Derandomization (I)

Yijia Chen Shanghai Jiao Tong University

November 11, 2012

RANDOMIZED COMPUTATION

Probabilistic Turing machines

Definition

A probabilistic Turing machine (PTM) is a Turing machine with two transition functions δ_0 and δ_1 . To execute a PTM $\mathbb M$ on an input x, we choose in each step independently with probability 1/2 to apply the transition function δ_0 and with probability 1/2 to apply δ .

The machine only outputs 1 (Accept) or 0 (Reject). $\mathbb{M}(x)$ is the random variable corresponding to the value \mathbb{M} writes at the end of this process.

For a function $T: \mathbb{N} \to \mathbb{N}$, we say that \mathbb{M} runs in T(n)-time if for any input x, \mathbb{M} halts on x within T(|x|) steps regardless of the random choices it makes.

BPTIME and BPP

Definition

For $T: \mathbb{N} \to \mathbb{N}$ and $L \subseteq \{0,1\}^*$, a PTM \mathbb{M} decides L in time T(n), if for every $x \in \{0,1\}^*$, the machine \mathbb{M} halts in T(|x|) steps (i.e., \mathbb{M} runs in T(n)-time), and

$$\Pr[\mathbb{M}(x) = L(x)] \ge \frac{2}{3},$$

where L(x) = 1 if $x \in L$ and L(x) = 0 if $x \notin L$.

Then $\mathbf{BPTIME}(T(n))$ is the class of languages decided by PTMs in O(T(n)) time and

$$\mathsf{BPP} := \bigcup_{d \in \mathbb{N}} \mathsf{BPTIME}(n^d).$$

Theorem

 $P \subseteq BPP$.

Remark. It is open whether $BPP \subseteq NP$ or $NP \subseteq BPP$.

Conjecture

 $\mathbf{P} = \mathbf{BPP}$.

Theorem

 $L \in \mathsf{BPP}$ if and only if there exists a polynomial-time $\mathsf{TM}\ \mathbb{M}$ and a polynomial $p \in \mathbb{N}[X]$ such that for every $x \in \{0,1\}^*$,

$$\Pr_{r \in \{0,1\}^{p(|x|)}} \left[\mathbb{M}(x,r) = L(x) \right] \ge \frac{2}{3}.$$

Polynomial identity testing

Definition

An *n*-variable algebraic circuit is a directed acyclic graph with the sources labeled by a variable name from the set x_1, \ldots, x_n , and each non-source node has in-degree two and is labeled by an operator from the set $\{+, -, \times\}$. There is a single sink in the graph, i.e., the *output* node.

Definition

 $\mathsf{ZEROP} = \big\{ \textit{C} \mid \textit{C} \text{ an algebraic circuit that always outputs zero} \big\}.$

Why ZEROP looks difficult?

The polynomial

$$\prod_{i\in[n]}(1+x_i)$$

can be computed using a circuit of size $2 \cdot n$ but has 2^n terms in its coefficient representation.

Schwartz-Zippel Lemma

Lemma

Let $p(x_1, x_2, ..., x_n)$ be a polynomial of total degree at most d and S a finite set of integers. When $a_1, a_2, ..., a_n$ are randomly chosen with replacement from S, then

$$\Pr\left[p(a_1,a_2,\ldots,a_n)\neq 0\right]\geq 1-\frac{d}{|S|}.$$

A naive algorithm

A circuit of size m on n variables defines a polynomial of degree at most 2^m .

- 1. Choose n random numbers x_1, \ldots, x_n from 1 to $10 \cdot 2^m$ (this requires $O(n \cdot m)$ random bits).
- 2. Evaluate the circuit C on x_1, \ldots, x_n to obtain an output y.
- 3. Accept if y = 0, and reject otherwise.

Problematic: intermediate values as large as

$$(10\cdot 2^m)^{2^m}.$$

ZEROP ∈ **BPP**

- 1. Choose *n* random numbers x_1, \ldots, x_n from 1 to $10 \cdot 2^m$.
- 2. Choose a random number $k \in [2^{2 \cdot m}]$ uniformly at random.
- 3. Evaluate the circuit C on x_1, \ldots, x_n modulo k to obtain an output y mod k where $y = C(x_1, \ldots, x_n)$.
- 4. Accept if $y \mod k = 0$, and reject otherwise.

