Commonsense Causal Reasoning by Causal Relation Extraction from the Web

Abstract Though PMI has been an effective indicator in prior liter-
ature, it suffers from the following limitations: FirstXieal
co-occurrence can be a false alarm. In our examgder
andhouseare also observed frequently together, but identify-
ing this pair as causality leads to falsely identifying tlees
ond sentence as a result. This observation suggests thmt ter
causality from lexical co-occurrence alone is somewhatynoi
and harvesting from causal lexico-syntactic patterns doul
avoid collecting house and neighbor as a causal pair. Sec-
ond, co-occurrence is undirectional, while direction isoial

in causality. COPA task is directional such that our exam-
ple question can be asked in another direction, that isngski
what is a cause of knocking. In this directiarall can be a
strong cause, but it cannot be a result, though PMI statistic
1 Introduction would model the two directions equally likely.

c | . . q di Second category, pursuing the opposite emphasis of depth
ommonsense causal reasoning aims at understanding the nqerstanding sentences, seeks to overcome the limita-

causal dependency between concepts or events in our daify, o the first approach. These approaches build on deep-

life. To illustrate the problem, we present a question from ; : ; ; e b
. . " . er lexico-syntactic analysis of sentences, to identifydimag
Choice of Plausible Alternatives (COPA) evaluatift?], 4 qinviting in our examples @ventsand determine whether

which consists of one thousand m.ult|ple—ch0|ce quesuonZ:ausality between two events hold. Alternatively, Coneept

et [13] leverages human efforts to encode causal events

, . d s common sense knowledge. However, these approaches,
wo alternatives, where the task is to select the more plausib building on human and heavy analysis, inherently lack cov-

alternative as a cause (or effect) of the premise. erage, compared to the first category, which is reported to
Premise:| knocked on my neighbor’'s doowhat hap-  outperform the seconid2].

This paper studies the problem of commonsense
causal reasoning. We propose a framework to auto-
matically harvest a network of causal-effect terms
from a web corpus. We then encode a causal direc-
tion and strength on the network based on lexico-
syntactic analysis of sentences. Based on this net-
work, we propose an algorithm to detect events
from sentences and compute the causal strength be-
tween events. We validate our framework using SE-
MEVAL benchmark called COPA, outperforming
all the reported results of existing state-of-the-arts.

Specifically, each question is composed of a premise and

pened as an effect? In contrast, our goal is to pursue both breadth and depth

Alternative 1:My neighbor invited me in. in modeling commonsense causality. To pursue breadth, we
) _ propose a data-driven approach of harvestergy causality

Alternative 2:My neighbor left her house. networkfrom a large corpus. To pursue depth, we conduc-

Commonsense causal reasoning has been actively studiddexico-syntactic analysis of the sentences to extrachtsve
as such understanding is crucial in text understandingralat and identify events that are strongly causal using the digusa
language processing, artificial intelligence and othedgiel network and other semantic resources such as Workidkt
From the above example, we can observe that a key challengeur approach overcomes the two limitations of existing data
is harvesting common sense causal knowledge that the actiéiiven approaches, with the following novel contributions
of knocking causes that of invitation.

Existing work can be categorized by how such knowledge
is harvested. First category is data-driven approach of har
vesting causality from web corpus. Best known results in
this category leverage Pointwise Mutual Information (PMI)
statistic[21] between words in the premise and alternative, to
identify the pairs with high correlation. In our example, we ¢ We redefine causal strength— v to reflect direction-
can expect that two wordeockandinvite co-occur frequent- s, by combining conditional probability af being the
ly in web documents, which indicate a potential causality. cause of the pairwise causality antheing its effect.

* We harvest term causality network, selectively from
causal lexico-syntactic patterns, effectively pruning ou
false causality observed from lexical co-occurrence.
This network encodes both causal direction and strength
between terms.



« To quantify causality between phrases, we aggregate ter- rain

m causality leveraging both syntactic and semantic un- 0182 0.040
derstanding on the premise and the alternatives. For syn- 0.128 0.106

tactic understanding, we parse sentences to exdvectt

from premise and alternatives, consisting of head word- — 00z T~

s in verb and objects. For semantic understanding, we umbrelia wet

leverage semantic knowledge on each term in the event
obtained from WordNet, to properly discount causality
from ambiguous terms.

