, to properly discount causality
from ambiguous terms.

We evaluate the strength of our proposed approach using
COPA task, from which ours outperformed all existing re-
sults of state-of-the-arts by achieving68.8% in accuracy. In
addition, we validate the accuracy of our causality detection
using manually labeled causal relations from ConceptNet as
ground truth.

2 Approach
To identify commonsense causality between two statements,
our framework includes i) a network of causal relations be-
tween words that is extracted from a large web corpus; ii)
a metric to compute causal strength between any two words
using this network; iii) a heuristic method to extract intra-
sentence events that contain causality; and iv) a simple algo-
rithm for aggregating the causal strengths between words and
events to compute the overall causality score between two
sentences. Next, we describe these components.

2.1 Causal Network
Causality exists in natural language sentence and can be i-
dentified by linguistic patterns known ascausal cues[2]. For
example,“A cause B” is an intra-sentence causal cue where
A is a text span that represents the cause andB is a span that
represents the effect. Table 1 shows all 53 intra-sentence and
inter-sentence causal cues used in this work. We extract all
such patterns from a large web corpus, and after lemmatiza-
tion, pair each word inA with each word inB to form a list of
causal pairs. These pairs form adirectednetwork of causal
relations. Each node in this network is a lemmatized word,
while a directed edge between two wordsu andv indicates
a causal relation, e.g.,u → v. In this process, only pairs in-
volving nouns, verbs, adjectives and adverbs from WordNet
are included in the network. A fragment of the causal net-
work with three words in the network is shown in Figure 1.
Each edge is annotated with thecausal strength, which will
be defined next.

We choose to extract word pairs in a rather simplistic
way, without deeper syntactic analysis, because i) we opt for
breadth in the causal knowledge hence the input corpus is ex-
tremely large (around 10TB), and consequently deep parsing
of the text becomes prohibitive; and ii) the sheer quantity of
the word pairs thus obtained provides excellent statisticsfor
us to distinguish true causal pairs against false ones.

2.2 Causal Strength Computation
Our causal strength metric can be seen as a variant of PMI
(Pointwise Mutual Information), computed over a causal pair
u → v and their frequencies extracted from the web corpus.
We can omit the usual logarithm for ranking word pairs[27]
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Figure 1: A fragment of causal network

To distinguish between a cause word and an effect word, we
write uc to denoteu appeared in the cause span in the cue
patterns, andue to denoteu appeared in the effect span in
the cue patterns. We derive thecausal strengthbetween two
words as follows. First we define the joint probability of a
causal pair as:

P (u → v) = P (uc | ve)P (ve)

= P (ve | uc)P (uc) (1)

Then, we define a basic causal strength scoreCS0 over the
causal pairs as:

CS0(u, v) =
P (u → v)2

P (uc)2P (ve)2

=
P (uc | ve)P (ve)× P (ve | uc)P (uc)

P (uc)2P (ve)2

=
P (uc | ve)P (ve|uc)

P (uc)P (ve)
(2)

The intuition forCS0 is to take advantage of the condition-
al probability in both directions in Equation (1). We further
generalize Equation (2) to include two tunable parametersα
andβ that have been effectively adopted for PMI to penalize
high-frequency terms[3].

CS(u, v) =
P (uc | ve)P (ve | uc)

Pα(uc)P β(ve)
(3)

whereP (uc | ve) andP (ve | uc) can be computed as follows:

P (uc | ve) =
f(u → v)∑

w∈W f(w → v)
(4)

P (ve | uc) =
f(u → v)∑

w∈W f(u → w)
(5)

Here, f(u → v) is frequency of observing the causal pair
from the corpus;W is the set of all words in the causal net-
work. We compute the causal strength between every pair
of words in the causal network according to Equation (3).
Where an edge is missing in the network, we assign a causal
strength of zero.

