Derandomization (II)

Yijia Chen Shanghai Jiao Tong University

November 18, 2012

HARDNESS

Definition

Let $f: \{0,1\}^* \to \{0,1\}$ be a function. The *worst-case hardness* of f is defined by

 $\mathsf{H}_{\mathsf{wrs}}(f)(n) := \max \left\{ S \in \mathbb{N} \mid \text{every circuit } C \text{ of size at most } S \\ \text{fails to compute } f \text{ on some input in } \{0,1\}^n \right\}$

for every $n \in \mathbb{N}$.

Equivalently,

$$egin{aligned} \mathsf{H}_{\mathsf{wrs}}(f)(n) &:= \max \left\{ S \in \mathbb{N} \ \Big| \ \Pr_{x \in \{0,1\}^n}[C(x) = f(x)] < 1 \ & ext{for every circuit } C ext{ with } |C| \leq S
ight\} \end{aligned}$$

Definition

Let $f:\{0,1\}^* \to \{0,1\}$ be a function. The average-case hardness of f is defined by

$$\begin{split} \mathsf{H}_{\mathsf{avg}}(f)(n) &:= \max \left\{ S \in \mathbb{N} \ \Big| \ \Pr_{x \in \{0,1\}^n}[C(x) = f(x)] < \frac{1}{2} + \frac{1}{S} \\ & \text{for every circuit } C \text{ with } |C| \leq S \right\} \end{split}$$

for every $n \in \mathbb{N}$.

- If f ∈ BPP then, since BPP ⊆ P/poly, both H_{wrs}(f) and H_{avg}(f) are bounded by some polynomial.
- 2. It is conjectured that 3SAT has exponential worst-case hardness, i.e., $H_{wrs}(3SAT) \ge 2^{\omega(n)}$. On the other hand, $H_{avg}(3SAT)$ is unclear.
- 3. If we trust the security of current cryptosystems, then we do believe that **NP** contains functions that are hard on the average.

PSEUDORANDOM GENERATORS

Theorem (Nisan and Wigderson, 1988)

For every time-constructible and nondecreasing function $S : \mathbb{N} \to \mathbb{N}$, if there exists a Boolean function $f \in \mathsf{DTIME}(2^{O(n)})$ such that $H_{\mathsf{avg}}(f) \ge S(n)$ for every $n \in \mathbb{N}$, then there exists an $S(\delta \cdot \ell)^{\delta}$ -pseudorandom generator for some constant $\delta > 0$.

Corollary

If there exists a Boolean function $f \in \mathbf{E} = \mathsf{DTIME}(2^{O(n)})$ and $\varepsilon > 0$ such that

 $H_{avg}(f) \geq 2^{\varepsilon \cdot n},$

then there exists a $2^{\lceil \ell/a \rceil}$ -pseudorandom generator. Consequently, **BPP** = **P**.

Theorem (Yao, 1982)

Let Y be a distribution over $\{0,1\}^m$. Suppose that there exists an $S > 10 \cdot n$ and an $\varepsilon > 0$ such that for every circuit C of size at most $2 \cdot S$ and $i \in [m]$,

$$\Pr_{r \in RY} \left[C(r_1, \ldots, r_{i-1}) = r_i \right] \leq \frac{1}{2} + \frac{\varepsilon}{m}$$

Then, Y is (S, ε) -pseudorandom.

Let $i \in [0, m]$ and consider the distribution Y_i on $\{0, 1\}^m$ generated by the following process.

- 1. Choose r_1, \ldots, r_m according to the distribution Y.
- 2. Choose $y_{i+1},\ldots,y_m\in\{0,1\}$ independently and uniformly in random.
- 3. Output $(r_1, \ldots, r_i, y_{i+1}, \ldots, y_m)$.

Observe that

$$Y_0 = U_m$$
 and $Y_m = Y$.