We evaluate the strength of our proposed approach using
COPA task, from which ours outperformed all existing re-
sults of state-of-the-arts by achievifi§.8% in accuracy. In

0.001

Figure 1: A fragment of causal network

To distinguish between a cause word and an effect word, we

addition, we validate the accuracy of our causality desecti WIit€ u. to denoteu appeared in the cause span in the cue

using manually labeled causal relations from ConceptNet aBtterns, and.. to denoteu appeared in the effect span in
the cue patterns. We derive thausal strengttbetween two

round truth. ; X o i
g words as _foIIows. First we define the joint probability of a
2 Approach causal pair as:
To identify commonsense causality between two statements, Plu—v) = Pluc | ve) P(ve)
our framework includes i) a network of causal relations be- = P(ve | uc)P(uc) (1)

tween words that is extracted from a large web corpus; ii)Then we define a basic causal strength scosg over the
a metric to compute causal strength between any two word !

\ . L : Causal pairs as:
using this network; iii) a heuristic method to extract intra P

sentence events that contain causality; and iv) a simpte alg P(u— v)?

rithm for aggregating the causal strengths between words an CSo(u,v) = P(ue)2P(v, )2

events to compute the overall causality score between two P P P P

sentences. Next, we describe these components. = (ue | ve)P(ve) X P(ve | uc) P(uc)
P(uc)?P(v.)?

2.1 Causal Network P(ue | ve)P(ve|ue)

Causality exists in natural language sentence and can be i- B P(u.)P(ve) @

CamIo A Caast B L an Inésentoncs caussl e viereThe intuition forC', i o take advantage of the conditon-
As a text span that represents the causeBisda span that  &! Probability in both directions in Equation (1). We furthe
represents the effect. Table 1 shows all 53 intra-sentamte a 9€N€ralize Equation (2) to include two tunable parameters
inter-sentence causal cues used in this work. We extract gi"d/ that have been effectively adopted for PMI to penalize
such patterns from a large web corpus, and after Iemmatizé:kl'gh'frequenCy termgg].

tion, pair each word il with each word inB to form a list of P(uc | ve)P(ve | ue)

causal pairs These pairs form directednetwork of causal CS(u,v) = P (ue) PP (00) 3)
relations. Each node in this network is a lemmatized word, c ¢

while a directed edge between two wordendv indicates ~ whereP(u. | v.) andP(v. | u.) can be computed as follows:
a causal relation, e.gu, — v. In this process, only pairs in-

volving nouns, verbs, adjectives and adverbs from WordNet P(ue | ve) = flu—v) (4)
are included in the network. A fragment of the causal net- > wew fw —0)

work with three words in the network is shown in Figure 1. Flu— )

Each edge is annotated with thausal strengthwhich will P(ve | ue) = (5)
be defined next. Ywew f(u—w)

We choose to extract word pairs in a rather simplisticHere, f(u — v) is frequency of observing the causal pair
way, without deeper syntactic analysis, because i) we apt fofrom the corpusjV is the set of all words in the causal net-
breadth in the causal knowledge hence the input corpus is exvork. We compute the causal strength between every pair
tremely large (around 10TB), and consequently deep parsingf words in the causal network according to Equation (3).
of the text becomes prohibitive; and ii) the sheer quantity o Where an edge is missing in the network, we assign a causal
the word pairs thus obtained provides excellent statistics  strength of zero.
us to distinguish true causal pairs against false ones.

_ 2.3 Intra-sentence Event Enhancement
2.2 Causal Strength Computation Causality, in reality, exists between events, which areroft
Our causal strength metric can be seen as a variant of PMixpressed in more than one word. If we can detect events
(Pointwise Mutual Information), computed over a causal paiin a sentence, which are more likely to be involved in causal
u — v and their frequencies extracted from the web corpusrelations, we can reduce the noises produced by other unim-
We can omit the usual logarithm for ranking word pdi3] portant words which are outside the events in that sentence



Table 1: 53 Causal cueA.is a cause span, amis an effect span. DET stands for a/an/the/one. BE stands/&ve/was/were.

| intra-sentence |

inter-sentence

Alead to B Aleads to B Aledto B If A, then B IfA B B, because A

A leading to B A give rise to B A gaverise to B B because A B because of A Because A, B

A givenrise to B AgivingrisetoB  Ainduce B A, thus B A, therefore B B, A as a consequence
Ainducing B A induces B A induced B Inasmuchas A,B B, inasmuchas A Inconsequence of A,
A cause B A causing B A causes B B dueto A Dueto A, B B in consequence of A
A caused B B caused by A AbringonB | Bowingto A Basaresultof A Asaconsequence of A|
A brought on B A bringing on B AbringsonB | Aand hence B Owingto A, B B as a consequence of
B result from A B resulting from A B results from A A, hence B A, consequently B A and consequently B
B resulted from A the reason(s) for/of B BE A A, for this reason alone , B

DET effectof ABEB A BE DET reason(s) of/for B

> m

and increase the accuracy of the causal reasoning. Moreovéxlgorithm 1 Events Extraction

it is observed that an event that contains causality bettveen — 1:
words within itself appears to be more probable to cause othe 2:
events in a “ripple effect”. Consider these two examples.

