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a b s t r a c t

Consider an asymmetric wireless network represented by a digraph G = (V , E). A subset
of vertices U is called a strongly connected dominating set (SCDS) if the subgraph induced
by U is strongly connected and every vertex not in U has both an in-neighbor in U and
an out-neighbor in U . SCDS plays an important role of the virtual backbone in asymmetric
wireless networks. Motivated by the construction of a small virtual backbone, we study the
problem Minimum SCDS, which seeks a smallest SCDS of a digraph. For any constant 0 <
ρ < 1, there is no polynomial-time ρ ln n-approximation for Minimum SCDS unless NP ⊆
DTIME(no(ln n)), where n is the number of nodes. However, none of the polynomial-time
heuristics for Minimum SCDS proposed in the literature are logarithmic approximations.
In this paper, we present a polynomial-time (3H (n− 1) − 1)-approximation algorithm
for Minimum SCDS, where H is the harmonic function. The approximation ratio of this
algorithm is thus within a factor of 3 from the best possible approximation ratio achievable
by any polynomial-time algorithm.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Virtual backbone is a fundamental structure in multihop wireless networks with a broad range of applications (cf. a
recent survey [3] and the references therein). A virtual backbone is a subset U of nodes satisfying that any pair of non-
adjacent nodes can communicate with each other only through the nodes in U . Virtual backbone in symmetric multihop
wireless networks has been extensively studied in the literature [2,4,11,13–15,19]. A symmetric multihop wireless network
can be represented by an undirected graphG = (V , E), and a virtual backbone is exactly a connected dominating set (CDS) of
G, which is a subset U of nodes such that the subgraph induced by U is connected and each node not in U is adjacent to some
node in U . The problem Minimum CDS seeks a CDS of the smallest cardinality in a specified graph. Both the approximation
hardness and the approximation algorithms for Minimum CDS have been well studied. For any constant 0 < ρ < 1, there
is no polynomial-time ρ ln n-approximation for Minimum CDS unless NP ⊆ DTIME(no(ln n)) [8], where n is the number of
nodes. A greedy (ln∆ + 3)-approximation and a greedy (ln∆ + 2)-approximation for Minimum CDS were presented in
[8] and [12] respectively, where∆ is the maximum degree in the graph. Furthermore, when restricted on unit-disk graphs,
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Minimum CDS admits a polynomial-time approximation scheme [6], i.e., for any ε > 0, there exists a polynomial-time
(1+ ε)-approximation, and efficient distributed constant-approximations [1,5,10,18].
In many scenarios, the communication links in multihop wireless networks are asymmetric in nature. For example, the

nodesmay have different transmission ranges because of the heterogeneity of the nodes, or because of the range assignment
for the purpose of energy conservation. In such cases, it is possible for a pair of nodes u and v to have a communication link
from u to v and no communication link from v to u. A multihop wireless network with asymmetric communication links,
referred to as asymmetricmultihopwireless network, can only bemodelled by adirected graphG = (V , E). Correspondingly,
a virtual backbone is a strongly connected dominating set (SCDS) of G, which is a subset U of nodes such that the sub-digraph
induced by U is strongly connected and each node not in U has both an in-neighbor in U and an out-neighbor in U . The
problem Minimum SCDS seeks an SCDS of the smallest cardinality in a specified digraph. Since SCDS is a generalization of
CDS, Minimum SCDS at least as hard as Minimum CDS in terms of approximality. Therefore, for any constant 0 < ρ < 1
there is no polynomial-time ρ ln n-approximation for Minimum SCDS unless NP ⊆ DTIME(no(ln n)).
In contrast to the existence of many provably-good approximation algorithms for Minimum CDS in the literature, there

are only a few approximation algorithms forMinimumSCDS in the literature. Thai et al. [16,17,7] gave several approximation
algorithms for Minimum SCDS. But none of these algorithms are logarithmic approximations. In this paper, we presented
a polynomial-time (3H (n− 1) − 1)-approximation algorithm for Minimum SCDS, where H is the harmonic function. The
approximation ratio of this algorithm is thus within a factor of 3 from the best possible approximation ratio achievable by
any polynomial-time algorithm.

