Derandomization (I)

Yijia Chen
Shanghai Jiao Tong University

November 11, 2012

Randomized Computation

Probabilistic Turing machines

Definition

A probabilistic Turing machine (PTM) is a Turing machine with two transition functions δ_{0} and δ_{1}. To execute a PTM \mathbb{M} on an input x, we choose in each step independently with probability $1 / 2$ to apply the transition function δ_{0} and with probability $1 / 2$ to apply δ.

The machine only outputs 1 (Accept) or 0 (Reject). $\mathbb{M}(x)$ is the random variable corresponding to the value \mathbb{M} writes at the end of this process.
For a function $T: \mathbb{N} \rightarrow \mathbb{N}$, we say that \mathbb{M} runs in $T(n)$-time if for any input x, \mathbb{M} halts on x within $T(|x|)$ steps regardless of the random choices it makes.

BPTIME and BPP

Definition

For $T: \mathbb{N} \rightarrow \mathbb{N}$ and $L \subseteq\{0,1\}^{*}$, a PTM \mathbb{M} decides L in time $T(n)$, if for every $x \in\{0,1\}^{*}$, the machine \mathbb{M} halts in $T(|x|)$ steps (i.e., \mathbb{M} runs in $T(n)$-time), and

$$
\operatorname{Pr}[\mathbb{M}(x)=L(x)] \geq \frac{2}{3},
$$

where $L(x)=1$ if $x \in L$ and $L(x)=0$ if $x \notin L$.
Then $\operatorname{BPTIME}(T(n))$ is the class of languages decided by PTMs in $O(T(n))$ time and

$$
\operatorname{BPP}:=\bigcup_{d \in \mathbb{N}} \operatorname{BPTIME}\left(n^{d}\right) .
$$

Theorem
$\mathbf{P} \subseteq \mathbf{B P P}$.
Remark. It is open whether $\mathbf{B P P} \subseteq \mathbf{N P}$ or $\mathbf{N P} \subseteq \mathbf{B P P}$.
Conjecture
$\mathbf{P}=\mathbf{B P P}$.

Theorem
$L \in \operatorname{BPP}$ if and only if there exists a polynomial-time $T M \mathbb{M}$ and a polynomial $p \in \mathbb{N}[X]$ such that for every $x \in\{0,1\}^{*}$,

$$
\operatorname{Pr}_{r \in\{0,1\}^{p(|x|)}}[\mathbb{M}(x, r)=L(x)] \geq \frac{2}{3} .
$$

Polynomial identity testing

Definition

An n-variable algebraic circuit is a directed acyclic graph with the sources labeled by a variable name from the set x_{1}, \ldots, x_{n}, and each non-source node has in-degree two and is labeled by an operator from the set $\{+,-, \times\}$. There is a single sink in the graph, i.e., the output node.

Definition

$$
\text { ZEROP }=\{C \mid C \text { an algebraic circuit that always outputs zero }\} .
$$

Why ZEROP looks difficult?

The polynomial

$$
\prod_{i \in[n]}\left(1+x_{i}\right)
$$

can be computed using a circuit of size $2 \cdot n$ but has 2^{n} terms in its coefficient representation.

Schwartz-Zippel Lemma

Lemma
Let $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial of total degree at most d and S a finite set of integers. When $a_{1}, a_{2}, \ldots, a_{n}$ are randomly chosen with replacement from S, then

$$
\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{n}\right) \neq 0\right] \geq 1-\frac{d}{|S|} .
$$

A naive algorithm

A circuit of size m on n variables defines a polynomial of degree at most 2^{m}.

1. Choose n random numbers x_{1}, \ldots, x_{n} from 1 to $10 \cdot 2^{m}$ (this requires $O(n \cdot m)$ random bits).
2. Evaluate the circuit C on x_{1}, \ldots, x_{n} to obtain an output y.
3. Accept if $y=0$, and reject otherwise.

Problematic: intermediate values as large as

$$
\left(10 \cdot 2^{m}\right)^{2^{m}}
$$

ZEROP $\in \mathbf{B P P}$

1. Choose n random numbers x_{1}, \ldots, x_{n} from 1 to $10 \cdot 2^{m}$.
2. Choose a random number $k \in\left[2^{2 \cdot m}\right]$ uniformly at random.
3. Evaluate the circuit C on x_{1}, \ldots, x_{n} modulo k to obtain an output y $\bmod k$ where $y=C\left(x_{1}, \ldots, x_{n}\right)$.
4. Accept if $y \bmod k=0$, and reject otherwise.

