Treewidth (III)

Yijia Chen

Shanghai Jiao Tong University

May 3, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

Let \mathcal{G} and \mathcal{H} be two graphs. A function $\underline{f}: V(\mathcal{G}) \to V(\mathcal{H})$ is an isomorphism if (Gl1) f is a bijection;

(Gl2) for every $u, v \in V(\mathcal{G})$ we have $\{u, v\} \in E(\mathcal{G})$ if and only if $\{f(u), f(v)\} \in E(\mathcal{H})$.

If such an f exists, then G and H are isomorphic.

 GI

 $\begin{array}{ll} \textit{Input:} & \mathsf{Two graphs} \ \mathcal{G} \ \mathsf{and} \ \mathcal{H}. \\ \textit{Problem:} & \mathsf{Decides \ whether} \ \mathcal{G} \ \mathsf{and} \ \mathcal{H} \ \mathsf{are \ isomorphic.} \end{array}$

Remark.

- 1. GI is in NP.
- 2. GI is not NP-complete, unless Polynomial Hierarchy collapses.
- 3. We don't know whether GI is P-hard.
- 4. Some people believe GI is in **P**, but we don't even have a quantum polynomial time algorithm.

Theorem (Bodlaender, 1990)

Let $k \in \mathbb{N}$. Then there is a polynomial time algorithm which decides GI on graphs \mathcal{G} with tw $(\mathcal{G}) \leq k$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

I will present an algorithm deciding the problem

Input:	Two graphs ${\mathcal G}$ and ${\mathcal H}$ and a smooth tree decomposition of
	\mathcal{G} of width k .
Problem:	Decides whether ${\mathcal G}$ and ${\mathcal H}$ are isomorphic.

in time

 $(|V(\mathcal{G})|+|V(\mathcal{H})|)^{O(k)}.$

Let $\mathscr{C}_{\mathcal{G}}$ be the set of connected components of \mathcal{G} and $\mathscr{C}_{\mathcal{H}}$ the set of connected components of \mathcal{H} .

Then \mathcal{G} and \mathcal{H} are isomorphic if and only if there is a bijection $h : \mathscr{C}_{\mathcal{G}} \to \mathscr{C}_{\mathcal{H}}$ such that $\mathcal{G}[C]$ and $\mathcal{H}[h(C)]$ are isomorphic for every $C \in \mathscr{C}_{\mathcal{G}}$.

This is equivalent to that there is a perfect matching in the following bipartite graph.

- 1. The left part is $\mathscr{C}_{\mathcal{G}}$ and the right part $\mathscr{C}_{\mathcal{H}}$.
- 2. There is an edge between a $C \in \mathscr{C}_{\mathcal{G}}$ and a $C' \in \mathscr{C}_{\mathcal{H}}$ if $\mathcal{G}[C]$ and $\mathcal{H}[C']$ are isomorphic.

Let $S \subseteq V(\mathcal{G})$ and

$$\mathscr{C}_{\mathcal{G}\setminus S} := \big\{ C \mid C \text{ a connected component of } \mathcal{G} \setminus S \big\}.$$

Then \mathcal{G} and \mathcal{H} are isomorphic if and only if there is a set $S' \subseteq V(\mathcal{H})$, a function $h : \mathscr{C}_{\mathcal{G} \setminus S} \to \mathscr{C}_{\mathcal{H} \setminus S'}$ and functions $f_C : S \cup C \to S' \cup h(C)$ for all $C \in \mathscr{C}_{\mathcal{G} \setminus S}$ such that

- 1. |S| = |S'|;
- 2. *h* is a bijection;
- 3. f_C is an isomorphism between $\mathcal{G}[S \cup C]$ and $\mathcal{H}[S' \cup h(C)]$ for every $C \in \mathscr{C}_{\mathcal{G} \setminus S}$, and $f_C(S) = S'$;

4. $f_{C_1} \upharpoonright S = f_{C_2} \upharpoonright S$ for every $C_1, C_2 \in \mathscr{C}_{\mathcal{G} \setminus S}$.

Let $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a smooth tree decomposition of width k for the graph \mathcal{G} . Again we choose an arbitrary root r in \mathcal{T} .

For every $t \in V(\mathcal{T})$ we define

 $\underline{\mathscr{C}_t} := \big\{ C \ \big| \ C = \emptyset \text{ or } C \text{ a connected component of } \mathcal{G}_{\leq t} \setminus B_t \big\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Every nonempty $C \in \mathscr{C}_t$, i.e., a connect component in $\mathcal{G}_{\leq t} \setminus B_t$, is a connected component of $\mathcal{G} \setminus B_t$.