* Theycutthe hamburger ihalf.
e The mangrew old

Eventscut — half andgrow — old exhibit positive causality.
These events usually contain a strong action verb, which mayg.
lead to other consequences. In this subsection, we seek tg.
identify events in the input sentences of commonsense tausg -
reasoning task, and boost their weights in the computafion o7 2:
causal strength between two sentences. 13:
To extract the events, which we treat as a set of words herd4:
we parse the input sentence into dependency tree, andfidentils:
verbs, their direct objects as well as some of their sigmfica 16:
modifiers. For example, from “I knocked on my neighbor’s 17:
door,” we can extract an evekhock-neighbor-door Only
nouns, verbs, adjectives and adverbs are extracted asfpart ¥
an event. It is possible to extract multiple events from a sen20:
tence, in which case we keep the one closest to the root ofl:

Nl w

Parse sentencgto obtain dependency parse tfEe
Define dependency relation set:
R + {dobj, pobj, amod, nn, acomp, ccomp}
EventSet + {}
event < {}
for nodeu € T' A rel(u) € Rdo
event < event U{u}
while v has a dependency headlo
event < event U {v}
if v is a verbthen
EventSet < EventSet U {event}
event + {}
break;
eseu v
for e € BventSetdo |
if de € FventSet,e C e then

rgmovee' from EventSet

ifde Ne # O then
e = arg min, RootDist(e)
removee', e from EventSet
EventSet < EventSet U {e"}

dependency tree. Algorithm 1 gives the details of this pro-
cess, whilerel(u) denotes dependency relation of node
the distance between an event to the root is calculated as:

> wee dist(Root, w) ®)

RootDist(e) =

KT 00016 Tho

0.0019

house leave

Figure 3: Weights of event in an effect sentence

neighbour

Figure 2: Weights in an event in a cause sentence

premise or the alternative, we know whether the event is to
be a cause, which we calhuse evenbr an effect, which we

call effect eventWe formulate events as light-weight patterns
to refine the causality score between two sentences. In sim-
ple terms, it is a process of boosting weights of cause words
in cause events and effect words in effect events, by assign-
ing weights to words according to the the number of outgo-
ing and incoming edges. In Figure 2, which shows an event

For the words in the extracted events, we perform the intraknock-neighbor-dooextracted from a cause sentence, there
sentence enhancementto strengthen the causal signal ef soare originally six edges among the three words, each carries
important words. Recall that in commonsense causal reasoa-CSscore between the two adjacent words. For each pair of
ing, we need to compute the overall causal strength betweemords in this sub-graph, we remove the edge with a small-

the premise and an alternative. It is knowipriori whether

er score, and effectively retain three edges (marked b soli

the premise is a cause or an effect. Therefore, when we efines) as a result. Then for each word, we count the number
tract event from an input sentence, which can be either thef outgoingedges (since this is a cause event), which acts as



the weight for that word. In this casknockhas weight 2, 3.1 Data Set and Extraction of Causal Network

neighborhas weight 0, whiledoor has a weight of 1. Sim-
ilarly weights can be computed by counting the number of 1%:3 ’
incomingedges for the effect evel@ave-hous@ Figure 3. 108 A 5 _—
In the next subsection, when we compute the causes 1os /I /WI\ “ “\ || ” " |||
1
1
1
. & f’oo &&& & &\{)
. & &
2.4 Commonsense Causal Reasoning ° & e .
Istinct pairs otal pairs ratio
To compute whether alternativg or a, is more plausible P P

strength score between two sentences, the cause strength
w.rt. the premisg, we need to compare the overall causal  Figyre 4: Number of (distinct) pairs extracted by Cues
strengthC'St(p,a1) and C'Sr(p, a2), assuming is asking

for an effect. The overall causal strength score from #gxt . .
o textT} is computed as: We extracted our term causality network, which we cal-

