Derandomization (II)

Yijia Chen
Shanghai Jiao Tong University

November 18, 2012

Hardness

Worst-case hardness

Definition

Let $f:\{0,1\}^{*} \rightarrow\{0,1\}$ be a function. The worst-case hardness of f is defined by

$$
\begin{aligned}
& \mathrm{H}_{\text {wrs }}(f)(n):=\max \{S \in \mathbb{N} \mid \text { every circuit } C \text { of size at most } S \\
& \left.\qquad \quad \text { fails to compute } f \text { on some input in }\{0,1\}^{n}\right\}
\end{aligned}
$$

for every $n \in \mathbb{N}$.
Equivalently,

$$
\mathrm{H}_{\mathrm{wrs}}(f)(n):=\max \left\{S \in \mathbb{N} \mid \operatorname{Pr}_{x \in\{0,1\}^{n}}[C(x)=f(x)]<1\right.
$$

$$
\text { for every circuit } C \text { with }|C| \leq S\}
$$

Average-case hardness

Definition

Let $f:\{0,1\}^{*} \rightarrow\{0,1\}$ be a function. The average-case hardness of f is defined by

$$
\begin{aligned}
& \mathrm{H}_{\text {avg }}(f)(n):=\max \left\{S \in \mathbb{N} \left\lvert\, \operatorname{Pr}_{x \in\{0,1\}^{n}}[C(x)=f(x)]<\frac{1}{2}+\frac{1}{S}\right.\right. \\
&\quad \text { for every circuit } C \text { with }|C| \leq S\}
\end{aligned}
$$

for every $n \in \mathbb{N}$.

Examples

1. If $f \in \mathbf{B P P}$ then, since $\mathbf{B P P} \subseteq \mathbf{P} /$ poly, both $\mathrm{H}_{\text {wrs }}(f)$ and $\mathrm{H}_{\text {avg }}(f)$ are bounded by some polynomial.
2. It is conjectured that 3SAt has exponential worst-case hardness, i.e., $H_{\text {wrs }}(3 S A T) \geq 2^{\omega(n)}$. On the other hand, $\mathrm{H}_{\text {avg }}\left(3 \mathrm{SSAT}^{\prime}\right)$ is unclear.
3. If we trust the security of current cryptosystems, then we do believe that NP contains functions that are hard on the average.

Pseudorandom Generators

Theorem (Nisan and Wigderson, 1988)
For every time-constructible and nondecreasing function $S: \mathbb{N} \rightarrow \mathbb{N}$, if there exists a Boolean function $f \in \operatorname{DTIME}\left(2^{O(n)}\right)$ such that $H_{\text {avg }}(f) \geq S(n)$ for every $n \in \mathbb{N}$, then there exists an $S(\delta \cdot \ell)^{\delta}$-pseudorandom generator for some constant $\delta>0$.

Corollary
If there exists a Boolean function $f \in \mathbf{E}=\operatorname{DTIME}\left(2^{O(n)}\right)$ and $\varepsilon>0$ such that

$$
H_{\text {avg }}(f) \geq 2^{\varepsilon \cdot n},
$$

then there exists a $2^{[/ / a]}$-pseudorandom generator. Consequently, BPP $=\mathbf{P}$.

Yao's Theorem

Theorem (Yao, 1982)
Let Y be a distribution over $\{0,1\}^{m}$. Suppose that there exists an $S>10 \cdot n$ and an $\varepsilon>0$ such that for every circuit C of size at most $2 \cdot S$ and $i \in[m]$,

$$
\operatorname{Pr}_{r \in R}\left[C\left(r_{1}, \ldots, r_{i-1}\right)=r_{i}\right] \leq \frac{1}{2}+\frac{\varepsilon}{m}
$$

Then, Y is (S, ε)-pseudorandom.

Proof (1)

Let $i \in[0, m]$ and consider the distribution Y_{i} on $\{0,1\}^{m}$ generated by the following process.