2.3 Intra-sentence Event Enhancement
Causality, in reality, exists between events, which are often
expressed in more than one word. If we can detect events
in a sentence, which are more likely to be involved in causal
relations, we can reduce the noises produced by other unim-
portant words which are outside the events in that sentence



Table 1: 53 Causal cues.A is a cause span, andB is an effect span. DET stands for a/an/the/one. BE stands foris/are/was/were.
intra-sentence inter-sentence

A lead to B A leads to B A led to B If A, then B If A, B B, because A
A leading to B A give rise to B A gave rise to B B because A B because of A Because A, B
A given rise to B A giving rise to B A induce B A, thus B A, therefore B B, A as a consequence
A inducing B A induces B A induced B Inasmuch as A, B B, inasmuch as A In consequence of A, B
A cause B A causing B A causes B B due to A Due to A, B B in consequence of A
A caused B B caused by A A bring on B B owing to A B as a result of A As a consequence of A, B
A brought on B A bringing on B A brings on B A and hence B Owing to A, B B as a consequence of A
B result from A B resulting from A B results from A A, hence B A, consequently B A and consequently B
B resulted from A the reason(s) for/of B BE A A, for this reason alone , B
DET effect of A BE B A BE DET reason(s) of/for B

and increase the accuracy of the causal reasoning. Moreover,
it is observed that an event that contains causality betweenthe
words within itself appears to be more probable to cause other
events in a “ripple effect”. Consider these two examples.

• Theycut the hamburger inhalf.

• The mangrew old.

Eventscut→ half andgrow→ old exhibit positive causality.
These events usually contain a strong action verb, which may
lead to other consequences. In this subsection, we seek to
identify events in the input sentences of commonsense causal
reasoning task, and boost their weights in the computation of
causal strength between two sentences.

To extract the events, which we treat as a set of words here,
we parse the input sentence into dependency tree, and identify
verbs, their direct objects as well as some of their significant
modifiers. For example, from “I knocked on my neighbor’s
door,” we can extract an eventknock-neighbor-door. Only
nouns, verbs, adjectives and adverbs are extracted as part of
an event. It is possible to extract multiple events from a sen-
tence, in which case we keep the one closest to the root of
dependency tree. Algorithm 1 gives the details of this pro-
cess, whilerel(u) denotes dependency relation of nodeu,
the distance between an event to the root is calculated as:

RootDist(e) =

∑
w∈e

dist(Root,w)

|e|
(6)

knock neighbourdoor
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Figure 2: Weights in an event in a cause sentence

For the words in the extracted events, we perform the intra-
sentence enhancement to strengthen the causal signal of some
important words. Recall that in commonsense causal reason-
ing, we need to compute the overall causal strength between
the premise and an alternative. It is knowna priori whether
the premise is a cause or an effect. Therefore, when we ex-
tract event from an input sentence, which can be either the

Algorithm 1 Events Extraction
1: Parse sentenceS to obtain dependency parse treeT
2: Define dependency relation set:
3: R← {dobj, pobj, amod, nn, acomp, ccomp}
4: EventSet← {}
5: event← {}
6: for nodeu ∈ T ∧ rel(u) ∈ R do
7: event← event ∪{u}
8: while u has a dependency headv do
9: event← event ∪ {v}

10: if v is a verbthen
11: EventSet← EventSet ∪ {event}
12: event← {}
13: break;
14: else u← v
15: for e ∈ EventSet do
16: if ∃e

′

∈ EventSet, e
′

⊆ e then
17: removee

′

from EventSet
18: if ∃e

′

∩ e 6= ∅ then
19: e∗ = argmin

e
RootDist(e)

20: removee
′

, e from EventSet
21: EventSet← EventSet ∪ {e∗}
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Figure 3: Weights of event in an effect sentence

premise or the alternative, we know whether the event is to
be a cause, which we callcause event, or an effect, which we
call effect event. We formulate events as light-weight patterns
to refine the causality score between two sentences. In sim-
ple terms, it is a process of boosting weights of cause words
in cause events and effect words in effect events, by assign-
ing weights to words according to the the number of outgo-
ing and incoming edges. In Figure 2, which shows an event
knock-neighbor-doorextracted from a cause sentence, there
are originally six edges among the three words, each carries
a CSscore between the two adjacent words. For each pair of
words in this sub-graph, we remove the edge with a small-
er score, and effectively retain three edges (marked by solid
lines) as a result. Then for each word, we count the number
of outgoingedges (since this is a cause event), which acts as



the weight for that word. In this case,knockhas weight 2,
neighborhas weight 0, whiledoor has a weight of 1. Sim-
ilarly weights can be computed by counting the number of
incomingedges for the effect eventleave-housein Figure 3.

In the next subsection, when we compute the causal
strength score between two sentences, the cause strength be-
tween any two words will be boosted by their respective
weights which are computed here.

