
Treewidth (III)

Yijia Chen

Shanghai Jiao Tong University

May 3, 2012

Graph isomorphism

Definition
Let G and H be two graphs. A function f : V (G)→ V (H) is an isomorphism if

(GI1) f is a bijection;

(GI2) for every u, v ∈ V (G) we have {u, v} ∈ E(G) if and only if
{f (u), f (v)} ∈ E(H).

If such an f exists, then G and H are isomorphic.

Graph Isomorphism (GI) problem

GI
Input: Two graphs G and H.

Problem: Decides whether G and H are isomorphic.

Remark.

1. GI is in NP.

2. GI is not NP-complete, unless Polynomial Hierarchy collapses.

3. We don’t know whether GI is P-hard.

4. Some people believe GI is in P, but we don’t even have a quantum
polynomial time algorithm.

GI on bounded treewidth graphs

Theorem (Bodlaender, 1990)

Let k ∈ N. Then there is a polynomial time algorithm which decides GI on
graphs G with tw(G) ≤ k.

I will present an algorithm deciding the problem

Input: Two graphs G and H and a smooth tree decomposition of
G of width k.

Problem: Decides whether G and H are isomorphic.

in time
(|V (G)|+ |V (H)|)O(k).

Isomorphism via connected components

Let CG be the set of connected components of G and CH the set of connected
components of H.

Then G and H are isomorphic if and only if there is a bijection h : CG → CH
such that G[C] and H[h(C)] are isomorphic for every C ∈ CG .

This is equivalent to that there is a perfect matching in the following bipartite
graph.

1. The left part is CG and the right part CH.

2. There is an edge between a C ∈ CG and a C ′ ∈ CH if G[C] and H[C ′] are
isomorphic.

Isomorphism via separators

Let S ⊆ V (G) and

CG\S :=
{
C
∣∣ C a connected component of G \ S

}
.

Then G and H are isomorphic if and only if there is a set S ′ ⊆ V (H), a
function h : CG\S → CH\S′ and functions fC : S ∪ C → S ′ ∪ h(C) for all
C ∈ CG\S such that

1. |S | = |S ′|;
2. h is a bijection;

3. fC is an isomorphism between G[S ∪ C] and H[S ′ ∪ h(C)] for every
C ∈ CG\S , and fC (S) = S ′;

4. fC1 � S = fC2 � S for every C1,C2 ∈ CG\S .

The sets Ct

Let
(
T , (Bt)t∈V (T)

)
be a smooth tree decomposition of width k for the graph

G. Again we choose an arbitrary root r in T .

For every t ∈ V (T) we define

Ct :=
{
C
∣∣ C = ∅ or C a connected component of G≤t \ Bt

}
.

Connected components via tree decompositions (1)

Lemma
Every nonempty C ∈ Ct , i.e., a connect component in G≤t \ Bt , is a connected
component of G \ Bt .

Proof.
Clearly there is a connected component C ′ in G \ Bt with C ⊆ C ′.

Assume that C ′ \ C 6= ∅. Then there is and edge {u, v} ∈ E(G) with
u ∈ V (G≤t) \ Bt and v ∈ V (G) \ V (G≤t).

But then, {u, v} is not contained in any bag of the tree decomposition.

Connected components via tree decompositions (2)

Lemma
Let t1 be a child of t. Then for every nonempty C1 ∈ Ct1 there is a unique
C ∈ Ct with C1 ⊆ C, and C1 ∩ C ′ = ∅ for all other C ′ ∈ Ct .

Proof.
Let C1 be a connected component of G≤t1 \ Bt1 .

Observe that
G≤t1 \ Bt1 ⊆ G≤t \ Bt ,

so C1 is connected in G≤t \ Bt , and the result follows.

Connected components via tree decompositions (3)

Lemma
Let t be a node in T with children t1, . . . , tn. And let C ∈ Ct be nonempty.
Then, there is a unique i ∈ [m] such that

C ⊆
⋃

Cti ∪ {v} where {v} = Bti \ Bt .

Intuitively, C is shattered, i.e., broken into several smaller connected
components, by the bag of exactly one child of t.

Connected components via tree decompositions (4)

Lemma
Let t1, t2 be two distinct children of t. For every i ∈ [2], let vi be the vertex in
G with {vi} = Bti \ Bt ; and Ci ∈ Cti . Then for every C ∈ Ct

(C1 ∪ {v1}) ∩ C = ∅ or (C2 ∪ {v2}) ∩ C = ∅.

Connected components via tree decompositions (5)

Proof.
It is easy to see (

C1 ∪ {v1}
)
∩
(
C2 ∪ {v2}

)
= ∅.

