Derandomization (III)

Yijia Chen
Shanghai Jiao Tong University

November 26, 2012

The Construction of Nisan and Wigderson

NW generator

For a string $z \in\{0,1\}^{\ell}$ and a subset $I \subseteq[\ell]$, we define z । to be $|I|$-length string that is the projection of z to the coordinates in I.

Definition

Let $I=\left\{I_{1}, \ldots, I_{m}\right\}$ be a family of subsets of $[\ell]$ with $\left|I_{j}\right|=n$ for each $j \in[m]$, and let $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Then the (I,f)-NW generator is the function $\mathrm{NW}_{l}^{f}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}$ with

$$
\operatorname{NW}_{l}^{f}(z)=f\left(z_{l_{1}}\right) \circ f\left(z_{l_{2}}\right) \circ \cdots \circ f\left(z_{l_{m}}\right) .
$$

Combinatorial design

Definition

Let $\ell>n>d$. A family $I=\left\{I_{1}, \ldots, I_{m}\right\}$ of subsets of $[\ell]$ is an (ℓ, n, d)-design if $\left|I_{j}\right|=n$ for every $j \in[m]$ and $\left|I_{j} \cap I_{k}\right| \leq d$ for every $1 \leq j<k \leq m$.

Lemma

There is an algorithm \mathbb{A} such that on input $\ell, d, n \in \mathbb{N}$ with $n>d$ and $\ell>10 \cdot n^{2} / d$, runs for $2^{0(\ell)}$ steps and outputs an (ℓ, n, d)-design I containing $\left\lceil 2^{d / 10}\right\rceil$ subsets of $[\ell]$.

We will choose ℓ, n, d, m in such a way that

$$
\ell, d=\Theta(n) \quad \text { and } \quad m=2^{\Theta(n)}
$$

Proof (1)

We consider the following greedy algorithm \mathbb{A} :
Start with $I=\emptyset$, and after constructing $I=\left\{I_{1}, \ldots, I_{m}\right\}$ for $m<2^{d / 10}$, search all subsets of $[\ell]$ and add to I the first n-sized set J satisfying $\left|J \cap I_{j}\right| \leq d$ for every $j \in[m]$.
Clearly, the running time of \mathbb{A} is bounded by $2^{O(\ell)}$.

Proof (2)

Claim: \mathbb{A} will not stop until $m \geq 2^{d / 10}$, i.e., when $m<2^{d / 10}$, there exists a J such that $\left|J \cap I_{j}\right| \leq d$ for every $j \in[m]$.
We choose J at random by choosing independently every element $x \in[\ell]$ to be in J with probability $2 \cdot n / \ell$.

Then

$$
E[|J|]=2 \cdot n \quad \text { and } \quad E\left[\left|J \cap I_{j}\right|\right]=2 \cdot n^{2} / \ell<d / 5 .
$$

which implies,

$$
\operatorname{Pr}[|J| \geq n] \geq 0.9 \quad \text { and } \quad \operatorname{Pr}\left[\left|J \cap I_{j}\right| \geq d\right] \leq 0.5 \cdot 2^{-d / 10} \text { for every } j \in[m]
$$ by the Chernoff bound.

Therefore,

$$
\operatorname{Pr}\left[|J| \geq n \text { and }\left|J \cap t_{j}\right| \leq d \text { for every } j \in[m]\right] \geq 0.4 .
$$

Pseudorandomness using the NW generator

Lemma

If I is an (ℓ, n, d)-design with $|I|=2^{d / 10}$ and $f:\{0,1\}^{n} \rightarrow\{0,1\}$ a function satisfying $H_{\text {avg }}(f)(n) \geq 2^{2 \cdot d}$, then the distribution $N W_{l}^{f}\left(U_{\ell}\right)$ is $\left(H_{\text {avg }}(f)(n) / 4,1 / 10\right)$-pseudorandom.

Proof (1)

Let $S:=\mathrm{H}_{\text {avg }}(f)(n)$. By Yao's Theorem, we need to prove that for every $i \in\left[2^{d / 10}\right]$ there does not exist an $S / 2$-sized circuit C such that

$$
\underset{\substack{z \sim e_{e} \\ R=\operatorname{NW}_{f}^{f}(Z)}}{\operatorname{Pr}_{\substack{ }}\left[C\left(R_{1}, \ldots, R_{i-1}\right)=R_{i}\right] \geq \frac{1}{2}+\frac{1}{10 \cdot 2^{d / 10}} ~ . ~}
$$

Assume that for some C and i,

$$
\underset{z \sim U_{\ell}}{\operatorname{Pr}}\left[C\left(f\left(z_{l_{1}}\right) \circ \cdots \circ f\left(z_{l_{i-1}}\right)\right)=f\left(z_{l_{i}}\right)\right] \geq \frac{1}{2}+\frac{1}{10 \cdot 2^{d / 10}} .
$$

Proof (2)