2.4 Commonsense Causal Reasoning
To compute whether alternativea1 or a2 is more plausible
w.r.t. the premisep, we need to compare the overall causal
strengthCST (p, a1) andCST (p, a2), assumingp is asking
for an effect. The overall causal strength score from textT1

to textT2 is computed as:

CST (T1, T2) =
1

|T1|+ |T2|

∑

u∈T1

∑

v∈T2

(1 + ω(u))(1 + ω(v))

δ(u, v)CS(u, v) (7)

whereω(w) is the weight given by event enhancement for
wordw, andδ(u, v) is a penalty factor for the semantic am-
biguity of u andv, defined as:

δ(u, v) =
1

#senses(u) + #senses(v)
(8)

where #senses(u) denotes number of WordNet synsets
wordu belongs to, which indicates how ambiguousu can be.
We penalize ambiguous words in the same spirit as the inverse
document frequency (IDF) in information retrieval. The rea-
son is when an ambiguous wordu is paired with every other
word in another sentence, the causal strengths calculated for
each pair may be due to different context and different sens-
es ofu and thus produce unreliable overall causal strength.
Suppose we change the premise in Section 1 to

Premise:My neighbor is a doctor.
When computing the causal strength with Alternative 2, since
the wordleaveis ambiguous, it means “depart” when paired
with neighbor, whereas it means “absence from duty (medi-
cal)” when paired withdoctor.

In our causality model, we treat each cause word as atrig-
ger and each effect word as aresponse. We modeled one-
to-many relationship between triggers and responses, which
means one trigger can cause many responses, similarly one
response can be caused by many triggers. That’s the reason
we normalize causality score by|T1| + |T2| not |T1| × |T2|
presented in previous papers.

3 Experimental Results
In this section, we first give some statistics of our corpus and
the extracted causal network, and then evaluate the quanti-
ty and quality of the cue patterns used in the extraction. We
further compared the end-to-end results on COPA task with
several previously published results. Finally, we evaluate our
commonsense reasoning ability on two additional tasks using
data from ConceptNet 4 to further showcase the power of our
framework. A demo of our network as well as the test set-
s we used in this section athttp://202.120.38.146/
causal.

3.1 Data Set and Extraction of Causal Network

Figure 4: Number of (distinct) pairs extracted by Cues

We extracted our term causality network, which we cal-
l “CausalNet” for convenience in this section, from 1/10
of a commercial search engine web snapshot1. The snap-
shot was generated in February, 2013 and contains about
1.6 billion web pages with a combined of nearly 10TB.
We extract 68,217,404 distinct word pairs from this corpus,
which amounts to roughly 8GB. The number of unique lem-
matized words in these pairs is 64,436, covering 41.49%
(64,436/155,287) of the words in WordNet.

The 53 causal cues we used can be grouped into 17 sets,
each containing cues of the same meaning or lemma form but
with different tenses. Word pair distribution over these sets is
shown in Figure 4. The blue bars (left) are the number of dis-
tinct pairs and the orange one (right) show the total number of
pairs. Inter-sentence cues like “if” and “because” harvested
the largest number of pairs. But more specific patterns such
as “reason” and “inasmuch” find more diverse pairs, since the
number of distinct pairs is relatively large compared to theto-
tal pairs extracted.

Figure 5: Positive vs. negative ConceptNet causal pairs cov-
ered by cues

To evaluate the quality of the causal cues, we make use
of the manually labeled causal events in ConceptNet[20] as
ground truth. ConceptNet 4 contains 74,336 unlemmatized
English words, forming 375,135 unique concepts, which are
connected by 610,397 relations. It is significantly smaller
than our CausalNet in scale, especially in terms of number of
edges. In otherwise, relations are more sparse in ConceptNet.
We randomly collect 100 positive and 100 negative causal
event pairs, based on feedbacks from human volunteers of
OMCS project, casting positive votes for eachCausesrela-
tionship that is causal, and negative for that is not. Since the
pairs from ConceptNet contain phrases and not just words,

1Anonymized to honor double blind policy



we consider a pair is covered by a causal cue, if it extract-
ed at least one pair of words from the web corpus, where the
cause word appears in the cause event and effect word ap-
pears in the effect event in the ConceptNet pairs. Figure 5
shows that in general, our cues can effectively distinguishbe-
tween positive and negative causal pairs, with the exception
of “hence” and “consequence”, both of which represent rel-
atively coarse-grained entailment relation. Particularly good
cues to distinguish the positive and negative pairs are “due”
and “induce”.

