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EFFICIENT DECODING



Decoding Reed-Solomon

Theorem (Unique decoding for Reed-Solomon)

There is a polynomial time algorithm A such that given a list

(a1, b1), ..., (am, bm) of pairs of elements of a finite field F such that there is a
d-degree polynomial G : F — F satisfying G(a;) = b;i for more than m/2 + d/2
many i € [m], the algorithm recovers G.



Proof (1)

Consider the error locator polynomial

EW= [  (-a)

i € [m] with G(a;) # b;

which has degree < m/2 — d/2.
Then let
P(x) := G(x) - E(x)

be a polynomial of degree < m/2 + d/2. Thus
P(aj) = G(ai) - E(ai) = bi - E(ai)

for every i € [m]



Proof (2)

Conversely, assume that there are two nonzero polynomials P(x) and E(x)
such that
P(a,-) =b;- E(a,-)

for all i € [m], where P(x) had degree < m/2+ d/2 and E(x) has degree
<m/2—d)2.

We consider the polynomial
P(x) = G(x) - E(x)

which has degree < m/2 + d/2. By assumption, it has more than m/2 + d/2
zeros, and hence is a zero polynomial.

We conclude




Proof (3)

The Berlekamp-Welch Procedure finds a pair (P(x), E(x)) by solving the linear
equations
P(a,-) = b,‘ . E(a,-)

for all i € [m]. O



Decoding concatenated codes

Let £ : {0,1}" = X™and £ : ¥ — {0,1}* be two error correcting codes, then
EcoE i x— Ez(El(X)l)7 ey Ez(El(X)m)

is an error correcting code from {0,1}" to {0,1}™*.

Assume that we have a decoder for E; (respectively, E;) that can handle p;
(p2, respectively) errors, then there is a decoder for E; o E; that can handle
p1 - P2 €rrors.



LocAL DECODING AND HARDNESS
AMPLIFICATION



Local decoder

Definition

Let E:{0,1}" — {0,1}™ be an error correcting code and p > 0. A local
decoder for E handling p errors is a probabilistic algorithm D such that given
random access to a string y € {0,1}" with A(y, E(x)) < p for some
(unknown) x € {0,1}" and an index j € [n] the algorithm D runs in time
(log m)°® and output x; with probability at least 2/3.



Hardness amplification from local decoding

Theorem
Assume that there exists an error correcting code with polynomial time
encoding algorithm and a local decoding algorithm handling p errors. If there is
a function f € E with
Hurs(£)(n) = S(n)

for some function S : N — N with S(n) > n for every n € N. Then there exists
a function f € E with A

Hag’ (F)(n) > S(e - n)°

for some € > 0.



Local decoder for Walsh-Hadamard

Theorem
Let p < 1/4. Then the Walsh-Hadamard code has a local decoder handling p
errors, which only makes two queries for each input.



Proof (1)

Recall that the function WH : {0,1}" — {0,1}*" maps every string x € {0,1}"
into the string z € {0,1}*" satisfying

zy:XQy:ZX,-~y,- (mod 2)

i=1

for every y € {0,1}".



Proof (2)

Recall that the function WH : {0,1}" — {0,1}*" maps every string x € {0,1}"
into the string z € {0,1}* satisfying

zy:x®y:ix,--y,- (mod 2)
i=1
for every y € {0,1}".
Input: j € [n], random access to a function f : {0,1}" — {0, 1} such that
Prif(y) # xoyl < p < 1/4
and x € {0,1}".
Output: A bit b € {0,1}. (Our goal: b= x;.)



Proof (3)

Algorithm: Let ¢/ € {0,1}" be the string whose every bit is 0 except the j-th
bit. The algorithm chooses y € {0,1}" uniformly at random and then outputs

f(y)+ f(y + &) (mod 2),

where y + ¢ is obtained from y by flipping the j-th bit of y.



Proof (4)

Since both y and y + € are uniformly distributed (although they are
dependent), the union bound implies that with probability 1 — 2 - p we have

fly)=xoy and fly+e&)=x0(y+¢).
Then
f)+fly+e)=x0y+x0(y+¢€)

=2 (xOy)+x0¢€
=x0 € =x (mod 2)
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