2. Preliminaries

Let G = (V , E) be a digraph. A node in G is said to be a sink node if its out-degree is zero, and an internal node otherwise.
The set of internal nodes in G is denoted by I (G). A subgraph is said to be spanning if its vertex set is exactly V . A subgraph
of G is called as an arborescence rooted at a node s ∈ V if in this subgraph the in-degree of s is zero, and the in-degree of
any other node is exactly one. An arborescence rooted at s is also called an s-arborescence. For each node v ∈ V , δ− (v)
(respectively, δ+ (v)) denotes the in-degree (respectively, out-degree) of v in G, and N− (v) (respectively, N+ (v)) denotes
the set of in-neighbors (respectively, out-neighbors) of v in G. For any subset U of V , we denote by G [U] the subgraph of G
induced by U . The reverse of G denoted by GR is a digraph obtained from G by reversing the direction of every arc. In other
words, GR = (V , ER)with

ER = {(u, v) | (v, u) ∈ E}.

Lemma 2.1. Let G = (V , E) be a strongly connected digraph and s be an arbitrary node in V . Suppose that T1 is a spanning
s-arborescence in G, and T2 is a spanning s-arborescence in GR. Then I (T1) ∪ I (T2) is an SCDS of G.

Proof. Let U = I (T1) ∪ I (T2). We first show that G [U] is strongly connected. Let u and v be two arbitrary distinct nodes in
U . T R2 contains a path P2 from u to s, and T1 contains a path P1 from s to v. Both of P1 and P2 are in G[U]. The concatenation
of P2 and P1 is a path from u to v in G[U].
Next, consider a node u ∈ V \ U . u must be a sink both in T1 and in T2. Let u1 be the parent of u in T1, and u2 be the

parent of u in T2. Then, both u1 and u2 belong to U . In addition, u1 is an in-neighbor of u in G, and u2 is an out-neighbor of u
in G. �

Motivated by Lemma 2.1, we introduce the problem Spanning Arborescence with Fewest Internal Nodes (SAFIN): Given
a digraph G = (V , E) and a source node s ∈ V , compute a spanning s-arborescence T with minimum |I (T ) \ {s}|. It is easy
to argue that SAFIN is at least as hard as Minimum CDS. Let A be an arbitrary polynomial-time approximation for SAFIN.
Table 1 describes a polynomial-time approximation algorithm SCDS (A) for Minimum SCDS with the parametric A as a
subroutine. For the purpose of reducing the running time, a small subset S of candidates for the source node is selected as
the beginning. Specifically, let u be the node u which minimize satisfying that min

(
δ− (v) , δ+ (v)

)
over all nodes v ∈ V .

If δ− (u) ≤ δ+ (u), then S consists of u and all its in-neighbors; otherwise, S consists of u and all its out-neighbors. Clearly,
every SCDS must contain at least one node in the selected S.

Theorem 2.2. Suppose that A is a ρ-approximation for SAFIN. Then Algorithm SCDS (A) produces an SCDS of size at most
2ρ · opt − 2ρ + 1, where opt is the size of a minimum SCDS.

Proof. Let U∗ be a minimum SCDS in G. Then, U∗ ∩ S 6= ∅. Consider a node s ∈ U∗ ∩ S. Then both G[U∗] and GR [U∗] are
strongly connected. Let T ′1 (respectively, T

′

2) be a spanning arborescence of G[U
∗
] (respectively, GR [U∗]) with root s. Note

that every node v ∈ V \ U∗ has an incoming neighbor v1 ∈ U∗ (respectively, v2 ∈ U∗) in G (respectively, GR). Let T ′′1
(respectively, T ′′2 ) be the arborescence expanded from T

′

1 (respectively, T
′

2) by adding an arc (v1, v) (respectively, (v2, v)) for
each v ∈ V \ U∗. Then, T ′′1 (respectively, T

′′

2 ) is a spanning arborescence of G (respectively, G
R) rooted at s, and both I

(
T ′2
)

and I
(
T ′′2
)
are contained in U∗. Hence,∣∣I (T ′′1 )∣∣ ≤ ∣∣U∗∣∣ = opt,∣∣I (T ′′2 )∣∣ ≤ ∣∣U∗∣∣ = opt.
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Table 1
Outline of the algorithm SCDS (A).
Algorithm SCDS (A):
u← argminv∈V min

(
δ− (v) , δ+ (v)

)
;

If δ− (u) ≤ δ+ (u) then
S ← {u} ∪ N− (u) ;
else
S ← {u} ∪ N+ (u) ;
U ← V ;
for each s ∈ S,
T1 ← spanning s-arborescence in G output byA;
T2 ← spanning s-arborescence in GR output byA;
if |I(T1) ∪ I(T2)| < |U| then
U ← I(T1) ∪ I(T2);

output U .

