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Hardness



Worst-case hardness

Definition
Let f : {0, 1}∗ → {0, 1} be a function. The worst-case hardness of f is defined
by

Hwrs(f )(n) := max
{
S ∈ N

∣∣ every circuit C of size at most S

fails to compute f on some input in {0, 1}n
}

for every n ∈ N.

Equivalently,

Hwrs(f )(n) := max
{
S ∈ N

∣∣∣ Pr
x∈{0,1}n

[C(x) = f (x)] < 1

for every circuit C with |C | ≤ S
}



Average-case hardness

Definition
Let f : {0, 1}∗ → {0, 1} be a function. The average-case hardness of f is
defined by

Havg(f )(n) := max
{
S ∈ N

∣∣∣ Pr
x∈{0,1}n

[C(x) = f (x)] <
1

2
+

1

S

for every circuit C with |C | ≤ S
}

for every n ∈ N.



Examples

1. If f ∈ BPP then, since BPP ⊆ P/poly, both Hwrs(f ) and Havg(f ) are
bounded by some polynomial.

2. It is conjectured that 3Sat has exponential worst-case hardness, i.e.,
Hwrs(3Sat) ≥ 2ω(n). On the other hand, Havg(3Sat) is unclear.

3. If we trust the security of current cryptosystems, then we do believe that
NP contains functions that are hard on the average.



Pseudorandom Generators



Theorem (Nisan and Wigderson, 1988)

For every time-constructible and nondecreasing function S : N→ N, if there
exists a Boolean function f ∈ DTIME(2O(n)) such that Havg(f ) ≥ S(n) for
every n ∈ N, then there exists an S(δ · `)δ-pseudorandom generator for some
constant δ > 0.

Corollary

If there exists a Boolean function f ∈ E = DTIME(2O(n)) and ε > 0 such that

Havg(f ) ≥ 2ε·n,

then there exists a 2d`/ae-pseudorandom generator. Consequently, BPP = P.



Yao’s Theorem

Theorem (Yao, 1982)

Let Y be a distribution over {0, 1}m. Suppose that there exists an S > 10 · n
and an ε > 0 such that for every circuit C of size at most 2 · S and i ∈ [m],

Pr
r∈RY

[
C(r1, . . . , ri−1) = ri

]
≤ 1

2
+
ε

m
.

Then, Y is (S , ε)-pseudorandom.



Proof (1)

Let i ∈ [0,m] and consider the distribution Yi on {0, 1}m generated by the
following process.

1. Choose r1, . . . , rm according to the distribution Y .

2. Choose yi+1, . . . , ym ∈ {0, 1} independently and uniformly in

random.

3. Output (r1, . . . , ri , yi+1, . . . , ym).

Observe that

Y0 = Um and Ym = Y .



Proof (2)

Now assume that Y is not (S , ε)-pseudorandom, i.e., there exists a circuit D of
size at most S such that∣∣Pr[D(Y ) = 1]− Pr[D(Um) = 1]

∣∣ ≥ ε.
We deduce ∑

i∈[m]

∣∣Pr[D(Yi ) = 1]− Pr[D(Yi−1) = 1]
∣∣

≥

∣∣∣∣∣∣
∑
i∈[m]

Pr[D(Yi ) = 1]− Pr[D(Yi−1) = 1]

∣∣∣∣∣∣
=
∣∣Pr[D(Y ) = 1]− Pr[D(Um) = 1]

∣∣ ≥ ε.
Thus, there is a k ∈ [m] with∣∣Pr[D(Yk) = 1]− Pr[D(Yk−1) = 1]

∣∣ ≥ ε

m
.



Proof (3)

Without loss of generality we assume

Pr[D(Yk) = 1]− Pr[D(Yk−1) = 1] ≥ ε

m
.

Roughly, it says that rk is more easy to satisfy D then yk .

We consider the following randomized algorithm C(r1, . . . , rk−1)

1. Choose yk , . . . , ym ∈ {0, 1} independently and uniformly in

random.

2. Simulate the circuit D on input (r1, . . . , rk−1, yk . . . . , ym).

3. If the simulation outputs 1, then output yk, otherwise 1− yk.

We want to calculate
Pr
[
C(r1, . . . , rk−1) = rk

]
where the probability is taken over (r1, . . . , rk−1, rk , . . . , rm) ∈R Y and the
internal coin tosses of C (i.e., yk , . . . , ym in Line 1).



Proof (4)

Observe that the event E of C(r1, . . . , rk−1) = rk happens if and only if one of
the following events happens:

(E1) D(r1, . . . , rk−1, yk , . . . , ym) = 1 and rk = yk .

(E2) D(r1, . . . , rk−1, yk , . . . , ym) = 0 and rk 6= yk .

Thus, Pr[E ] = Pr[E1] + Pr[E2].