Proof.

Clearly there is a connected component C' in $\mathcal{G} \setminus B_t$ with $C \subseteq C'$.

Assume that $C' \setminus C \neq \emptyset$. Then there is and edge $\{u, v\} \in E(\mathcal{G})$ with $u \in V(\mathcal{G}_{\leq t}) \setminus B_t$ and $v \in V(\mathcal{G}) \setminus V(\mathcal{G}_{\leq t})$.

But then, $\{u, v\}$ is not contained in any bag of the tree decomposition.

Let t_1 be a child of t. Then for every nonempty $C_1 \in \mathscr{C}_{t_1}$ there is a unique $C \in \mathscr{C}_t$ with $C_1 \subseteq C$, and $C_1 \cap C' = \emptyset$ for all other $C' \in \mathscr{C}_t$.

Proof.

Let C_1 be a connected component of $\mathcal{G}_{\leq t_1} \setminus B_{t_1}$.

Observe that

$$\mathcal{G}_{\leq t_1} \setminus B_{t_1} \subseteq \mathcal{G}_{\leq t} \setminus B_t,$$

so C_1 is connected in $\mathcal{G}_{\leq t} \setminus B_t$, and the result follows.

Let t be a node in \mathcal{T} with children t_1, \ldots, t_n . And let $C \in \mathscr{C}_t$ be nonempty. Then, there is a unique $i \in [m]$ such that

$$C \subseteq \bigcup \mathscr{C}_{t_i} \cup \{v\}$$
 where $\{v\} = B_{t_i} \setminus B_t$.

Intuitively, C is shattered, i.e., broken into several smaller connected components, by the bag of exactly one child of t.

Let t_1, t_2 be two distinct children of t. For every $i \in [2]$, let v_i be the vertex in \mathcal{G} with $\{v_i\} = B_{t_i} \setminus B_t$; and $C_i \in \mathscr{C}_{t_i}$. Then for every $C \in \mathscr{C}_t$

$$(C_1 \cup \{v_1\}) \cap C = \emptyset$$
 or $(C_2 \cup \{v_2\}) \cap C = \emptyset$.

Proof.

It is easy to see

$$(C_1 \cup \{v_1\}) \cap (C_2 \cup \{v_2\}) = \emptyset.$$

Assume $(C_1 \cup \{v_1\}) \cap C \neq \emptyset \neq (C_2 \cup \{v_2\}) \cap C$. Then there is a path P from $C_1 \cup \{v_1\}$ to $C_2 \cup \{v_2\}$ in C. Without loss of generality, we can assume that all vertices on P are in

$$(C_1 \cup \{v_1\}) \cup (C_2 \cup \{v_2\}).$$

Then there is an edge between $C_1 \cup \{v_1\}$ and $C_2 \cup \{v_2\}$, which cannot be contained in any bag of the tree decomposition.

Let ${\mathcal H}$ be a second graph for which we want to decide whether ${\mathcal G}$ and ${\mathcal H}$ are isomorphic.

We define (the set of pairs of separators and connected components)

 $\frac{\mathscr{SC}(\mathcal{H})}{\mathscr{SC}(\mathcal{H})} := \left\{ (S, C) \mid S \subseteq V(\mathscr{H}) \text{ with } |S| = k + 1 \\ \text{and } (C = \emptyset \text{ or } C \text{ a connected component of } \mathcal{H} \setminus S) \right\}$

Definition

Let $t \in V(\mathcal{T})$, $S_1 := B_t$, and $C_1 \in \mathscr{C}_t$. Moreover, let $(S_2, C_2) \in \mathscr{SC}(\mathcal{H})$. We say (S_1, C_1) and (S_2, C_2) are *f*-isomorphic for a function $f : S_1 \to S_2$, denoted by $(S_1, C_1) \equiv^f (S_2, C_2)$, if there is a function $F : S_1 \cup C_1 \to S_2 \cup C_2$ such that (F1) $F \upharpoonright S_1 = f$;

(F2) for every $u, v \in S_1 \cup C_1$ we have $\{u, v\} \in E(\mathcal{G})$ if and only if $\{F(u), F(v)\} \in E(\mathcal{H})$.

That is, F is an isomorphism between $\mathcal{G}[S_1 \cup C_1]$ and $\mathcal{H}[S_2 \cup C_2]$ which extends f.