Proof (2)

Now assume that Y is not (S, ε) -pseudorandom, i.e., there exists a circuit D of size at most S such that

$$\big|\operatorname{\mathsf{Pr}}[D(Y)=1]-\operatorname{\mathsf{Pr}}[D(U_m)=1]\big|\geq arepsilon.$$

We deduce

$$\sum_{i \in [m]} \left| \Pr[D(Y_i) = 1] - \Pr[D(Y_{i-1}) = 1] \right|$$
$$\geq \left| \sum_{i \in [m]} \Pr[D(Y_i) = 1] - \Pr[D(Y_{i-1}) = 1] \right|$$
$$= \left| \Pr[D(Y) = 1] - \Pr[D(U_m) = 1] \right| \geq \varepsilon.$$

Thus, there is a $k \in [m]$ with

$$\left| \mathsf{Pr}[D(Y_k) = 1] - \mathsf{Pr}[D(Y_{k-1}) = 1] \right| \geq rac{arepsilon}{m}$$

Proof (3)

Without loss of generality we assume

$$\Pr[D(Y_k) = 1] - \Pr[D(Y_{k-1}) = 1] \ge \frac{\varepsilon}{m}$$

Roughly, it says that r_k is more easy to satisfy D then y_k . We consider the following randomized algorithm $\mathbb{C}(r_1, \ldots, r_{k-1})$

- 1. Choose $y_k,\ldots,y_m\in\{0,1\}$ independently and uniformly in random.
- 2. Simulate the circuit D on input $(r_1, \ldots, r_{k-1}, y_k, \ldots, y_m)$.
- 3. If the simulation outputs 1, then output y_k , otherwise $1 y_k$.

We want to calculate

$$\Pr\left[\mathbb{C}(r_1,\ldots,r_{k-1})=r_k\right]$$

where the probability is taken over $(r_1, \ldots, r_{k-1}, r_k, \ldots, r_m) \in_R Y$ and the internal coin tosses of \mathbb{C} (i.e., y_k, \ldots, y_m in Line 1).

Proof (4)

Observe that the event *E* of $\mathbb{C}(r_1, \ldots, r_{k-1}) = r_k$ happens if and only if one of the following events happens:

$$\begin{array}{l} (E_1) \quad D(r_1, \ldots, r_{k-1}, y_k, \ldots, y_m) = 1 \ \text{and} \ r_k = y_k. \\ (E_2) \quad D(r_1, \ldots, r_{k-1}, y_k, \ldots, y_m) = 0 \ \text{and} \ r_k \neq y_k. \\ \text{Thus, } \Pr[E] = \Pr[E_1] + \Pr[E_2]. \end{array}$$

Then, we rewrite

$$\begin{aligned} \Pr[E_1] &= 1/2 \cdot \Pr\left[D(r_1, \dots, r_{k-1}, y_k, \dots, y_m) = 1 \mid r_k = y_k\right] \\ &= 1/2 \cdot \Pr\left[D(r_1, \dots, r_{k-1}, r_k, y_{k+1}, \dots, y_m) = 1\right] \\ &= 1/2 \cdot \Pr\left[D(Y_k) = 1\right], \end{aligned}$$

and

$$\Pr[E_2] = 1/2 \cdot \Pr[D(r_1, \dots, r_{k-1}, y_k, \dots, y_m) = 0 \mid r_k \neq y_k] \\ = 1/2 \cdot (1 - \Pr[D(r_1, \dots, r_{k-1}, y_k, \dots, y_m) = 1 \mid r_k \neq y_k]).$$

Proof (5)

On the other hand, we observe

$$\begin{aligned} \Pr[D(Y_{k-1}) = 1] &= \Pr\left[D(r_1, \dots, r_{k-1}, y_k, \dots, y_m) = 1\right] \\ &= 1/2 \cdot \Pr\left[D(r_1, \dots, r_{k-1}, y_k, \dots, y_m) = 1 \mid r_k = y_k\right] \\ &+ 1/2 \cdot \Pr\left[D(r_1, \dots, r_{k-1}, y_k, \dots, y_m) = 1 \mid r_k \neq y_k\right] \\ &= \Pr[E_1] + 1/2 - \Pr[E_2]. \end{aligned}$$

Put all the pieces together:

$$\begin{aligned} \Pr[E] &= \Pr[E_1] + \Pr[E_2] \\ &= 1/2 + 2 \cdot \Pr[E_1] - \Pr[D(Y_{k-1}) = 1] \\ &= 1/2 + \Pr[D(Y_k) = 1] - \Pr[D(Y_{k-1}) = 1] \ge 1/2 + \varepsilon/m. \end{aligned}$$

Proof (6)

Now we know

$$\Pr\left[\mathbb{C}(r_1,\ldots,r_{k-1})=r_k
ight]\geq rac{1}{2}+rac{arepsilon}{m}.$$

Recall the randomized algorithm \mathbb{C} :

- 1. Choose $y_k,\ldots,y_m\in\{0,1\}$ independently and uniformly in random.
- 2. Simulate the circuit D on input $(r_1, \ldots, r_{k-1}, y_k, \ldots, y_m)$.
- 3. If the simulation outputs 1, then output y_k , otherwise $1 y_k$.