Let T1 (respectively, T2) be the spanning s-arborescence of G (respectively, GR) output by the algorithmA. Then,

|I (T1) \ {s}| ≤ ρ
∣∣I (T ′′1 ) \ {s}∣∣ ≤ ρ (opt − 1) ,

|I (T2) \ {s}| ≤ ρ
∣∣I (T ′′2 ) \ {s}∣∣ ≤ ρ (opt − 1) .

Note that I (T1) and I (T2) have node s in common. So, for the output U of Algorithm SCDS (A), we have

|U| ≤ |I (T1) ∪ I (T2)|
≤ 1+ |I (T1) \ {s}| + |I (T2) \ {s}|
≤ 1+ 2ρ (opt − 1) ρ
= 2ρ · opt − 2ρ + 1. �

In the next section, we will develop a (1.5H (n− 1)− 0.5)-approximation algorithm A for SAFIN. For such A, the
algorithm SCDS (A) is a (3H (n− 1)− 1)-approximation algorithm for Minimum SCDS by Theorem 2.2.

3. The approximation algorithm

First, we introduce some notations and terminologies.We give a unique ID to each node. Let s be the source node. For any
B ⊆ V containing s, let G 〈B〉 denote the spanning subgraph of Gwhose arc set consists of all arcs of G leaving from the nodes
in B. A strongly-connected component of G 〈B〉 is said to be an orphanwith respect to B if it neither contains the source s nor
has an incoming arc. For each orphan component, the node with the smallest ID in this component is referred to as its head.
We use h (B) to denote the number of heads (equivalently, the number of orphans) with respect to B. Clearly, G 〈B〉 contains
a spanning s-arborescence if and only if h (B) = 0.
Now, we give an overview on the algorithm A for SAFIN. The algorithm maintains a set B of nodes, which is initialized

to {s}. Repeat the following iteration while h (B) > 0. Choose an arborescence by a greedy strategy, add all internal nodes
of the chosen arborescence to B, and then update h (B). When h (B) = 0, output a spanning s-arborescence in G 〈B〉. The key
ingredient of this algorithm is the greedy strategy used by each iteration to select a proper arborescence. In the next, we
will present the details of this greedy strategy.
Fix a subset B of V with s ∈ B and h (B) > 0. The price of an arborescence T with respect to B is defined as

p (T ) =
|I(T ) \ {s} |

the number of heads w.r.t. B in T
the ratio of |I(T )\{s} | to the number of heads w.r.t. B contained in T . Ideally, one would greedily wish to use a cheapest (i.e.,
least-priced) arborescence tomerge the orphans.While a cheapest arborescence can be computed easilywhen h (B) is small,
it is hard to be computed in general. Our approach is to restrict our selection of a cheapest arborescence from a polynomial
number of special candidates. We use T (B) to denote the set of candidates. The construction of T (B) is described below.
We begin with some preprocessing. We use P (u, v) to denote a shortest path P (u, v) in G from u to v. For each node

u and each pair of distinct nodes v and w, S (u; v,w) denotes a u-arborescence in G containing v and w with the smallest
number of internal nodes. Both P (u, v) and S (u; v,w) can be computed in polynomial time. Note that then S (u; u, w) is
identical to P (u, w).
When h (B) = 1, T (B) consists of only one candidate P (s, v) where v is the head. Similarly, when h (B) = 2, T (B)

consists of only one candidate S (s; v,w) where v and w are the two heads. Now, suppose that h (B) ≥ 3. T (B) consists of
(h (B)− 2) n+ 2 candidates:

T (B) ={T` (B, s) : 1 ≤ ` ≤ 2} ∪
{T` (B, u) : u ∈ V , 3 ≤ ` ≤ h (B)} .
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Table 2
Outline of the algorithmA.
AlgorithmA:
B← {s};
while h (B) > 0,
construct T (B);
find a cheapest T ∈ T (B) ;
B← B ∪ I (T );
output a spanning s-arborescence of G 〈B〉 .