1. Choose r_{1}, \ldots, r_{m} according to the distribution Y.
2. Choose $y_{i+1}, \ldots, y_{m} \in\{0,1\}$ independently and uniformly in random.
3. Output $\left(r_{1}, \ldots, r_{i}, y_{i+1}, \ldots, y_{m}\right)$.

Observe that

$$
Y_{0}=U_{m} \quad \text { and } \quad Y_{m}=Y
$$

Proof (2)

Now assume that Y is not (S, ε)-pseudorandom, i.e., there exists a circuit D of size at most S such that

$$
\left|\operatorname{Pr}[D(Y)=1]-\operatorname{Pr}\left[D\left(U_{m}\right)=1\right]\right| \geq \varepsilon
$$

We deduce

$$
\begin{aligned}
& \sum_{i \in[m]}\left|\operatorname{Pr}\left[D\left(Y_{i}\right)=1\right]-\operatorname{Pr}\left[D\left(Y_{i-1}\right)=1\right]\right| \\
& \quad \geq\left|\sum_{i \in[m]} \operatorname{Pr}\left[D\left(Y_{i}\right)=1\right]-\operatorname{Pr}\left[D\left(Y_{i-1}\right)=1\right]\right| \\
& \quad=\left|\operatorname{Pr}[D(Y)=1]-\operatorname{Pr}\left[D\left(U_{m}\right)=1\right]\right| \geq \varepsilon
\end{aligned}
$$

Thus, there is a $k \in[m]$ with

$$
\left|\operatorname{Pr}\left[D\left(Y_{k}\right)=1\right]-\operatorname{Pr}\left[D\left(Y_{k-1}\right)=1\right]\right| \geq \frac{\varepsilon}{m}
$$

Proof (3)

Without loss of generality we assume

$$
\operatorname{Pr}\left[D\left(Y_{k}\right)=1\right]-\operatorname{Pr}\left[D\left(Y_{k-1}\right)=1\right] \geq \frac{\varepsilon}{m}
$$

Roughly, it says that r_{k} is more easy to satisfy D then y_{k}.
We consider the following randomized algorithm $\mathbb{C}\left(r_{1}, \ldots, r_{k-1}\right)$

1. Choose $y_{k}, \ldots, y_{m} \in\{0,1\}$ independently and uniformly in random.
2. Simulate the circuit D on input $\left(r_{1}, \ldots, r_{k-1}, y_{k} \ldots, y_{m}\right)$.
3. If the simulation outputs 1 , then output y_{k}, otherwise $1-y_{k}$.

We want to calculate

$$
\operatorname{Pr}\left[\mathbb{C}\left(r_{1}, \ldots, r_{k-1}\right)=r_{k}\right]
$$

where the probability is taken over $\left(r_{1}, \ldots, r_{k-1}, r_{k}, \ldots, r_{m}\right) \in_{R} Y$ and the internal coin tosses of \mathbb{C} (i.e., y_{k}, \ldots, y_{m} in Line 1).

Proof (4)

Observe that the event E of $\mathbb{C}\left(r_{1}, \ldots, r_{k-1}\right)=r_{k}$ happens if and only if one of the following events happens:
(E_{1}) $D\left(r_{1}, \ldots, r_{k-1}, y_{k}, \ldots, y_{m}\right)=1$ and $r_{k}=y_{k}$.
($\left.E_{2}\right) D\left(r_{1}, \ldots, r_{k-1}, y_{k}, \ldots, y_{m}\right)=0$ and $r_{k} \neq y_{k}$.
Thus, $\operatorname{Pr}[E]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]$.
Then, we rewrite

