Derandomization (III)

Yijia Chen Shanghai Jiao Tong University

November 26, 2012

The Construction of Nisan and Wigderson

For a string $z \in \{0,1\}^{\ell}$ and a subset $I \subseteq [\ell]$, we define z_{l} to be |I|-length string that is the projection of z to the coordinates in I.

Definition

Let $I = \{I_1, \ldots, I_m\}$ be a family of subsets of $[\ell]$ with $|I_j| = n$ for each $j \in [m]$, and let $f : \{0,1\}^n \to \{0,1\}$. Then the (I, f)-NW generator is the function $\mathsf{NW}_I^f : \{0,1\}^\ell \to \{0,1\}^m$ with

 $\mathsf{NW}_{I}^{f}(z) = f(z_{I_{1}}) \circ f(z_{I_{2}}) \circ \cdots \circ f(z_{I_{m}}).$

Definition

Let $\ell > n > d$. A family $I = \{I_1, \ldots, I_m\}$ of subsets of $[\ell]$ is an (ℓ, n, d) -design if $|I_j| = n$ for every $j \in [m]$ and $|I_j \cap I_k| \le d$ for every $1 \le j < k \le m$.

Lemma

There is an algorithm \mathbb{A} such that on input ℓ , d, $n \in \mathbb{N}$ with n > d and $\ell > 10 \cdot n^2/d$, runs for $2^{O(\ell)}$ steps and outputs an (ℓ, n, d) -design I containing $\lceil 2^{d/10} \rceil$ subsets of $\lceil \ell \rceil$.

We will choose ℓ , n, d, m in such a way that

$$\ell, d = \Theta(n)$$
 and $m = 2^{\Theta(n)}$.

We consider the following greedy algorithm \mathbb{A} :

Start with $I = \emptyset$, and after constructing $I = \{I_1, \ldots, I_m\}$ for $m < 2^{d/10}$, search all subsets of $[\ell]$ and add to I the first *n*-sized set J satisfying $|J \cap I_j| \le d$ for every $j \in [m]$.

Clearly, the running time of A is bounded by $2^{O(\ell)}$.

Proof (2)

Claim: A will not stop until $m \ge 2^{d/10}$, i.e., when $m < 2^{d/10}$, there exists a J such that $|J \cap I_j| \le d$ for every $j \in [m]$.

We choose J at random by choosing independently every element $x \in [\ell]$ to be in J with probability $2 \cdot n/\ell$.

Then

$$E[|J|] = 2 \cdot n$$
 and $E[|J \cap I_j|] = 2 \cdot n^2/\ell < d/5.$

which implies,

 $\Pr\left[|J| \ge n\right] \ge 0.9$ and $\Pr\left[|J \cap l_j| \ge d\right] \le 0.5 \cdot 2^{-d/10}$ for every $j \in [m]$

by the Chernoff bound.

Therefore,

$$\Pr\left[|J| \ge n \text{ and } |J \cap I_j| \le d \text{ for every } j \in [m]\right] \ge 0.4.$$

Lemma

If I is an (ℓ, n, d) -design with $|I| = 2^{d/10}$ and $f : \{0, 1\}^n \to \{0, 1\}$ a function satisfying $H_{avg}(f)(n) \ge 2^{2 \cdot d}$, then the distribution $NW_I^f(U_\ell)$ is $(H_{avg}(f)(n)/4, 1/10)$ -pseudorandom.

Let $S := H_{avg}(f)(n)$. By Yao's Theorem, we need to prove that for every $i \in [2^{d/10}]$ there does not exist an S/2-sized circuit C such that

$$\Pr_{\substack{Z \sim U_\ell, \\ \mathsf{R} = \mathsf{NW}_i^f(Z)}} \left[C(R_1, \dots, R_{i-1}) = R_i \right] \geq \frac{1}{2} + \frac{1}{10 \cdot 2^{d/10}}$$

Assume that for some C and i,

$$\Pr_{Z \sim U_{\ell}} \left[C(f(z_{l_1}) \circ \cdots \circ f(z_{l_{i-1}})) = f(z_{l_i}) \right] \geq \frac{1}{2} + \frac{1}{10 \cdot 2^{d/10}}.$$

Let Z_1 and Z_2 be two independent variables corresponding to the coordinates of Z in I_i and $[\ell] \setminus I_i$, respectively.

