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Randomized Computation



Probabilistic Turing machines

Definition
A probabilistic Turing machine (PTM) is a Turing machine with two transition
functions δ0 and δ1. To execute a PTM M on an input x , we choose in each
step independently with probability 1/2 to apply the transition function δ0 and
with probability 1/2 to apply δ.

The machine only outputs 1 (Accept) or 0 (Reject). M(x) is the random
variable corresponding to the value M writes at the end of this process.

For a function T : N→ N, we say that M runs in T (n)-time if for any input x ,
M halts on x within T (|x |) steps regardless of the random choices it makes.



BPTIME and BPP

Definition
For T : N→ N and L ⊆ {0, 1}∗, a PTM M decides L in time T (n), if for every
x ∈ {0, 1}∗, the machine M halts in T (|x |) steps (i.e., M runs in T (n)-time),
and

Pr[M(x) = L(x)] ≥ 2

3
,

where L(x) = 1 if x ∈ L and L(x) = 0 if x /∈ L.

Then BPTIME(T (n)) is the class of languages decided by PTMs in O(T (n))
time and

BPP :=
⋃
d∈N

BPTIME(nd).



Theorem
P ⊆ BPP.

Remark. It is open whether BPP ⊆ NP or NP ⊆ BPP.

Conjecture

P = BPP.



Theorem
L ∈ BPP if and only if there exists a polynomial-time TM M and a polynomial
p ∈ N[X ] such that for every x ∈ {0, 1}∗,

Pr
r∈{0,1}p(|x|)

[
M(x , r) = L(x)

]
≥ 2

3
.



Polynomial identity testing

Definition
An n-variable algebraic circuit is a directed acyclic graph with the sources
labeled by a variable name from the set x1, . . . , xn, and each non-source node
has in-degree two and is labeled by an operator from the set {+,−,×}.
There is a single sink in the graph, i.e., the output node.

Definition

ZEROP =
{

C | C an algebraic circuit that always outputs zero
}
.



Why ZEROP looks difficult?

The polynomial ∏
i∈[n]

(1 + xi )

can be computed using a circuit of size 2 · n but has 2n terms in its coefficient
representation.



Schwartz-Zippel Lemma

Lemma
Let p(x1, x2, . . . , xn) be a polynomial of total degree at most d and S a finite
set of integers. When a1, a2, . . . , an are randomly chosen with replacement from
S, then

Pr
[
p(a1, a2, . . . , an) 6= 0

]
≥ 1− d

|S | .



A naive algorithm

A circuit of size m on n variables defines a polynomial of degree at most 2m.

1. Choose n random numbers x1, . . . , xn from 1 to 10 · 2m (this

requires O(n ·m) random bits).

2. Evaluate the circuit C on x1, . . . , xn to obtain an output y.

3. Accept if y = 0, and reject otherwise.

Problematic: intermediate values as large as

(10 · 2m)2
m

.



ZEROP ∈ BPP

1. Choose n random numbers x1, . . . , xn from 1 to 10 · 2m.

2. Choose a random number k ∈ [22·m] uniformly at random.

3. Evaluate the circuit C on x1, . . . , xn modulo k to obtain an output y
mod k where y = C(x1, . . . , xn).

4. Accept if y mod k = 0, and reject otherwise.



The correctness of the algorithm

Trivially Pr[M accepts C ] = 1, if C = 0. So assume C 6= 0, then we will show

Pr[M rejects C ] ≥ δ,

where δ = 1/(4 ·m).

Let S :=
{

p1, . . . , p`

}
be the distinct prime factors of y .

By the Prime Number Theorem,

Pr
k∈[22·m ]

[
k is prime

]
≥ 1

2 ·m = 2 · δ.

y can have at most log y ≤ 5 ·m · 2m distinct factors,

Pr[k ∈ S ] ≤ 5 ·m · 2m

22·m < δ

Hence, Pr
[
k does not divide y

]
≥ Pr[k is a prime not in S ] ≥ 2 · δ − δ = δ.



Pseudorandom Generators



Definition
Let R be a distribution over {0, 1}m, S ∈ N, and ε > 0. Then R is an
(S , ε)-pseudorandom distribution if for every circuit C of size at most S ,

Pr[C(R) = 1]− Pr[C(Um) = 1]| < ε,

where Um is the uniform distribution over {0, 1}m.

Let S : N→ N be a function. A 2n-time computable function
G : {0, 1}∗ → {0, 1}∗ is an S(`)-pseudorandom generator if |G(z)| = S(|z |) for
every z ∈ {0, 1}∗ and for every ` ∈ N the distribution G(U`) is
(S(`)3, 1/10)-pseudorandom.



Derandomize BPP

Theorem
If there exists a 2d`/ae-pseudorandom generator for some constant a ∈ N then
BPP = P.



Proof (1)

Let L ∈ BPP. Assume that there is an algorithm A that on input x ∈ {0, 1}n
runs in time nd = 2d·a·log n/a for some constant d ∈ N, such that

Pr
r∈{0,1}nd

[
A(x , r) = L(x)

]
≥ 2

3
.

Consider the deterministic algorithm B:

On input x ∈ {0, 1}n, go over all z ∈ {0, 1}d·a·log n, compute
A(x ,G(z)) and output the majority answer.

B runs in time 2O(d·a·log n) = nO(1).



Proof (2)

Claim: Let n ∈ N and x ∈ {0, 1}n

Pr
z∈{0,1}d·a·log n

[
A(x ,G(z)) = L(x)

]
≥ 2

3
− 0.1.

Assume otherwise, then

Pr
r∈{0,1}nd

[
A(x , r) = L(x)

]
− Pr

z∈{0,1}d·a·log n

[
A(x ,G(z)) = L(x)

]
> 0.1.

Consider the circuit C defined by

C(r) 7→ A(x , r).

If L(x) = 1, then Pr
[
C(Und ) = 1

]
− Pr

[
C(G(Ud·a·log n)) = 1

]
> 0.1,

If L(x) = 0, then Pr
[
C(G(Ud·a·log n)) = 1

]
− Pr

[
C(Und ) = 1

]
> 0.1.



Thank you
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