Our goal is to compute for each $t \in V(\mathcal{T})$ the set

 $\underbrace{\mathscr{F}_t}_{} := \big\{ (f, B_t, C_1, S_2, C_2) \mid (B_t, C_1) \equiv^f (S_2, C_2) \\ \text{where } C_1 \in \mathscr{C}_t \text{ and } (S_2, C_2) \in \mathscr{SC}(\mathcal{H}) \big\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

using dynamic programming.

Let t be a leaf of \mathcal{T} .

Then $\mathscr{C}_t = \{\emptyset\}$. Hence,

$$\mathscr{F}_t := \left\{ (f, B_t, \emptyset, S_2, \emptyset) \mid (B_t, \emptyset) \equiv^f (S, \emptyset) \\ \text{where } S_2 \subseteq V(\mathcal{H}) \text{ with } |S_2| = k + 1 \right\}.$$

This can be computed in time

 $(k+1)! \cdot |V(\mathcal{H})|^{O(k)}.$

Let t be a node in \mathcal{T} with children t_1, \ldots, t_m for some $m \ge 1$.

Now let $C_1 \in \mathscr{C}_t$. By Lemma 3, there is a unique $i \in [m]$ such that

$$C_1 \subseteq \bigcup \mathscr{C}_{t_i} \cup \{v\}$$
 where $\{v\} = B_{t_i} \setminus B_{t_i}$

For every $(S_2, C_2) \in \mathscr{SC}(\mathcal{H})$ and every $f : B_t \to S_2$ we want to check whether $(B_t, C_1) \equiv^f (S_2, C_2)$.

Non-leaves (2)

 $(B_t, C_1) \equiv^f (S_2, C_2)$ if and only if for some $v' \in V(\mathcal{H}) \setminus S_2$ and $u \in S_2$ if we let - $S'_2 := S_2 \cup \{v'\} \setminus \{u\}$,

- $\mathscr{C}_1^* := \{ C^* \mid C^* \text{ a connected component of } \mathcal{G} \setminus B_{t_i} \text{ with } C^* \subseteq C_1 \}$ and $\mathscr{C}_2^* := \{ C^* \mid C^* \text{ a connected component of } \mathcal{H} \setminus S'_2 \text{ with } C^* \subseteq C_2 \},$
- $f':B_{t_i}
 ightarrow S_2'$ defined by

$$f'(w) = egin{cases} v' & ext{if } w = v \ f(w) & ext{otherwise}, \end{cases}$$

then

- (N1) every connected component of $\mathcal{H} \setminus S'_2$ is either contained in or disjoint with C_2 ;
- (N2) $C_2 \subseteq \bigcup \mathscr{C}_2^* \cup \{v'\};$
- (N3) there is a bijection $h: \mathscr{C}_1^* \to \mathscr{C}_2^*$ such that for every $C^* \in \mathscr{C}_1^*$

$$(B_{t_i}, C^*) \equiv^{f'} (S'_2, h(C^*)).$$

(N1) and (N2) can be checked in polynomial time.

To verify (N3) we create a bipartite graph \mathcal{B} :

- 1. the left part is \mathscr{C}_1^* and the right part $\mathscr{C}_2^*;$
- 2. there is an edge between $C_1^* \in \mathscr{C}_1^*$ and $C_2^* \in \mathscr{C}_2^*$ if $(B_{t_i}, C_1^*) \equiv^{f'} (S'_2, C_2^*)$.

Then (N3) holds if and only if there is a perfect matching in \mathcal{B} , which can be decided in polynomial time.

 \mathcal{G} and \mathcal{H} are isomorphic if and only if for some $S_2 \subseteq V(\mathcal{H})$ with $|S_2| = k + 1$ and $f: B_r \to S_2$ there is a perfect matching in the following bipartite graph.

1. The left part is \mathscr{C}_r and the right part $\mathscr{C}^* := \{ C_2 \mid (S_2, C_2) \in \mathscr{SC}(\mathcal{H}) \}.$

2. There is an edge between a $C_1 \in \mathscr{C}_r$ and a $C_2 \in \mathscr{C}^*$ if $(B_r, C_1) \equiv^r (S_2, C^*)$.

QUESTIONS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Can we modify the algorithm so that it doesn't need a smooth tree decomposition as a part of the input? And even without computing such a tree decomposition inside the algorithm?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

THANK YOU

<□ > < @ > < E > < E > E のQ @