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Error Correcting Codes



Error-correcting codes

Definition
For x , y ∈ {0, 1}m, the fractional Hamming distance of x and y is

∆(x , y) :=

∣∣{i ∈ [m] | xi 6= yi
∣∣

m
.

Let 0 ≤ δ ≤ 1. A function E : {0, 1}n → {0, 1}m is an error-correcting code
with distance δ, if for every x 6= y ∈ {0, 1}n we have

∆(E(x),E(y)) ≥ δ.

The set
Im(E) :=

{
E(x)

∣∣ x ∈ {0, 1}n}
is the set of codewords of E .



Gilbert-Varshamov Bound

Lemma
Let δ < 1/2 and n ∈ N. Then there exists a function

E : {0, 1}n → {0, 1}n/(1−H(δ))

that is an error-correcting code with distance δ, where

H(δ) := δ · log
1

δ
+ (1− δ) · log

1

1− δ
= −δ · log δ − (1− δ) · log(1− δ)

is Shannon’s binary entropy function.



A useful inequality

Lemma
Let δ < 1/2 and n ∈ N. Then

bδ·nc∑
i=0

(
n

i

)
≤ 2H(δ)·n.

Proof.
1 =

(
δ + (1− δ)

)n ≥ bδ·nc∑
i=0

(
n

i

)
δi · (1− δ)n−i

=

bδ·nc∑
i=0

(
n

i

)
2i·log δ+(n−i)·log(1−δ)

≥
bδ·nc∑
i=0

(
n

i

)
2−H(δ)·n



Proof of the Gilbert-Varshamov Bound

Let m ∈ N, and a string x ∈ {0, 1}m. Then

∣∣{y ∈ {0, 1}m | ∆(y , x) < δ}
∣∣ ≤ bδ·mc∑

i=0

(
m

i

)
≤ 2H(δ)·m

Therefore, by a simple greedy algorithm, we can choose a set of codewords
with pairwise distance δ of size

2(1−H(δ))·m.



Explicit codes

We need to show an explicit function E : {0, 1}n → {0, 1}m with the following
properties:

Efficient encoding: There is an mO(1)-time algorithm to compute E(x)
from x .

Efficient decoding: Let ρ < δ/2. Then there is a polynomial time
algorithm to compute the unique x from every y with ∆(y ,E(x)) < ρ.



Walsh-Hadamard code

Let x , y ∈ {0, 1}n. We define

x � y :=
n∑

i=1

xi · yi (mod 2).

Definition
The Walsh-Hadamard code is the function WH : {0, 1}n → {0, 1}2

n

that maps
every string x ∈ {0, 1}n into the string z ∈ {0, 1}2

n

satisfying

zy = x � y

for every y ∈ {0, 1}n, where zy denotes the yth coordinate of z , identifying
{0, 1}n with [2n] in some canonical way.



Walsh-Hadamard code (cont’d)

Lemma
The function WH is an error-correcting code of distance 1/2.

Proof.
Let x 6= y ∈ {0, 1}n. We can show that∣∣{w ∈ {0, 1}n | x � w 6= y � w}

∣∣ = 2n−1.

Assume x � w 6= y � w , i.e.,
∑n

i=1 xi · wi 6=
∑n

i=1 yi · wi (mod 2), which is
equivalent to

n∑
i=1

(xi − yi ) · wi = 1 (mod 2).

As x 6= y , there exists a j ∈ [m] with xj − yj = 1 (mod 2). Therefore, for every
w ∈ {0, 1}m, let w ′ be the string which only differs from w on the jth bit, then

n∑
i=1

(xi − yi ) · wi 6=
n∑

i=1

(xi − yi ) · w ′i (mod 2).



Nonbinary alphabets

Definition
Let Σ be a finite alphabet and x , y ∈ Σm. Again we define ∆(x , y) :=∣∣{i ∈ [m] | xi 6= yi}

∣∣/m.

We say that E : Σn → Σm is an error-correcting code with distance δ over the
alphabet Σ if for every x 6= y ∈ Σn we have ∆(x , y) ≥ δ.



Reed-Solomon code

Definition
Let F be a (finite) field. And let n,m ∈ N with n ≤ m ≤ |F|. Then the
Reed-Solomon code from Fn → Fm is the function RS : Fn → Fm that on input
a0, . . . , an−1 ∈ F outputs the string z0, . . . , zm−1 where

zj =
n−1∑
i=0

ai · f ij .

One natural way to understand the Reed-Solomon code, is to view the input as
a polynomial of degree n − 1 over the field F:

F (x) :=
n−1∑
i=0

aix
i
i ,

while the output is the evaluation of F (x) on the points f0, . . . , fm−1 ∈ F.



Reed-Solomon code (cont’d)

Lemma
The Reed-Solomon code RS : Fn → Fm has distance 1− (n − 1)/m.



Reed-Muller code

Definition
Let F be a (finite) field. And let `, d ∈ N with d < |F|. Then the Reed-Muller
code with parameter F, `, d is the function

RM : F(`+d
d ) → F|F|

`

that maps every `-variable polynomial P over F of total degree d to the values
of P on all the inputs in F`.

That is, the input is a multivariate polynomial of the form

P(x1, . . . , x`) =
∑

i1+···+i`≤d

ci1,...,i`x
i1
1 · · · x

i`
` ,

and the output is the evaluation of P on the every e1, . . . , e` ∈ F.



Reed-Muller code (cont’d)

Lemma
The Reed-Muller code RM : Fn → Fm has distance 1− d/|F|.



Concatenated codes – WH ◦ RS

Assume that |F| is a power of 2.

Definition
If RS is the Reed-Solomon code mapping Fn to Fm and WH is the

Walsh-Hadamard code mapping {0, 1}log |F| to {0, 1}2
log |F|

= {0, 1}|F|, then the
code WH ◦ RS maps {0, 1}n log |F| to {0, 1}m|F| in the following way:

1. View RS as a code from {0, 1}n log |F| to Fm and WH as a code from F to
{0, 1}|F| using the canonical representation of elements in F as strings in
{0, 1}log |F|.

2. For every input x ∈ {0, 1}n log |F|

WH · RS(x) := WH(RS(x)1), . . . ,WH(RS(x)m),

where RS(x)i denotes the i-th symbol of RS(x) (which is an element of F
identified by a string in {0, 1}log |F|.



Concatenated codes – WH ◦ RS (cont’d)

Theorem
Let δ1 := 1− (n − 1)/m be the distance of RS and δ2 = 1/2 the distance of
WH. Then WH ◦ RS is an error correcting code of distance δ1 · δ2.



Concatenated codes – the general case

Theorem
Let E1 : {0, 1}n → Σm and E2 : Σ→ {0, 1}k be two error correcting codes with
distance δ1 and δ2, respectively. Then E2 ◦ E1 : {0, 1}n → {0, 1}m·k is an error
correcting code of distance δ1 · δ2.



Thank you
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