The candidate T1 (B, s) is the shortest one among all paths P (s, v)where v is the head, and T2 (B, s) is the onewith the fewest
internal nodes among all S (s; v,w)where v andw are two distinct heads. The construction of each T` (B, u)with u ∈ V and
3 ≤ ` ≤ h (B) proceeds in three steps. In the first step, an edge-weighted graph G` (B, u) is constructed as follows.
Case 1: ` is even. Let X denote the set of all heads, and Y be a set of h − ` dummy nodes disjoint from V . G` (B, u)

is the union of the clique on X and the bipartite clique between X and Y . Each edge vw between two heads has weight
c (vw) = |I (S (u; v,w))| − 1; each other edge e has weight c (e) = 0.
Case 2: ` is odd and u is a head. Let X denote the set of all heads except v, and Y be a set of h− ` dummy nodes disjoint

from V . G` (B, u) is the union of the clique on X and the bipartite clique between X and Y . Each edge vw between two heads
has weight c (vw) = |I (S (u; v,w))| − 1; each other edge e has weight c (e) = 0.
Case 3: ` is odd and u is not a head. Let X denote the set of all heads, Y be a set of h− `+ 1 dummy nodes disjoint from

V , and y be a node in Y . G` (B, u) is the union of the clique on X and the bipartite clique between X and Y . Each edge vw
between two heads has weight c (vw) = |I (S (u; v,w))| − 1; each edge vy has weight c (vy) = |I (P (u, v))| − 1; and each
other edge e has weight c (e) = 0.
Clearly, |X |+|Y | is even and G` (B, u) has a perfect matching. In the second step, we compute aminimum-weight perfect

matching M` (B, u) in G` (B, u), and construct a subgraph G′` (B, u) of G as follows. If ` is even or if ` is odd and u is a head,
G′` (B, u) is the union of S (u; v,w) for all matched pairs of heads v andw inM` (B, v). If ` is odd and u is not a head, G

′

` (B, u)
is the union of S (u; v,w) for all matched pairs of heads v and w in M` (B, v) and the path P (v, x) for the head x matched
with y inM` (B, u). In the third step, we compute a spanning u-arborescence T` (B, u) of G′` (B, u).
Now, we are ready to describe the algorithmA (Table 2).
In the remaining part of this section, we derive an upper bound on the approximation ratio of the algorithmA, which is

stated in the next theorem.

Theorem 3.1. The approximation ratio of the algorithmA for SAFIN is at most 1.5H (n− 1)− 0.5.

To prove the above theorem, we first give a lower bound on the “gain” of each candidate arborescence in T (B) in terms
of the reduction on the number of orphans (or heads).

Lemma 3.2. Suppose that h (B) > 0. Then for any T ∈ T (B) containing ` heads w.r.t. B,

h (B)− h (B ∪ I (T )) ≥
2
3
`.

Proof. Let u be the root of T . After the addition of I (T ), each orphan w.r.t. B containing a head in T either till survives
as a component of G 〈B ∪ I (T )〉 but is not orphan any more, or gets merged into some new (and larger) component of
G 〈B ∪ I (T )〉. Furthermore, each new component of G 〈B ∪ I (T )〉 which does not contain u cannot be an orphan. If u 6= s,
then ` ≥ 3 and

h (B)− h (B ∪ I (T )) ≥ `− 1 >
2
3
`

the reduction in the number of orphan components is at least ` − 1 ≥ 2`/3 since ` ≥ 3. If u = s, then the component of
G 〈B ∪ I (T )〉 containing u is not an orphan, and

h (B)− h (B ∪ I (T )) = ` >
2
3
`.

So the lemma holds. �

The next lemma presents an upper bound on the price of the cheapest candidate in T (B).

Lemma 3.3. Suppose that h (B) > 0. Then the price of the cheapest arborescence in T (B) is at most opth(B) .

The proof of this lemma is quite involved. We introduce an intermediate structure called legal arborescence. Let T be a
u-arborescence in G. Removing u from T results in a collection of arborescences. Each of these arborescences is called a child
arborescence of T . T is said to be legalwith respect to a subset B if (1) T contains at least one (respectively three) head w.r.t.
B if u = s (respectively, u 6= s), and (2) each child arborescence of T contains at most two heads w.r.t. B, and (3) either s = u
or s is not in T . As the first step towards the proof of Lemma 3.3, we first establish a relation between the prices of a legal
arborescence and the corresponding candidate arborescence in the next lemma.
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Lemma 3.4. Suppose that h (B) > 0. Then for any legal u-arborescence T ⊆ G which contains ` heads,

p (T ) ≥ p (T` (B, u)) .

Proof. We first show that the lemma holds when ` ≤ 2. When ` ≤ 2, u = s and T` (B, s) contains exactly ` heads. If ` = 1,
let v be the head in T . Then,

p (T ) = |I (T )| − 1
≥ |I (P (s, v))| − 1
≥ |I (T1 (B, s))| − 1
= p (T` (B, s)) .