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1}\right] & =1 / 2 \cdot \operatorname{Pr}\left[D\left(r_{1}, \ldots, r_{k-1}, y_{k}, \ldots, y_{m}\right)=1 \mid r_{k}=y_{k}\right] \\
& =1 / 2 \cdot \operatorname{Pr}\left[D\left(r_{1}, \ldots, r_{k-1}, r_{k}, y_{k+1}, \ldots, y_{m}\right)=1\right] \\
& =1 / 2 \cdot \operatorname{Pr}\left[D\left(y_{k}\right)=1\right],
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Pr}\left[E_{2}\right] & =1 / 2 \cdot \operatorname{Pr}\left[D\left(r_{1}, \ldots, r_{k-1}, y_{k}, \ldots, y_{m}\right)=0 \mid r_{k} \neq y_{k}\right] \\
& =1 / 2 \cdot\left(1-\operatorname{Pr}\left[D\left(r_{1}, \ldots, r_{k-1}, y_{k}, \ldots, y_{m}\right)=1 \mid r_{k} \neq y_{k}\right]\right)
\end{aligned}
$$

Proof (5)

On the other hand, we observe

$$
\begin{aligned}
\operatorname{Pr}\left[D\left(Y_{k-1}\right)=1\right]= & \operatorname{Pr}\left[D\left(r_{1}, \ldots, r_{k-1}, y_{k}, \ldots, y_{m}\right)=1\right] \\
= & 1 / 2 \cdot \operatorname{Pr}\left[D\left(r_{1}, \ldots, r_{k-1}, y_{k}, \ldots, y_{m}\right)=1 \mid r_{k}=y_{k}\right] \\
& +1 / 2 \cdot \operatorname{Pr}\left[D\left(r_{1}, \ldots, r_{k-1}, y_{k}, \ldots, y_{m}\right)=1 \mid r_{k} \neq y_{k}\right] \\
= & \operatorname{Pr}\left[E_{1}\right]+1 / 2-\operatorname{Pr}\left[E_{2}\right] .
\end{aligned}
$$

Put all the pieces together:

$$
\begin{aligned}
\operatorname{Pr}[E] & =\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right] \\
& =1 / 2+2 \cdot \operatorname{Pr}\left[E_{1}\right]-\operatorname{Pr}\left[D\left(Y_{k-1}\right)=1\right] \\
& =1 / 2+\operatorname{Pr}\left[D\left(Y_{k}\right)=1\right]-\operatorname{Pr}\left[D\left(Y_{k-1}\right)=1\right] \geq 1 / 2+\varepsilon / m .
\end{aligned}
$$

Proof (6)

Now we know

$$
\operatorname{Pr}\left[\mathbb{C}\left(r_{1}, \ldots, r_{k-1}\right)=r_{k}\right] \geq \frac{1}{2}+\frac{\varepsilon}{m}
$$

Recall the randomized algorithm \mathbb{C} :

1. Choose $y_{k}, \ldots, y_{m} \in\{0,1\}$ independently and uniformly in random.
2. Simulate the circuit D on input $\left(r_{1}, \ldots, r_{k-1}, y_{k} \ldots, y_{m}\right)$.
3. If the simulation outputs 1 , then output y_{k}, otherwise $1-y_{k}$.

Thus there must exist some fixed $z_{k}, \ldots, z_{m} \in\{0,1\}$ such that

$$
\operatorname{Pr}\left[D\left(r_{1}, \ldots, r_{k-1}, z_{k} \ldots, z_{m}\right)=r_{k}\right] \geq \frac{1}{2}+\frac{\varepsilon}{m}
$$

This is a contradiction, as $D\left(-, \ldots, z_{k}, \ldots, z_{m}\right)$ is a circuit of size at most 2.S.

First toy example

Lemma (One-bit generator)

If there exists an $f \in \mathbf{E}$ with $H_{\text {avg }}(f) \geq n^{4}$, then there is an $(\ell+1)$-pseudorandom generator.