) | “CausalNet” for convenience in this secétLon, from 1/10
_ of a commercial search engine web snapshofThe snap-
CSr(Th, 1) |71 | + |12 Z Z(l Fw)d+ww) shot was generated in February, 2013 and contains about
1.6 billion web pages with a combined of nearly 10TB.
8 (u, 0)CS(u,v) (7) " We extract 68,217,404 distinct word pairs from this corpus,
wherew(w) is the weight given by event enhancement forwhich amounts to roughly 8GB. The number of unique lem-
word w, ando(u, v) is a penalty factor for the semantic am- matized words in these pairs is 64,436, covering 41.49%
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tween any two words will be boosted by their respective
weights which are computed here. S5
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biguity of v andv, defined as: (64,436/155,287) of the words in WordNet.
1 The 53 causal cues we used can be grouped into 17 sets,
6(u,v) = (8)  each containing cues of the same meaning or lemma form but

Fsenses(u) + FFsenses(v) with different tenses. Word pair distribution over thests $&
where #senses(u) denotes number of WordNet synsets shown in Figure 4. The blue bars (left) are the number of dis-
wordu belongs to, which indicates how ambiguausan be.  tinct pairs and the orange one (right) show the total number o
We penalize ambiguous words in the same spirit as the inversgairs. Inter-sentence cues like “if” and “because” hamest
document frequency (IDF) in information retrieval. The-rea the largest number of pairs. But more specific patterns such
son is when an ambiguous wouds paired with every other  as “reason” and “inasmuch” find more diverse pairs, since the
word in another sentence, the causal strengths calculated fnumber of distinct pairs is relatively large compared totthe
each pair may be due to different context and different sensal pairs extracted.
es ofu and thus produce unreliable overall causal strength.

Suppose we change the premise in Section 1 to 100%

80%

Premise My neighbor is a doctar 60
When computing the causal strength with Alternative 2,einc | I I I II |
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the wordleaveis ambiguous, it means “depart” when paired ",

with neighbor whereas it means “absence from duty (medi- ¢ &

cal)” when paired witrdoctor. S
In our causality model, we treat each cause word taiga

ger and each effect word asrasponse We modeled one-

to-many relationship between triggers and responseshwhic_. . . .

means one trigger can cause many responses, similarly oldgure 5: Positive vs. negative ConceptNet causal pairs cov

response can be caused by many triggers. That's the reas§FEd Py cues

we normalize causality score BY:| + |T2| not |T1| x |T5|

presented in previous papers.
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To evaluate the quality of the causal cues, we make use
of the manually labeled causal events in Concepf®él as
3 Experimental Results grou_nd truth. ConcgptNet 4 contai_ns 74,336 unlemmatized
_ ) _ ) - English words, forming 375,135 unique concepts, which are
In this section, we first give some statistics of our corpus an connected by 610,397 relations. It is significantly smaller
the extracted causal network, and then evaluate the quanthan our CausalNet in scale, especially in terms of number of
ty and quality of the cue patterns used in the extraction. Weyqges In otherwise, relations are more sparse in ConceptNe
further compared the end-to-end results on COPA task withye randomly collect 100 positive and 100 negative causal
several previously published results. Finally, we ev@uatr  gyent pairs, based on feedbacks from human volunteers of
commonsense reasoning ability on two additional tasksggusinopcs project, casting positive votes for eachusesela-

data from ConceptNet 4 to further showcase the power of 0Ufionship that is causal, and negative for that is not. Sihee t
framework. A demo of our network as well as the test Set'pairs from ConceptNet contain phrases and not just words,

s we used in this section bt t p: // 202. 120. 38. 146/
causal . ! Anonymized to honor double blind policy



we consider a pair is covered by a causal cue, if it extract-  whether our proposed causality score clearly separates
ed at least one pair of words from the web corpus, where the  the two.

cause .WOI’d appears in the cause event and effect vyord ap-. RQ2: Inspired by COPA, we investigate positive and
pears in the effect event in the ConceptNet pairs. Figure 5 hegative pair sharing the same premise, and investigate
shows that in general, our cues can effectively distingbesh the accuracy of our selection of positive alternative.
tween positive and negative causal pairs, with the exceptio .
of “hence” and “consequence”’, both of which represent rel-  ForRQ1, we randomly collect 100 positive and 100 nega-
atively coarse-grained entailment relation. Particylgiod ~ tive ground truth of causal Figure 6 shows the causalityescor
cues to distinguish the positive and negative pairs are™due(y-axis) of 100 positive and negative pairs indexed randomly