Now, assume ` = 2. Let v andw be the two heads in T . Then,

p (T ) =
|I (T )| − 1

2

≥
|I (S (s; v,w))| − 1

2

≥
|I (T2 (B, s))| − 1

2
= p (T2 (B, s)) .

So, the lemma holds when ` ≤ 2.
In the rest of the proof, we assume that ` ≥ 2. We show that

|I(T` (B, u)) \ {u}| ≤ c (M` (B, u)) . (1)

We only give the proof for the inequality (1) in the case of even `, as the proofs in other cases are similar. Suppose that ` is
even. Let viwi for 1 ≤ i ≤ `

2 be the matched pairs of heads inM` (B, u). Then,

|I(T` (B, u)) \ {u}| ≤
∣∣I(G′` (B, u)) \ {u}∣∣
≤

`
2∑
i=1

|I (S (u; vi, wi)) \ {u}|

=

`
2∑
i=1

(|I (S (u; vi, wi))| − 1)

= c (M` (B, u)) .

So, the inequality (1) holds.
Next, we show that

|I (T ) \ {u}| ≥ c (M` (B, u)) . (2)

We construct a perfect matchingM ′ in G` (B, u) from T as follows.
Case 1: ` is even. Pair up every pair of heads in a same child arborescence of T , pair up the other heads in T arbitrarily,

and pair up every head not in T with a unique dummy node.
Case 2: ` is odd and u is a head. Pair up every pair of heads in a same child arborescence of T , pair up the other heads in

T except u arbitrarily, and pair up every head not in T with a unique dummy node.
Case 3: ` is odd and u is not a head. Pair up every pair of heads in a same child arborescence of T , and pairing the other

heads in T arbitrarily, leaving exactly one head in T (say x) unpaired. Pair x with y, and pair up every head not in T with a
unique dummy node other than y.
We claim that

|I (T ) \ {u}| ≥ c
(
M ′
)
.

Weverify this claim only for Case 1, as the claim in the other two cases can be verified in the sameway. Let viwi for 1 ≤ i ≤ `
2

be the matched pairs of heads inM ′. For each 1 ≤ i ≤ `
2 , let Ti be the union of the two paths from u to vi andwi respectively

in T . Then, these `2 arborescences Ti are internally node-disjoint. On the other hand, for each 1 ≤ i ≤
`
2 ,

|I (Ti)| ≥ |I (S (u, vi, wi))| .
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Hence,

|I (T ) \ {u}| =

`
2∑
i=1

|I (Ti) \ {u}|

=

`
2∑
i=1

(|I (Ti)| − 1)

≥

`
2∑
i=1

(|I (S (u, vi, wi))| − 1)

= c
(
M ′
)
.

So, our claim is true. Since
C
(
M ′
)
≥ c (M` (B, u)) ,

inequality (2) holds.
Finally, we prove the inequality given in the lemma. The two inequalities (1) and (2) imply that
|I(T` (B, u)) \ {u}| ≤ |I (T ) \ {u}| .

By construction, the number of heads in each T` (B, u) is at least `. If u = s, then

p ((T` (B, s))) ≤
|I(T` (B, s)) \ {s}|

`

≤
|I(T ) \ {s}|

`

= p (T ) .

So, the lemma holds if u = s. Next, assume that u 6= s. Then, s is not in T and hence

p ((T` (B, u))) ≤
|I(T` (B, u)) \ {s}|

`

≤
|I(T` (B, u))|

`

=
1+ |I(T` (B, u)) \ {u}|

`

≤
1+ |I (T ) \ {u}|

`

=
|I (T )|
`

=
|I(T ) \ {s}|

`

= p (T ) .

So, the lemma also holds when u 6= s. �

As the second step towards the proof of Lemma 3.3, we establish an upper bound on the price of the cheapest legal
arborescence.
Lemma 3.5. Suppose that h (B) > 0. Then, there is a legal arborescence with price at most opth(B) .