Assume (C1 ∪ {v1}) ∩ C 6= ∅ 6= (C2 ∪ {v2}) ∩ C . Then there is a path P from
C1 ∪ {v1} to C2 ∪ {v2} in C . Without loss of generality, we can assume that all
vertices on P are in (

C1 ∪ {v1}
)
∪
(
C2 ∪ {v2}

)
.

Then there is an edge between C1 ∪ {v1} and C2 ∪ {v2}, which cannot be
contained in any bag of the tree decomposition.

Decompose H

Let H be a second graph for which we want to decide whether G and H are
isomorphic.

We define (the set of pairs of separators and connected components)

S C (H) :=
{

(S ,C)
∣∣ S ⊆ V (H) with |S | = k + 1

and (C = ∅ or C a connected component of H \ S)
}

Partial isomorphisms

Definition
Let t ∈ V (T), S1 := Bt , and C1 ∈ Ct . Moreover, let (S2,C2) ∈ S C (H). We
say (S1,C1) and (S2,C2) are f -isomorphic for a function f : S1 → S2, denoted
by (S1,C1) ≡f (S2,C2), if there is a function F : S1 ∪ C1 → S2 ∪ C2 such that

(F1) F � S1 = f ;

(F2) for every u, v ∈ S1 ∪ C1 we have {u, v} ∈ E(G) if and only if
{F (u),F (v)} ∈ E(H).

That is, F is an isomorphism between G[S1 ∪ C1] and H[S2 ∪ C2] which extends
f .

Extending partial isomorphisms

Our goal is to compute for each t ∈ V (T) the set

Ft :=
{

(f ,Bt ,C1,S2,C2)
∣∣ (Bt ,C1) ≡f (S2,C2)

where C1 ∈ Ct and (S2,C2) ∈ S C (H)
}
.

using dynamic programming.

Leaves

Let t be a leaf of T .

Then Ct = {∅}. Hence,

Ft :=
{

(f ,Bt , ∅, S2, ∅)
∣∣ (Bt , ∅) ≡f (S , ∅)

where S2 ⊆ V (H) with |S2| = k + 1
}
.

This can be computed in time

(k + 1)! · |V (H)|O(k).

Non-leaves (1)

Let t be a node in T with children t1, . . . , tm for some m ≥ 1.

Now let C1 ∈ Ct . By Lemma 3, there is a unique i ∈ [m] such that

C1 ⊆
⋃

Cti ∪ {v} where {v} = Bti \ Bt .

For every (S2,C2) ∈ S C (H) and every f : Bt → S2 we want to check whether
(Bt ,C1) ≡f (S2,C2).

Non-leaves (2)

(Bt ,C1) ≡f (S2,C2) if and only if for some v ′ ∈ V (H) \ S2 and u ∈ S2 if we let

- S ′2 := S2 ∪ {v ′} \ {u},
- C ∗1 :=

{
C∗
∣∣ C∗ a connected component of G \ Bti with C∗ ⊆ C1

}
and

C ∗2 :=
{
C∗
∣∣ C∗ a connected component of H \ S ′2 with C∗ ⊆ C2

}
,

- f ′ : Bti → S ′2 defined by

f ′(w) =

{
v ′ if w = v

f (w) otherwise,

then

(N1) every connected component of H \ S ′2 is either contained in or disjoint
with C2;

(N2) C2 ⊆
⋃

C ∗2 ∪ {v ′};
(N3) there is a bijection h : C ∗1 → C ∗2 such that for every C∗ ∈ C ∗1

(Bti ,C
∗) ≡f ′ (S ′2, h(C∗)).

Non-leaves (3)

(N1) and (N2) can be checked in polynomial time.

To verify (N3) we create a bipartite graph B:

1. the left part is C ∗1 and the right part C ∗2 ;

2. there is an edge between C∗1 ∈ C ∗1 and C∗2 ∈ C ∗2 if (Bti ,C
∗
1) ≡f ′ (S ′2,C

∗
2).

Then (N3) holds if and only if there is a perfect matching in B, which can be
decided in polynomial time.

The final step

G and H are isomorphic if and only if for some S2 ⊆ V (H) with |S2| = k + 1
and f : Br → S2 there is a perfect matching in the following bipartite graph.

1. The left part is Cr and the right part C ∗ :=
{
C2

∣∣ (S2,C2) ∈ S C (H)
}

.

2. There is an edge between a C1 ∈ Cr and a C2 ∈ C ∗ if (Br ,C1) ≡f (S2,C
∗).

Questions

Without
(
T , (Bt)t∈V (T)

)

Can we modify the algorithm so that it doesn’t need a smooth tree
decomposition as a part of the input? And even without computing such a tree
decomposition inside the algorithm?

Thank you

	Graph isomorphism problems
	Graph isomorphism problems and treewidth
	Questions
	Last page