The correctness of the algorithm

Trivially $\Pr[\mathbb{M} \text{ accepts } C] = 1$, if C = 0. So assume $C \neq 0$, then we will show $\Pr[\mathbb{M} \text{ rejects } C] \geq \delta,$

where $\delta = 1/(4 \cdot m)$.

Let $S := \{p_1, \dots, p_\ell\}$ be the distinct prime factors of y. By the Prime Number Theorem,

$$\Pr_{k \in [2^{2 \cdot m}]} \left[k \text{ is prime} \right] \ge \frac{1}{2 \cdot m} = 2 \cdot \delta.$$

y can have at most $\log y \leq 5 \cdot m \cdot 2^m$ distinct factors,

$$\Pr[k \in S] \le \frac{5 \cdot m \cdot 2^m}{2^{2 \cdot m}} < \delta$$

Hence, $\Pr\left[k \text{ does not divide } y\right] \geq \Pr[k \text{ is a prime not in } S] \geq 2 \cdot \delta - \delta = \delta.$

Pseudorandom Generators

Definition

Let R be a distribution over $\{0,1\}^m$, $S \in \mathbb{N}$, and $\varepsilon > 0$. Then R is an (S,ε) -pseudorandom distribution if for every circuit C of size at most S,

$$\Pr[\textit{C(R)} = 1] - \Pr[\textit{C(U_m)} = 1]| < \varepsilon,$$

where U_m is the uniform distribution over $\{0,1\}^m$.

Let $S: \mathbb{N} \to \mathbb{N}$ be a function. A 2^n -time computable function $G: \{0,1\}^* \to \{0,1\}^*$ is an $S(\ell)$ -pseudorandom generator if |G(z)| = S(|z|) for every $z \in \{0,1\}^*$ and for every $\ell \in \mathbb{N}$ the distribution $G(U_\ell)$ is $(S(\ell)^3, 1/10)$ -pseudorandom.

Derandomize **BPP**

Theorem

If there exists a $2^{\lceil \ell/a \rceil}$ -pseudorandom generator for some constant $a \in \mathbb{N}$ then $\mathsf{BPP} = \mathsf{P}.$

Proof (1)

Let $L \in \mathbf{BPP}$. Assume that there is an algorithm \mathbb{A} that on input $x \in \{0,1\}^n$ runs in time $n^d = 2^{d \cdot a \cdot \log n/a}$ for some constant $d \in \mathbb{N}$, such that

$$\Pr_{r \in \{0,1\}^{n^d}} \left[\mathbb{A}(x,r) = L(x) \right] \ge \frac{2}{3}.$$

Consider the *deterministic algorithm* B:

On input $x \in \{0,1\}^n$, go over all $z \in \{0,1\}^{d \cdot a \cdot \log n}$, compute $\mathbb{A}(x,G(z))$ and output the majority answer.

 \mathbb{B} runs in time $2^{O(d \cdot a \cdot \log n)} = n^{O(1)}$.

Proof (2)

Claim: Let $n \in \mathbb{N}$ and $x \in \{0,1\}^n$

$$\Pr_{z \in \{0,1\}^{d \cdot a \cdot \log n}} \left[\mathbb{A}(x, G(z)) = L(x) \right] \ge \frac{2}{3} - 0.1.$$

Assume otherwise, then

$$\Pr_{r \in \{0,1\}^{n^d}} \left[\mathbb{A}(x,r) = L(x) \right] - \Pr_{z \in \{0,1\}^{d \cdot a \cdot \log n}} \left[\mathbb{A}(x,G(z)) = L(x) \right] > 0.1.$$

Consider the circuit C defined by

$$C(r) \mapsto \mathbb{A}(x,r)$$
.

$$\begin{split} &\text{If } \mathit{L}(x) = 1 \text{, then } \Pr\left[\mathit{C}(\mathit{U}_{\mathit{n}^{\mathit{d}}}) = 1\right] - \Pr\left[\mathit{C}(\mathit{G}(\mathit{U}_{\mathit{d} \cdot a \cdot \log n})) = 1\right] > 0.1 \text{,} \\ &\text{If } \mathit{L}(x) = 0 \text{, then } \Pr\left[\mathit{C}(\mathit{G}(\mathit{U}_{\mathit{d} \cdot a \cdot \log n})) = 1\right] - \Pr\left[\mathit{C}(\mathit{U}_{\mathit{n}^{\mathit{d}}}) = 1\right] > 0.1 \text{.} \end{split}$$