Proof. We prove the lemma by a decomposition argument. Let T ∗ be an optimal spanning s-arborescence. The depth of a
node in T ∗ is its hop-distance from s in T ∗. Initialize i = 0. Repeat the following iteration while T ∗ contains at least three
heads. Increment i by one. Choose a node v with the maximum depth such that the maximal v-arborescence contained in
T ∗ (which is the subgraph of T ∗ induced by v and all its descendents in T ∗) contains at least three heads. Set T ∗i to be the
maximal v-arborescence contained in T ∗. By the maximum depth of v, no child arborescence of Ti has at most two heads.
Hence Ti is legal. Delete T ∗i from T

∗. If T ∗ still contains one head or two heads, then increment i by one and set T ∗i to the
whole T ∗. Note that T ∗i is also legal since its root is s.
Let T ∗1 , T

∗

2 , . . . , T
∗
q be the sequence of legal arborescences obtained by this construction. Then, they are node-disjoint. In

addition, their union contains all heads. For each 1 ≤ j ≤ q, let `j denote the number of heads contained in T ∗j . Then,
q∑
j=1

`j = h (B) ,
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and
q∑
j=1

∣∣I(T ∗j ) \ {s}∣∣ = ∣∣I (∪qj=1T ∗j ) \ {s}∣∣ ≤ opt.
Thus,

q
min
j=1
p
(
T ∗j
)
=

q
min
j=1

∣∣I(T ∗j ) \ {s}∣∣
`j

≤

∑q
j=1

∣∣I(T ∗j ) \ {s}∣∣∑q
j=1 `j

≤
opt
h (B)

.

So, the cheapest one among T ∗1 , T
∗

2 , . . . , T
∗
q has price at most

opt
h(B) . �

With the establishment of Lemma 3.4 and Lemma 3.5, we are ready to give the proof for Lemma 3.3. Let T be a cheapest
legal arborescence. By Lemma 3.5,

p (T ) ≤
opt
h (B)

.

Let u be the root of T , and ` be the number of heads contained in T . By Lemma 3.4,

p (T ) ≥ p (T` (B, u)) .

Thus,

p (T` (B, u)) ≤
opt
h (B)

.

Since T` (B, u) ∈ T (B), Lemma 3.3 holds.
Finally, we prove Theorem 3.1 by applying Lemma 3.2 and Lemma 3.3. Suppose that the algorithm runs in k iterations.

Let h0 = n−1which is the number of initial orphan components. For any 1 ≤ i ≤ k, let Ti be the legal arborescence selected
at iteration i, and let hi be the number of orphans just after iteration i. Let bi = |I (Ti) \ {s}| and `i be the number of heads in
Ti. Then by Lemma 3.3, for each 1 ≤ i ≤ k,

bi
`i
≤
opt
hi−1

. (3)

Since the iteration k is the last iteration, `k = hk−1 and consequently,

bk ≤ opt. (4)

By Lemma 3.2, for each 1 ≤ i ≤ k− 1,

hi−1 − hi ≥ 2`i/3. (5)

Combining the two inequalities (3) and (3.2), we obtain

hi−1 − hi ≥
2
3
bi
opt
hi−1,

which implies that
bi

1.5opt
≤
hi−1 − hi
hi−1

.

Sum up the above k− 1 inequalities, we get

1
1.5opt

k−1∑
i=1

bi ≤
k−1∑
i=1

hi−1 − hi
hi−1

≤

k−1∑
i=1

hi−1∑
j=hi+1

1
j

=

h0∑
j=hk−1+1

1
j

= H (h0)− H (hk−1)
≤ H (n− 1)− 1.
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Therefore,
k−1∑
i=1

bi ≤ 1.5 (H (n− 1)− 1) · opt.

Using the inequality (4), we have
k∑
i=1

bi ≤ 1.5 (H (n− 1)− 1) · opt + opt

= (1.5H (n− 1)− 0.5) · opt.

Since

|B \ {s}| ≤
k∑
i=1

ci,

Theorem 3.1 follows.

4. Discussions

By Theorem 2.2, any ρ ln n-approximation algorithm for SAFIN would lead to a 2ρ ln n-approximation algorithm for
Minimum SCDS. At the expense of higher running time, the 1.5 ln n-approximation algorithm for SAFIN presented in this
paper can be extended to a 1.35 ln n-approximation algorithm for SAFIN by following the approach developed in [9] for
Minimum Node Weighted Steiner Tree. On the other hand, it is easy to show that SAFIN is itself as hard as Minimum CDS.
Thus, for any constant 0 < ρ < 1 there is no polynomial-time ρ ln n-approximation for SAFIN unless NP ⊆ DTIME(no(ln n)).
This means that the best possible approximation factor by the approximation algorithm SCDS (A) is 2 ln n+ O (1). In order
to achieve an approximation factor of ρ ln n with a constant ρ < 2, one has to resort to a totally different approach. Any
progress towards this improvement would be challenging and exciting.
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