and “induce”. (z-axis). We can observe that scores of positive and negative
pairs are accurately distinguished by a linear functiochsu
3.2 End-to-end Evaluation on COPA asy = 1072, indicated by the green line, with little overlap.
COPA task consists of 1000 causal reasoning questions, di-
vided into development question set and test question set of 10
500 each. We pruned the parameteand 8 on the develop-
ment set by attempting all combinations of values from 0.1 . oo 0 o ° L2y
to 1.0 with a step of 0.1. The best combination turns out to 10 Po®s @ oo w0 o ° ° °
bea = 0.4, 5 = 0.3. All competing systems were assessed - P &, %OO&QfO ® ® o %P ©
based on their accuracy on the 500 questionsinthe COPAtest & | o o0 ro® “on Aé;@(g % 2
split[12]. 310 ST IV L N
Table 2 shows the results. © N Vi S Sy
A A AAA A An 4
10 PN ° N & IN
Table 2: COPA results comparison - __%Ad SN R
Methods Accuracy(%) K Egzgt‘l’fe ;’;t a
PMI Gutenberg (W=4p4] 58.8% 10° ‘ ‘ ‘ ‘
UTDHLT Bigram PMI[10] 61.8% 0 20 40 e ° g 100
UTDHLT SVM Combined10] 63.4%
PMI 10M Stories (W=25).1] 65.4% Figure 6: Distinguishing causality on ConceptNet
CausalNet w/o events 67.6%
CausalNet w/ events 68.8 % For RQ2, we test our network in a COPA-like setting of

classifying between positive and negative pairs sharirg th

PMI Gutenberg uses PMI statistic calculating from data insame premise. Due to sparsity of such pairs, wepsseido-
Project Gutenberg (16GB of English-language text). Theydisambiguation taskn [5]. In particular, we follow[5] to
pair the words from premise and alternative and choose theseCausegelationship(u, v) with positive votes, such that
alternative with higher PMI. Their result is the best with a is the shared premise andis a positive alternative. We
window size of 5. UTDHLT is the result of SemEval-2012 then generate a negative alternative by randomly seleeting
Task 7 systems. The team proposes two approaches for théthout Causeselationship withu. This approach is wide-
task. The first one uses PMI over bigrams as a feature. Fdy adopted in many tasks, as a large scale test cases can be
the second one, they treat it as a classification problem angenerated, but as ConceptNet does not exhaustively ldbel al
combine the features of approach one with some other fegrossible causal relationships, randomly seleotexan be ac-
tures to train an SVM model. Their PMI statistic is calculat- tually causal, ofalse negativegxist. In such situation, we
ed from the LDC Gigaword corpus (8.4 million documents).removed the question involving such false negative, ane con
The last PMI method, which was also the best performingsequently obtained a dataset of 412 questions in which 259
method in the last 4 years, uses a larger corpus of personkﬁ]OkS for an effect while 153 looks for a cause. Table 3 shows
stories (37GB of text) with a window of 25. There are two the result using our framework with event detection outper-
variants from our framework; the one without event detectio forming the other.
does not detect any events or boost the strength of any word
in the input sentence but merely use the causal network and

the causal strength scores between words. Observe that our Table 3: Result of ConceptNet RSZ
system with the event detection and boosting in Section 2.3, Methods Accuracyo( %)
shown in bold, achieves8.8% and outperforms all existing CausalNet w/o events 78.4%
approaches. CausalNet w/ events 80.1%

3.3 Causality Detection
Another task is to investigate the following two researcesiu 4 Related Work

tions on our proposed network, using data from ConceptNet4ue start by discussing previous work to extract causal rela-

« RQ1: For arbitrary event pair manually labeled as tion term pairs from text and briefly mention the general task
causal(positive) oot causalnegative), we investigate of relation extraction. Then we present various past attemp



to solve the commonsense causal reasoning problem. Corn handcrafting the theories for board-ranging open domain
mon ingredients in these approaches are word association cgasoning.

similarity measures, which are discussed last. Recently, the NLP community has explored knowledge
i i based approaches and show substantial potential. One ap-
4.1 Causal Relation Extraction proach toward this goal is to accrue common sense knowl-