Proof.
Let

$$
G(z)=z \circ f(z) .
$$

By Yao's lemma, it suffices to show that there does not exist a circuit C of size $2 \cdot(\ell+1)^{3}<\ell^{4}$ and a number $i \in[\ell+1]$ such that

$$
\operatorname{Pr}_{r=G\left(U_{\ell}\right)}\left[C\left(r_{1}, \ldots, r_{i-1}\right)=r_{i}\right]>\frac{1}{2}+\frac{1}{10 \cdot(\ell+1)}
$$

Assume $i=\ell+1$, otherwise trivial.

$$
\operatorname{Pr}_{z \in_{R}\{0,1\}^{\ell}}[C(z)=f(z)]>\frac{1}{2}+\frac{1}{10 \cdot(\ell+1)}>\frac{1}{2}+\frac{1}{\ell^{4}},
$$

which cannot hold under the assumption that $\mathrm{H}_{\text {avg }}(f) \geq n^{4}$.

Second toy example

Lemma (Two-bit generator)
If there exists an $f \in \mathbf{E}$ with $H_{\text {avg }}(f) \geq n^{4}$, then there is an $(\ell+2)$-pseudorandom generator.

Proof (1)

Let

$$
G(z)=z_{1} \ldots z_{\lceil\ell / 2\rceil} \circ f\left(z_{1}, \ldots, z_{\lceil\ell / 2\rceil}\right) \circ z_{\lceil\ell / 2\rceil+1} \ldots z_{\ell} \circ f\left(z_{\lceil\ell / 2\rceil}, \ldots, z_{\ell}\right)
$$

By Yao's lemma, it suffices to show that there does not exist a circuit C of size $2 \cdot(\ell+2)^{3}$ and a number $i \in[\ell+2]$ such that

$$
\operatorname{Pr}_{r=G\left(U_{\ell}\right)}\left[C\left(r_{1}, \ldots, r_{i-1}\right)=r_{i}\right]>\frac{1}{2}+\frac{1}{10 \cdot(\ell+2)}
$$

Trivial for $i \neq\lceil\ell / 2+1\rceil$ and $i \neq \ell+2$.
The case of $i=\lceil\ell / 2\rceil+1$ is the same as the 1 -bit case.

Proof (2)

Now consider $i=\ell+2$ and assume

$$
\operatorname{Pr}_{r \in_{R}\{0,1\}\lceil\ell / 2\rceil, r^{\prime} \in \in_{R}\{0,1\}\lfloor\lfloor\ell / 2\rfloor}\left[C\left(r \circ f(r) \circ r^{\prime}\right)=f\left(r^{\prime}\right)\right]>\frac{1}{2}+\frac{1}{10 \cdot(\ell+2)} .
$$

The Averaging Principle: If A is some event depending on two independent random variables X, Y, then there exists some x in the range of X such that

$$
\operatorname{Pr}_{Y}[A(x, Y)] \geq \operatorname{Pr}_{X, Y}[A(X, Y)]
$$

Thus for some fixed $r \in\{0,1\}^{\lceil\ell / 2\rceil}$

$$
\underset{r^{\prime} \in \in_{R}\{0,1\}\lfloor\ell / 2\rfloor}{\operatorname{Pr}}\left[C\left(r \circ f(r) \circ r^{\prime}\right)=f\left(r^{\prime}\right)\right]>\frac{1}{2}+\frac{1}{10 \cdot(\ell+2)}
$$

Proof (3)

Let

$$
D\left(r^{\prime}\right) \mapsto C\left(r \circ f(r) \circ r^{\prime}\right)
$$

be a circuit of size

$$
2 \cdot(\ell+1)^{3}+\lceil\ell / 2\rceil+1 \leq(\ell / 2)^{4}
$$

Hence,

$$
\underset{r^{\prime} \in_{R}\{0,1\}\lfloor\ell / 2\rfloor}{\operatorname{Pr}}\left[D\left(r^{\prime}\right)=f\left(r^{\prime}\right)\right]>\frac{1}{2}+\frac{1}{10 \cdot(\ell+2)}>\frac{1}{2}+\frac{1}{(\ell / 2)^{4}},
$$

contradicting the hardness of f.

Thank you