Let Z_{1} and Z_{2} be two independent variables corresponding to the coordinates of Z in I_{i} and $[\ell] \backslash I_{i}$, respectively.
Then

$$
\underset{\substack{Z_{1} \sim U_{n} \\ Z_{2} \sim U_{\ell-n}}}{\operatorname{Pr}}\left[C\left(f_{1}\left(Z_{1}, Z_{2}\right) \circ \cdots \circ f_{i-1}\left(Z_{1}, Z_{2}\right)\right)=f\left(Z_{1}\right)\right] \geq \frac{1}{2}+\frac{1}{10 \cdot 2^{d / 10}} .
$$

where for every $j \in\left[2^{d / 10}\right]$, the function f_{j} applies f to the coordinates of Z_{1} corresponding to $I_{j} \cap I_{i}$ and the coordinates of Z_{2} corresponding to $I_{j} \backslash I_{i}$.
By the averaging principle, then there exists a string $z_{2} \in\{0,1\}^{\ell-n}$ such that

$$
\underset{z_{1} \sim U_{n}}{\operatorname{Pr}}\left[C\left(f_{1}\left(Z_{1}, z_{2}\right) \circ \cdots \circ f_{i-1}\left(Z_{1}, z_{2}\right)\right)=f\left(Z_{1}\right)\right] \geq \frac{1}{2}+\frac{1}{10 \cdot 2^{d / 10}}
$$

Proof (3)

Since $\left|I_{j} \cap I_{i}\right| \leq d$ for $j \neq i$, the function $Z_{1} \mapsto f_{j}\left(Z_{1}, Z_{2}\right)$ depends at most d coordinates of Z_{1} and hence can be computed by a $d \cdot 2^{d}$-sized circuit.
Thus for a circuit B of size $2^{d / 10} \cdot d \cdot 2^{d}+S / 2 \leq S$ we have

$$
\underset{Z_{1} \sim U_{n}}{\operatorname{Pr}}\left[B\left(Z_{1}\right)=f\left(Z_{1}\right)\right] \geq \frac{1}{2}+\frac{1}{10 \cdot 2^{d / 10}} \geq \frac{1}{2}+\frac{1}{S} .
$$

It contradicts $\mathrm{H}_{\text {avg }}(f)(n)=S$.

A slightly weaker version of NW's theorem

Theorem
For every time-constructible and nondecreasing function $S: \mathbb{N} \rightarrow \mathbb{N}$, if there exists a function $f \in \operatorname{DTIME}\left(2^{O(n)}\right)$ such that $H_{\text {avg }}(f) \geq S$, then we can construct an $S^{\prime}(\ell)$-pseudorandom generator, where $S^{\prime}(\ell)=S(n)^{\varepsilon}$ for some $\varepsilon>0$ and $n \in \mathbb{N}$ satisfying $n \geq \varepsilon \cdot \sqrt{\ell \cdot \log S(n)}$.

Recall we need a $2^{\lfloor\ell / a\rfloor}$-pseudorandom generator to show $\mathbf{B P P}=\mathbf{P}$. In order to achieve that, we choose $2^{\lfloor\ell / a\rfloor}=S^{\prime}(\ell)=S(n)^{\varepsilon}$ with $n \geq \varepsilon \cdot \sqrt{\ell \cdot \log S(n)}$. Therefore,

$$
(n / \varepsilon)^{2} / \ell \geq \ell /(\varepsilon \cdot a) \quad \text { i.e., } \ell \leq n \cdot \sqrt{a / \varepsilon}
$$

So we can take

$$
S(n)=2^{\lceil n / \sqrt{\varepsilon \cdot a}\rceil / \varepsilon}
$$

Proof (1)

On input $z \in\{0,1\}^{\ell}$ the generator operates as follows:

1. Set n to be the largest number such that $\ell>100 \cdot n^{2} / \log S(n)$.
2. Set $d=\log S(n) / 2$.
3. Compute an (ℓ, n, d)-design $I=\left\{I_{1}, \ldots, I_{2^{d / 10}}\right\}$.
4. Output the first $S(n)^{1 / 40}$ bits of $\mathrm{NW}_{l}^{f}(z)$.

By Line 1, we conclude

$$
\ell \leq \frac{100 \cdot(n+1)^{2}}{\log S(n+1)} \leq \frac{200 \cdot n^{2}}{\log S(n)},
$$

and hence $n \geq \sqrt{\ell \cdot \log S(n) / 200}$.

Proof (2)

The generator makes $2^{d / 10}$ invocations of f, taking a total of $2^{O(n+d)}$ steps. By possibly reducing n by a constant factor, we can ensure the running time is bounded by 2^{ℓ}.

Moreover, since $d=\log S(n) / 2$, we conclude

$$
2^{2 \cdot d} \geq S(n) .
$$

So by Nisan and Wigderson's Lemma, the distribution $\mathrm{NW}^{f}\left(U_{\ell}\right)$ is ($S(n) / 4.1 / 10)$-pseudorandom.

Thank you