Previous work on causal relation extraction is relatively s €dge through crowdsourcing. A prominent example along
parse. The existing approaches use hand-coded and domathis line is the Open Mind Common Sense (OMCS) project
specific patterns to extract causal knowledge. Girju et alby MIT [25]. Some of the knowledge such as “effect of”
[8] were the first to work on casual relation discovery be-relation in the ConceptNdR0] which is a sub-project un-
tween nominals. They semi-automatically extracted causéler OMCS can be used to identify causal discourse in COPA
cues, but only extracted noun category features for the hed@sk. However, the scale of such human curated knowledge
noun. Chang et al[2] developed an unsupervised method suffers from scalability bottleneck. In fact_, the Concegtié

and utilized lexical pairs and cues contained in noun phrasonly a fraction of our causal network by size after 15 years of
es as features to identify causality between them. Both ofommunity efforts.

them ignored how the remaining causal text span between More successful efforts are centered around using corre-
noun phrases affects the semantics. We proposed numetational statistic§12] such as pointwise mutual information
features based on that, and get better results. Blanco et §PMI) between unigrams (words) or bigrams from large tex-
[1] used different patterns to detect the causation in long sert-corpora[21]. Corpora attempted include LDC gigaword
tences that contain clauses. And most recently, Do d#hl. news corpug10], Gutenberg e-booki24], personal stories
introduced a form of association metric into causal retatio from Weblogs[11] and Wikipedia tex{15]. Previous re-
extraction. They used discourse connectives and sinyilaritsearch show that the type of information source has signif-
distribution to identify event causality between predécatot ~ icant impact on the accuracy of such knowledge based ap-

noun phrases, but achieved a F1-score around 0.47. proach. This paper falls into this category of research, but
instead proposed to compute a generalized PMI me#&idfe
4.2 General Redation Extraction not from the plain text corpus but from a causal relation grap

Q]duced from large web text. In addition, instead of fixing th
target language units in the discourse sentences to eitirer w
or n-gram, we dynamically construct events which containin
ternal causality information and make use of these multidwo

[19], relatedneskL6] as well as general relatioh30; 26; 14; ! . .
7; 23. Relation extraction generally involves identifying the R\v’ggtesr:?etr?fezompma“on of the final causal strength betwee

target terms or entities in text and then annotating the rela
tions properly. Previous approaches are either superaised o )
semi-supervised. 4.4 Word Association Metrics

Supervised approaches usually treat the extraction as

classification problem, where the input is the sentence Witﬁgur g%neralized causalité/bis inslpired fromd ass?]cielltion
marked target entities/terms, and the output is the claasifi St'éNgth measure propose y Wettler ef28] and Washtel-

tion into one of the predefined relations or none. Marking! [271, which introduced parameterbeing0.66 and0.5 re-
the entities often relies on syntactic patterns or nameid entSPectively. Our caus_allty streng;h conS|ders_ bo_th .d'm'
ty recognition. These approaches require labeled data arf the causality relation. Causality strength is similaa®
hence cannot be easily extended to new types of relationSOciation strength to some degree, since association estwe
They also make heavy use of NLP tools such as POS tader™ Pair(u, v) which also asymmetrical treatecandv. We
ger and dependency parser which are all error-prone. Se tptrodyced an generalized formula by introducingand j
supervised method often starts with a seed set of entitg pair ollowing the same Intuition for discounting high frequgnc
and uses a bootstrapping strategy to accumulate more paff@uses and effects respectively.

either by gradually disgo]vering contextual patterns tleat r

resent the target relatigl], or by using a fixed set of strong :

patterns and some logical rules to determine the plausibili 5 Conclusion
of a pair in each iteratiof29]. Our extraction of causal pairs
is completely unsupervised. enables allows us to harness
web-scale evidences though with noises, which we eliminat
using statistical evidences.

Besides causal relations, much work has been done on e
tracting many other types of relations from text, e.g., hy-
ponymy (isA)[6; 29; meronymy (part-whole)9], metaphor

This paper proposes a novel framework of deducing com-
flonsense causality by automatically harvesting a network
Bf causal-effect terms extracted from a large web corpus.
Such a network can achieve a high coverage including long-
43 C Causal R . tailed causality relations. We then implemented an algorit

' ommonsense Lau easoning for detecting events in two input sentences and computing a
Commonsense causal reasoning is a grand challenge in artifiausal strength between them. Evaluation shows that such a
cial intelligence. Earlier attempts on the problem wergéar framework is capable of outperforming the previous best ap-
ly linguistic, for example, developing formal theories tpe  proach for solving the competitive SEMEVAL task known as
ture temporal or logical properties in causal entailm{d8  COPA, and also shows a great potential in solving other re-
17]. These approaches were not effective due to the difficultyated causality reasoning tasks.
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