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Efficient Decoding



Decoding Reed-Solomon

Theorem (Unique decoding for Reed-Solomon)

There is a polynomial time algorithm A such that given a list
(a1, b1), . . . , (am, bm) of pairs of elements of a finite field F such that there is a
d-degree polynomial G : F→ F satisfying G(ai ) = bi for more than m/2 + d/2
many i ∈ [m], the algorithm recovers G.



Proof (1)

Consider the error locator polynomial

E(x) :=
∏

i ∈ [m] with G(ai ) 6= bi

(x − ai ),

which has degree < m/2− d/2.
Then let

P(x) := G(x) · E(x)

be a polynomial of degree < m/2 + d/2. Thus

P(ai ) = G(ai ) · E(ai ) = bi · E(ai )

for every i ∈ [m]



Proof (2)

Conversely, assume that there are two nonzero polynomials P(x) and E(x)
such that

P(ai ) = bi · E(ai )

for all i ∈ [m], where P(x) had degree < m/2 + d/2 and E(x) has degree
< m/2− d/2.

We consider the polynomial

P(x)− G(x) · E(x)

which has degree < m/2 + d/2. By assumption, it has more than m/2 + d/2
zeros, and hence is a zero polynomial.

We conclude

G(x) =
P(x)

E(x)
.



Proof (3)

The Berlekamp-Welch Procedure finds a pair (P(x),E(x)) by solving the linear
equations

P(ai ) = bi · E(ai )

for all i ∈ [m].



Decoding concatenated codes

Let E1 : {0, 1}n → Σm and E2 : Σ→ {0, 1}k be two error correcting codes, then

E2 ◦ E1 : x 7→ E2(E1(x)1), . . . ,E2(E1(x)m)

is an error correcting code from {0, 1}n to {0, 1}m·k .

Assume that we have a decoder for E1 (respectively, E2) that can handle ρ1
(ρ2, respectively) errors, then there is a decoder for E2 ◦ E1 that can handle
ρ1 · ρ2 errors.



Local Decoding and Hardness
Amplification



Local decoder

Definition
Let E : {0, 1}n → {0, 1}m be an error correcting code and ρ > 0. A local
decoder for E handling ρ errors is a probabilistic algorithm D such that given
random access to a string y ∈ {0, 1}m with ∆(y ,E(x)) < ρ for some
(unknown) x ∈ {0, 1}n and an index j ∈ [n] the algorithm D runs in time
(log m)O(1) and output xj with probability at least 2/3.



Hardness amplification from local decoding

Theorem
Assume that there exists an error correcting code with polynomial time
encoding algorithm and a local decoding algorithm handling ρ errors. If there is
a function f ∈ E with

Hwrs(f )(n) ≥ S(n)

for some function S : N→ N with S(n) ≥ n for every n ∈ N. Then there exists
a function f̂ ∈ E with

H1−ρ
avg (f̂ )(n) ≥ S(ε · n)ε

for some ε > 0.



Local decoder for Walsh-Hadamard

Theorem
Let ρ < 1/4. Then the Walsh-Hadamard code has a local decoder handling ρ
errors, which only makes two queries for each input.



Proof (1)

Recall that the function WH : {0, 1}n → {0, 1}2
n

maps every string x ∈ {0, 1}n
into the string z ∈ {0, 1}2

n

satisfying

zy = x � y =
n∑

i=1

xi · yi (mod 2)

for every y ∈ {0, 1}n.



Proof (2)

Recall that the function WH : {0, 1}n → {0, 1}2
n

maps every string x ∈ {0, 1}n
into the string z ∈ {0, 1}2

n

satisfying

zy = x � y =
n∑

i=1

xi · yi (mod 2)

for every y ∈ {0, 1}n.

Input: j ∈ [n], random access to a function f : {0, 1}n → {0, 1} such that

Pr
y

[f (y) 6= x � y ] ≤ ρ < 1/4

and x ∈ {0, 1}n.

Output: A bit b ∈ {0, 1}. (Our goal : b = xj .)



Proof (3)

Algorithm: Let e j ∈ {0, 1}n be the string whose every bit is 0 except the j-th
bit. The algorithm chooses y ∈ {0, 1}n uniformly at random and then outputs

f (y) + f (y + e j) (mod 2),

where y + e j is obtained from y by flipping the j-th bit of y .



Proof (4)

Since both y and y + e j are uniformly distributed (although they are
dependent), the union bound implies that with probability 1− 2 · ρ we have

f (y) = x � y and f (y + e j) = x � (y + e j).

Then

f (y) + f (y + e j) = x � y + x � (y + e j)

= 2 · (x � y) + x � e j

= x � e j = xj (mod 2)



Thank you
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