Then, we rewrite

Pr[E1] = 1/2 · Pr
[
D(r1, . . . , rk−1, yk , . . . , ym) = 1

∣∣ rk = yk
]

= 1/2 · Pr
[
D(r1, . . . , rk−1, rk , yk+1, . . . , ym) = 1

]
= 1/2 · Pr

[
D(Yk) = 1

]
,

and

Pr[E2] = 1/2 · Pr
[
D(r1, . . . , rk−1, yk , . . . , ym) = 0

∣∣ rk 6= yk
]

= 1/2 · (1− Pr
[
D(r1, . . . , rk−1, yk , . . . , ym) = 1

∣∣ rk 6= yk
]
).



Proof (5)

On the other hand, we observe

Pr[D(Yk−1) = 1] = Pr
[
D(r1, . . . , rk−1, yk , . . . , ym) = 1

]
= 1/2 · Pr

[
D(r1, . . . , rk−1, yk , . . . , ym) = 1

∣∣ rk = yk
]

+ 1/2 · Pr
[
D(r1, . . . , rk−1, yk , . . . , ym) = 1

∣∣ rk 6= yk
]

= Pr[E1] + 1/2− Pr[E2].

Put all the pieces together:

Pr[E ] = Pr[E1] + Pr[E2]

= 1/2 + 2 · Pr[E1]− Pr[D(Yk−1) = 1]

= 1/2 + Pr[D(Yk) = 1]− Pr[D(Yk−1) = 1] ≥ 1/2 + ε/m.



Proof (6)

Now we know

Pr
[
C(r1, . . . , rk−1) = rk

]
≥ 1

2
+
ε

m
.

Recall the randomized algorithm C:

1. Choose yk , . . . , ym ∈ {0, 1} independently and uniformly in

random.

2. Simulate the circuit D on input (r1, . . . , rk−1, yk . . . . , ym).

3. If the simulation outputs 1, then output yk, otherwise 1− yk.

Thus there must exist some fixed zk , . . . , zm ∈ {0, 1} such that

Pr[D(r1, . . . , rk−1, zk . . . , zm) = rk ] ≥ 1

2
+
ε

m
.

This is a contradiction, as D( , . . . , , zk , . . . , zm) is a circuit of size at most
2 · S .



First toy example

Lemma (One-bit generator)

If there exists an f ∈ E with Havg(f ) ≥ n4, then there is an
(`+ 1)-pseudorandom generator.

Proof.
Let

G(z) = z ◦ f (z).

By Yao’s lemma, it suffices to show that there does not exist a circuit C of size
2 · (`+ 1)3 < `4 and a number i ∈ [`+ 1] such that

Pr
r=G(U`)

[
C(r1, . . . , ri−1) = ri

]
>

1

2
+

1

10 · (`+ 1)
.

Assume i = `+ 1, otherwise trivial.

Pr
z∈R{0,1}`

[
C(z) = f (z)

]
>

1

2
+

1

10 · (`+ 1)
>

1

2
+

1

`4
,

which cannot hold under the assumption that Havg(f ) ≥ n4.



Second toy example

Lemma (Two-bit generator)

If there exists an f ∈ E with Havg(f ) ≥ n4, then there is an
(`+ 2)-pseudorandom generator.



Proof (1)

Let

G(z) = z1 . . . zd`/2e ◦ f (z1, . . . , zd`/2e) ◦ zd`/2e+1 . . . z` ◦ f (zd`/2e, . . . , z`).

By Yao’s lemma, it suffices to show that there does not exist a circuit C of size
2 · (`+ 2)3 and a number i ∈ [`+ 2] such that

Pr
r=G(U`)

[
C(r1, . . . , ri−1) = ri

]
>

1

2
+

1

10 · (`+ 2)
.

Trivial for i 6= d`/2 + 1e and i 6= `+ 2.

The case of i = d`/2e+ 1 is the same as the 1-bit case.



Proof (2)

Now consider i = `+ 2 and assume

Pr
r∈R{0,1}d`/2e,r′∈R{0,1}b`/2c

[
C(r ◦ f (r) ◦ r ′) = f (r ′)

]
>

1

2
+

1

10 · (`+ 2)
.

The Averaging Principle: If A is some event depending on two
independent random variables X , Y , then there exists some x in the range of X
such that

Pr
Y

[A(x ,Y )] ≥ Pr
X ,Y

[A(X ,Y )].

Thus for some fixed r ∈ {0, 1}d`/2e

Pr
r′∈R{0,1}b`/2c

[
C(r ◦ f (r) ◦ r ′) = f (r ′)] >

1

2
+

1

10 · (`+ 2)
.



Proof (3)

Let
D(r ′) 7→ C(r ◦ f (r) ◦ r ′)

be a circuit of size

2 · (`+ 1)3 + d`/2e+ 1 ≤ (`/2)4.

Hence,

Pr
r′∈R{0,1}b`/2c

[
D(r ′) = f (r ′)

]
>

1

2
+

1

10 · (`+ 2)
>

1

2
+

1

(`/2)4
,

contradicting the hardness of f .



Thank you
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