Then

$$\Pr_{\substack{Z_1 \sim U_n \\ Z_2 \sim U_{\ell-n}}} \left[C(f_1(Z_1, Z_2) \circ \cdots \circ f_{i-1}(Z_1, Z_2)) = f(Z_1) \right] \geq \frac{1}{2} + \frac{1}{10 \cdot 2^{d/10}}.$$

where for every $j \in [2^{d/10}]$, the function f_j applies f to the coordinates of Z_1 corresponding to $I_j \cap I_i$ and the coordinates of Z_2 corresponding to $I_j \setminus I_i$.

By the averaging principle, then there exists a string $z_2 \in \{0,1\}^{\ell-n}$ such that

$$\Pr_{Z_1 \sim U_n} \left[C(f_1(Z_1, z_2) \circ \cdots \circ f_{i-1}(Z_1, z_2)) = f(Z_1) \right] \geq \frac{1}{2} + \frac{1}{10 \cdot 2^{d/10}}.$$

Since $|I_j \cap I_i| \le d$ for $j \ne i$, the function $Z_1 \mapsto f_j(Z_1, z_2)$ depends at most d coordinates of Z_1 and hence can be computed by a $d \cdot 2^d$ -sized circuit.

Thus for a circuit B of size $2^{d/10} \cdot d \cdot 2^d + S/2 \leq S$ we have

$$\Pr_{Z_1 \sim U_n} \left[B(Z_1) = f(Z_1) \right] \geq \frac{1}{2} + \frac{1}{10 \cdot 2^{d/10}} \geq \frac{1}{2} + \frac{1}{5}.$$

It contradicts $H_{avg}(f)(n) = S$.

Theorem

For every time-constructible and nondecreasing function $S : \mathbb{N} \to \mathbb{N}$, if there exists a function $f \in \mathsf{DTIME}(2^{O(n)})$ such that $H_{avg}(f) \ge S$, then we can construct an $S'(\ell)$ -pseudorandom generator, where $S'(\ell) = S(n)^{\varepsilon}$ for some $\varepsilon > 0$ and $n \in \mathbb{N}$ satisfying $n \ge \varepsilon \cdot \sqrt{\ell \cdot \log S(n)}$.

Recall we need a $2^{\lfloor \ell/a \rfloor}$ -pseudorandom generator to show **BPP** = **P**. In order to achieve that, we choose $2^{\lfloor \ell/a \rfloor} = S'(\ell) = S(n)^{\varepsilon}$ with $n \ge \varepsilon \cdot \sqrt{\ell \cdot \log S(n)}$. Therefore,

$$(n/\varepsilon)^2/\ell \geq \ell/(\varepsilon \cdot a)$$
 i.e., $\ell \leq n \cdot \sqrt{a/\varepsilon}$.

So we can take

$$S(n) = 2^{\lceil n/\sqrt{\varepsilon \cdot a} \rceil/\varepsilon}$$

Proof (1)

On input $z \in \{0,1\}^\ell$ the generator operates as follows:

- 1. Set *n* to be the largest number such that $\ell > 100 \cdot n^2 / \log S(n)$.
- 2. Set $d = \log S(n)/2$.
- 3. Compute an (ℓ, n, d) -design $I = \{I_1, \dots, I_{2^{d/10}}\}$.
- 4. Output the first $S(n)^{1/40}$ bits of $NW_I^f(z)$.

By Line 1, we conclude

$$\ell \leq \frac{100 \cdot (n+1)^2}{\log S(n+1)} \leq \frac{200 \cdot n^2}{\log S(n)},$$

and hence $n \ge \sqrt{\ell \cdot \log S(n)/200}$.

The generator makes $2^{d/10}$ invocations of f, taking a total of $2^{O(n+d)}$ steps. By possibly reducing n by a constant factor, we can ensure the running time is bounded by 2^{ℓ} .

Moreover, since $d = \log S(n)/2$, we conclude

 $2^{2 \cdot d} \geq S(n).$

So by Nisan and Wigderson's Lemma, the distribution $NW^{f}(U_{\ell})$ is (S(n)/4.1/10)-pseudorandom.

THANK YOU