The correctness of the algorithm

Trivially $\operatorname{Pr}[\mathbb{M}$ accepts $C]=1$, if $C=0$. So assume $C \neq 0$, then we will show

$$
\operatorname{Pr}[\mathbb{M} \text { rejects } C] \geq \delta,
$$

where $\delta=1 /(4 \cdot m)$.
Let $S:=\left\{p_{1}, \ldots, p_{\ell}\right\}$ be the distinct prime factors of y. By the Prime Number Theorem,

$$
\operatorname{Pr}_{k \in\left[2^{2} \cdot m\right]}[k \text { is prime }] \geq \frac{1}{2 \cdot m}=2 \cdot \delta .
$$

y can have at most $\log y \leq 5 \cdot m \cdot 2^{m}$ distinct factors,

$$
\operatorname{Pr}[k \in S] \leq \frac{5 \cdot m \cdot 2^{m}}{2^{2 \cdot m}}<\delta
$$

Hence, $\operatorname{Pr}[k$ does not divide $y] \geq \operatorname{Pr}[k$ is a prime not in $S] \geq 2 \cdot \delta-\delta=\delta$.

Pseudorandom Generators

Definition

Let R be a distribution over $\{0,1\}^{m}, S \in \mathbb{N}$, and $\varepsilon>0$. Then R is an (S, ε)-pseudorandom distribution if for every circuit C of size at most S,

$$
\operatorname{Pr}[C(R)=1]-\operatorname{Pr}\left[C\left(U_{m}\right)=1\right] \mid<\varepsilon,
$$

where U_{m} is the uniform distribution over $\{0,1\}^{m}$.
Let $S: \mathbb{N} \rightarrow \mathbb{N}$ be a function. A 2^{n}-time computable function $G:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is an $S(\ell)$-pseudorandom generator if $|G(z)|=S(|z|)$ for every $z \in\{0,1\}^{*}$ and for every $\ell \in \mathbb{N}$ the distribution $G\left(U_{\ell}\right)$ is $\left(S(\ell)^{3}, 1 / 10\right)$-pseudorandom.

Derandomize BPP

Theorem
If there exists a $2^{[\ell / a\rceil}$-pseudorandom generator for some constant $a \in \mathbb{N}$ then $\mathbf{B P}=\mathbf{P}$.

Proof (1)

Let $L \in \mathbf{B P P}$. Assume that there is an algorithm \mathbb{A} that on input $x \in\{0,1\}^{n}$ runs in time $n^{d}=2^{d \cdot a \cdot \log n / a}$ for some constant $d \in \mathbb{N}$, such that

$$
\operatorname{Pr}_{r \in\{0,1\}^{n^{d}}}[\mathbb{A}(x, r)=L(x)] \geq \frac{2}{3} .
$$

Consider the deterministic algorithm \mathbb{B} :

$$
\begin{aligned}
& \text { On input } x \in\{0,1\}^{n} \text {, go over all } z \in\{0,1\}^{d \cdot a \cdot \log n} \text {, compute } \\
& \mathbb{A}(x, G(z)) \text { and output the majority answer. }
\end{aligned}
$$

\mathbb{B} runs in time $2^{O(d \cdot a \cdot \log n)}=n^{O(1)}$.

Proof (2)

Claim: Let $n \in \mathbb{N}$ and $x \in\{0,1\}^{n}$

$$
\operatorname{Pr}_{z \in\{0,1\}^{d} \cdot \cdot \log n}[\mathbb{A}(x, G(z))=L(x)] \geq \frac{2}{3}-0.1 .
$$

Assume otherwise, then

$$
\operatorname{Pr}_{r \in\{0,1\}^{n^{d}}}[\mathbb{A}(x, r)=L(x)]-\operatorname{Pr}_{z \in\{0,1\}^{d \cdot a \cdot l o g} n}[\mathbb{A}(x, G(z))=L(x)]>0.1 .
$$

Consider the circuit C defined by

$$
C(r) \mapsto \mathbb{A}(x, r) .
$$

If $L(x)=1$, then $\operatorname{Pr}\left[C\left(U_{n^{d}}\right)=1\right]-\operatorname{Pr}\left[C\left(G\left(U_{d \cdot a \cdot \log n}\right)\right)=1\right]>0.1$,
If $L(x)=0$, then $\operatorname{Pr}\left[C\left(G\left(U_{d \cdot a \cdot \log n}\right)\right)=1\right]-\operatorname{Pr}\left[C\left(U_{n^{d}}\right)=1\right]>0.1$.

Thank you

