Derandomization (VI)

Yijia Chen Shanghai Jiao Tong University

December 23, 2012

Efficient Decoding

Theorem (Unique decoding for Reed-Solomon)

There is a polynomial time algorithm \mathbb{A} such that given a list $(a_1, b_1), \ldots, (a_m, b_m)$ of pairs of elements of a finite field \mathbb{F} such that there is a *d*-degree polynomial $G : \mathbb{F} \to \mathbb{F}$ satisfying $G(a_i) = b_i$ for more than m/2 + d/2 many $i \in [m]$, the algorithm recovers G.

Proof (1)

Consider the error locator polynomial

$$E(x) := \prod_{i \in [m] \text{ with } G(a_i) \neq b_i} (x - a_i),$$

which has degree < m/2 - d/2. Then let

$$P(x) := G(x) \cdot E(x)$$

be a polynomial of degree < m/2 + d/2. Thus

$$P(a_i) = G(a_i) \cdot E(a_i) = b_i \cdot E(a_i)$$

for every $i \in [m]$

Conversely, assume that there are two nonzero polynomials P(x) and E(x) such that

$$P(a_i) = b_i \cdot E(a_i)$$

for all $i \in [m]$, where P(x) had degree < m/2 + d/2 and E(x) has degree < m/2 - d/2.

We consider the polynomial

$$P(x) - G(x) \cdot E(x)$$

which has degree < m/2 + d/2. By assumption, it has more than m/2 + d/2 zeros, and hence is a zero polynomial.

We conclude

$$G(x)=rac{P(x)}{E(x)}.$$

The Berlekamp-Welch Procedure finds a pair (P(x), E(x)) by solving the linear equations

$$P(a_i) = b_i \cdot E(a_i)$$

for all $i \in [m]$.

Let $E_1: \{0,1\}^n \to \Sigma^m$ and $E_2: \Sigma \to \{0,1\}^k$ be two error correcting codes, then

$$E_2 \circ E_1 : x \mapsto E_2(E_1(x)_1), \ldots, E_2(E_1(x)_m)$$

is an error correcting code from $\{0,1\}^n$ to $\{0,1\}^{m \cdot k}$.

Assume that we have a decoder for E_1 (respectively, E_2) that can handle ρ_1 (ρ_2 , respectively) errors, then there is a decoder for $E_2 \circ E_1$ that can handle $\rho_1 \cdot \rho_2$ errors.

LOCAL DECODING AND HARDNESS AMPLIFICATION

Definition

Let $E : \{0,1\}^n \to \{0,1\}^m$ be an error correcting code and $\rho > 0$. A *local* decoder for E handling ρ errors is a probabilistic algorithm \mathbb{D} such that given random access to a string $y \in \{0,1\}^m$ with $\Delta(y, E(x)) < \rho$ for some (unknown) $x \in \{0,1\}^n$ and an index $j \in [n]$ the algorithm \mathbb{D} runs in time (log m)^{O(1)} and output x_j with probability at least 2/3.

Theorem

Assume that there exists an error correcting code with polynomial time encoding algorithm and a local decoding algorithm handling ρ errors. If there is a function $f \in \mathbf{E}$ with

 $H_{wrs}(f)(n) \geq S(n)$

for some function $S : \mathbb{N} \to \mathbb{N}$ with $S(n) \ge n$ for every $n \in \mathbb{N}$. Then there exists a function $\hat{f} \in \mathbf{E}$ with

 $H^{1ho}_{\mathrm{avg}}(\widehat{f})(n) \geq S(\varepsilon \cdot n)^{\varepsilon}$

for some $\varepsilon > 0$.

Theorem

Let $\rho < 1/4$. Then the Walsh-Hadamard code has a local decoder handling ρ errors, which only makes two queries for each input.

Recall that the function WH : $\{0,1\}^n \to \{0,1\}^{2^n}$ maps every string $x \in \{0,1\}^n$ into the string $z \in \{0,1\}^{2^n}$ satisfying

$$z_y = x \odot y = \sum_{i=1}^n x_i \cdot y_i \pmod{2}$$

for every $y \in \{0, 1\}^n$.

Proof (2)

Recall that the function WH : $\{0,1\}^n \to \{0,1\}^{2^n}$ maps every string $x \in \{0,1\}^n$ into the string $z \in \{0,1\}^{2^n}$ satisfying

$$z_y = x \odot y = \sum_{i=1}^n x_i \cdot y_i \pmod{2}$$

for every $y \in \{0,1\}^n$.

Input: $j \in [n]$, random access to a function $f : \{0,1\}^n \to \{0,1\}$ such that

 $\Pr_{y}[f(y) \neq x \odot y] \le \rho < 1/4$

and $x \in \{0, 1\}^n$.

Output: A bit $b \in \{0,1\}$. (*Our goal*: $b = x_j$.)

Algorithm: Let $e^{j} \in \{0,1\}^{n}$ be the string whose every bit is 0 except the *j*-th bit. The algorithm chooses $y \in \{0,1\}^{n}$ uniformly at random and then outputs

$$f(y) + f(y + e^{j}) \pmod{2},$$

where $y + e^{j}$ is obtained from y by flipping the j-th bit of y.

Since both y and $y + e^{j}$ are uniformly distributed (although they are dependent), the union bound implies that with probability $1 - 2 \cdot \rho$ we have

$$f(y) = x \odot y$$
 and $f(y + e^{j}) = x \odot (y + e^{j})$.

Then

$$f(y) + f(y + e^{j}) = x \odot y + x \odot (y + e^{j})$$
$$= 2 \cdot (x \odot y) + x \odot e^{j}$$
$$= x \odot e^{j} = x_{j} \pmod{2}$$

THANK YOU