3.2 End-to-end Evaluation on COPA
COPA task consists of 1000 causal reasoning questions, di-
vided into development question set and test question set of
500 each. We pruned the parameterα andβ on the develop-
ment set by attempting all combinations of values from 0.1
to 1.0 with a step of 0.1. The best combination turns out to
beα = 0.4, β = 0.3. All competing systems were assessed
based on their accuracy on the 500 questions in the COPA test
split [12].

Table 2 shows the results.

Table 2: COPA results comparison
Methods Accuracy(%)
PMI Gutenberg (W=5)[24] 58.8%
UTDHLT Bigram PMI[10] 61.8%
UTDHLT SVM Combined[10] 63.4%
PMI 10M Stories (W=25)[11] 65.4%
CausalNet w/o events 67.6%
CausalNet w/ events 68.8 %

PMI Gutenberg uses PMI statistic calculating from data in
Project Gutenberg (16GB of English-language text). They
pair the words from premise and alternative and choose the
alternative with higher PMI. Their result is the best with a
window size of 5. UTDHLT is the result of SemEval-2012
Task 7 systems. The team proposes two approaches for the
task. The first one uses PMI over bigrams as a feature. For
the second one, they treat it as a classification problem and
combine the features of approach one with some other fea-
tures to train an SVM model. Their PMI statistic is calculat-
ed from the LDC Gigaword corpus (8.4 million documents).
The last PMI method, which was also the best performing
method in the last 4 years, uses a larger corpus of personal
stories (37GB of text) with a window of 25. There are two
variants from our framework; the one without event detection
does not detect any events or boost the strength of any word
in the input sentence but merely use the causal network and
the causal strength scores between words. Observe that our
system with the event detection and boosting in Section 2.3,
shown in bold, achieves68.8% and outperforms all existing
approaches.

3.3 Causality Detection
Another task is to investigate the following two research ques-
tions on our proposed network, using data from ConceptNet4.

• RQ1: For arbitrary event pair manually labeled as
causal(positive) ornot causal(negative), we investigate

whether our proposed causality score clearly separates
the two.

• RQ2: Inspired by COPA, we investigate positive and
negative pair sharing the same premise, and investigate
the accuracy of our selection of positive alternative.

For RQ1, we randomly collect 100 positive and 100 nega-
tive ground truth of causal Figure 6 shows the causality score
(y-axis) of 100 positive and negative pairs indexed randomly
(x-axis). We can observe that scores of positive and negative
pairs are accurately distinguished by a linear function, such
asy = 10−2, indicated by the green line, with little overlap.
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Figure 6: Distinguishing causality on ConceptNet

For RQ2, we test our network in a COPA-like setting of
classifying between positive and negative pairs sharing the
same premise. Due to sparsity of such pairs, we usepseudo-
disambiguation taskin [5]. In particular, we follow[5] to
useCausesrelationship(u, v) with positive votes, such that
u is the shared premise andv is a positive alternative. We
then generate a negative alternative by randomly selectingv′

without Causesrelationship withu. This approach is wide-
ly adopted in many tasks, as a large scale test cases can be
generated, but as ConceptNet does not exhaustively label all
possible causal relationships, randomly selectedv′ can be ac-
tually causal, orfalse negativesexist. In such situation, we
removed the question involving such false negative, and con-
sequently obtained a dataset of 412 questions in which 259
looks for an effect while 153 looks for a cause. Table 3 shows
the result using our framework with event detection outper-
forming the other.

Table 3: Result of ConceptNet RQ2
Methods Accuracy(%)

CausalNet w/o events 78.4%
CausalNet w/ events 80.1%

4 Related Work
We start by discussing previous work to extract causal rela-
tion term pairs from text and briefly mention the general task
of relation extraction. Then we present various past attempts



to solve the commonsense causal reasoning problem. Com-
mon ingredients in these approaches are word association or
similarity measures, which are discussed last.

4.1 Causal Relation Extraction
Previous work on causal relation extraction is relatively s-
parse. The existing approaches use hand-coded and domain-
specific patterns to extract causal knowledge. Girju et al.
[8] were the first to work on casual relation discovery be-
tween nominals. They semi-automatically extracted causal
cues, but only extracted noun category features for the head
noun. Chang et al.[2] developed an unsupervised method
and utilized lexical pairs and cues contained in noun phras-
es as features to identify causality between them. Both of
them ignored how the remaining causal text span between
noun phrases affects the semantics. We proposed numeric
features based on that, and get better results. Blanco et al.
[1] used different patterns to detect the causation in long sen-
tences that contain clauses. And most recently, Do et al.[4]
introduced a form of association metric into causal relation
extraction. They used discourse connectives and similarity
distribution to identify event causality between predicate, not
noun phrases, but achieved a F1-score around 0.47.