Thus there must exist some fixed $z_k, \ldots, z_m \in \{0, 1\}$ such that

$$\Pr[D(r_1,\ldots,r_{k-1},z_k\ldots,z_m)=r_k] \geq \frac{1}{2}+\frac{\varepsilon}{m}.$$

This is a contradiction, as $D(-, ..., -, z_k, ..., z_m)$ is a circuit of size at most $2 \cdot S$.

Lemma (One-bit generator)

If there exists an $f \in \mathbf{E}$ with $H_{avg}(f) \ge n^4$, then there is an $(\ell + 1)$ -pseudorandom generator.

Proof.

Let

$$G(z)=z\circ f(z).$$

By Yao's lemma, it suffices to show that there does not exist a circuit C of size $2 \cdot (\ell + 1)^3 < \ell^4$ and a number $i \in [\ell + 1]$ such that

$$\Pr_{r=G(U_{\ell})} \left[C(r_1, \ldots, r_{i-1}) = r_i \right] > \frac{1}{2} + \frac{1}{10 \cdot (\ell+1)}.$$

Assume $i = \ell + 1$, otherwise trivial.

$$\Pr_{z \in_{R}\{0,1\}^{\ell}} \left[C(z) = f(z) \right] > \frac{1}{2} + \frac{1}{10 \cdot (\ell+1)} > \frac{1}{2} + \frac{1}{\ell^4},$$

which cannot hold under the assumption that $H_{avg}(f) \ge n^4$.

Lemma (Two-bit generator)

If there exists an $f \in \mathbf{E}$ with $H_{avg}(f) \ge n^4$, then there is an $(\ell + 2)$ -pseudorandom generator.

Let

 $G(z) = z_1 \dots z_{\lceil \ell/2 \rceil} \circ f(z_1, \dots, z_{\lceil \ell/2 \rceil}) \circ z_{\lceil \ell/2 \rceil+1} \dots z_{\ell} \circ f(z_{\lceil \ell/2 \rceil}, \dots, z_{\ell}).$

By Yao's lemma, it suffices to show that there does not exist a circuit C of size $2 \cdot (\ell + 2)^3$ and a number $i \in [\ell + 2]$ such that

$$\Pr_{r=G(U_{\ell})} \left[C(r_1, \ldots, r_{i-1}) = r_i \right] > \frac{1}{2} + \frac{1}{10 \cdot (\ell+2)}$$

Trivial for $i \neq \lceil \ell/2 + 1 \rceil$ and $i \neq \ell + 2$.

The case of $i = \lfloor \ell/2 \rfloor + 1$ is the same as the 1-bit case.

Now consider $i = \ell + 2$ and assume

$$\Pr_{r \in_{R}\{0,1\}^{\lceil \ell/2 \rceil}, r' \in_{R}\{0,1\}^{\lfloor \ell/2 \rfloor}} \left[C(r \circ f(r) \circ r') = f(r') \right] > \frac{1}{2} + \frac{1}{10 \cdot (\ell+2)}$$

THE AVERAGING PRINCIPLE: If A is some event depending on two independent random variables X, Y, then there exists some x in the range of X such that

$$\Pr_{Y}[A(x, Y)] \geq \Pr_{X, Y}[A(X, Y)].$$

Thus for some fixed $r \in \{0,1\}^{\lceil \ell/2 \rceil}$

$$\Pr_{r'\in_R\{0,1\}^{\lfloor \ell/2 \rfloor}}\left[C(r\circ f(r)\circ r')=f(r')\right] > \frac{1}{2}+\frac{1}{10\cdot (\ell+2)}.$$

Let

$$D(r') \mapsto C(r \circ f(r) \circ r')$$

be a circuit of size

$$2 \cdot (\ell+1)^3 + \lceil \ell/2 \rceil + 1 \leq (\ell/2)^4.$$

Hence,

$$\Pr_{r' \in_R\{0,1\} \lfloor \ell/2 \rfloor} \left[D(r') = f(r') \right] > \frac{1}{2} + \frac{1}{10 \cdot (\ell+2)} > \frac{1}{2} + \frac{1}{(\ell/2)^4},$$

contradicting the hardness of f.

THANK YOU