4.2 General Relation Extraction
Besides causal relations, much work has been done on ex-
tracting many other types of relations from text, e.g., hy-
ponymy (isA)[6; 29]; meronymy (part-whole)[9], metaphor
[19], relatedness[16] as well as general relations[30; 26; 14;
7; 23]. Relation extraction generally involves identifying the
target terms or entities in text and then annotating the rela-
tions properly. Previous approaches are either supervisedor
semi-supervised.

Supervised approaches usually treat the extraction as a
classification problem, where the input is the sentence with
marked target entities/terms, and the output is the classifica-
tion into one of the predefined relations or none. Marking
the entities often relies on syntactic patterns or named enti-
ty recognition. These approaches require labeled data and
hence cannot be easily extended to new types of relations.
They also make heavy use of NLP tools such as POS tag-
ger and dependency parser which are all error-prone. Semi-
supervised method often starts with a seed set of entity pairs,
and uses a bootstrapping strategy to accumulate more pairs
either by gradually discovering contextual patterns that rep-
resent the target relation[6], or by using a fixed set of strong
patterns and some logical rules to determine the plausibility
of a pair in each iteration[29]. Our extraction of causal pairs
is completely unsupervised. enables allows us to harness a
web-scale evidences though with noises, which we eliminate
using statistical evidences.

4.3 Commonsense Causal Reasoning
Commonsense causal reasoning is a grand challenge in artifi-
cial intelligence. Earlier attempts on the problem were large-
ly linguistic, for example, developing formal theories to cap-
ture temporal or logical properties in causal entailment[18;
17]. These approaches were not effective due to the difficulty

in handcrafting the theories for board-ranging open domain
reasoning.

Recently, the NLP community has explored knowledge
based approaches and show substantial potential. One ap-
proach toward this goal is to accrue common sense knowl-
edge through crowdsourcing. A prominent example along
this line is the Open Mind Common Sense (OMCS) project
by MIT [25]. Some of the knowledge such as “effect of”
relation in the ConceptNet[20] which is a sub-project un-
der OMCS can be used to identify causal discourse in COPA
task. However, the scale of such human curated knowledge
suffers from scalability bottleneck. In fact, the ConceptNet is
only a fraction of our causal network by size after 15 years of
community efforts.

More successful efforts are centered around using corre-
lational statistics[12] such as pointwise mutual information
(PMI) between unigrams (words) or bigrams from large tex-
t corpora[21]. Corpora attempted include LDC gigaword
news corpus[10], Gutenberg e-books[24], personal stories
from Weblogs[11] and Wikipedia text[15]. Previous re-
search show that the type of information source has signif-
icant impact on the accuracy of such knowledge based ap-
proach. This paper falls into this category of research, but
instead proposed to compute a generalized PMI measure[27]
not from the plain text corpus but from a causal relation graph
induced from large web text. In addition, instead of fixing the
target language units in the discourse sentences to either word
or n-gram, we dynamically construct events which contain in-
ternal causality information and make use of these multi-word
events in the computation of the final causal strength between
two sentences.

4.4 Word Association Metrics

Our generalized causality is inspired from association
strength measure proposed by Wettler et al.[28] and Washtel-
l [27], which introduced parameterα being0.66 and0.5 re-
spectively. Our causality strength considers both directions
of the causality relation. Causality strength is similar toas-
sociation strength to some degree, since association between
term pair(u, v) which also asymmetrical treatedu andv. We
introduced an generalized formula by introducingα andβ
following the same intuition for discounting high frequency
causes and effects respectively.

5 Conclusion

This paper proposes a novel framework of deducing com-
monsense causality by automatically harvesting a network
of causal-effect terms extracted from a large web corpus.
Such a network can achieve a high coverage including long-
tailed causality relations. We then implemented an algorithm
for detecting events in two input sentences and computing a
causal strength between them. Evaluation shows that such a
framework is capable of outperforming the previous best ap-
proach for solving the competitive SEMEVAL task known as
COPA, and also shows a great potential in solving other re-
lated causality reasoning tasks.
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