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Abstract—Multi-channel wireless data broadcast is an appropriate approach to disseminate data to a mass number of mobile clients.

In this paper, we present a global optimization for multi-channel wireless data broadcast with Alphabetic Huffman Tree (AH-Tree)

Indexing scheme, which can deal with skewed access frequencies well. We present three novel designs to reduce the access latency

and tuning time of the broadcast system. Firstly, we design a dynamic programming for AH-Tree construction with low time complexity.

Compared with traditional Hu-Tucker algorithm in OðnkÞ, our algorithm can build a k-ary AH-Tree index in Oðn2Þ. Next, we depict a new

control table design, which eliminates up to 50 percent redundant entries while keeps the searching efficiency. We also theoretically

prove that an optimal alphabetic tree has the minimum average tuning time among all tree-based index structures for skewed data

broadcast. Thirdly, we design the new index and data allocation algorithms to further reduce the tuning time and access latency. The

simulation results validate the effectiveness of our algorithms. In all, our global optimization mechanism can greatly improve the system

performance and time efficiency for wireless data broadcast applications.

Index Terms—Data broadcast, index, Huffman Tree

Ç

1 INTRODUCTION

WIRELESS data broadcast is an efficient data dissemina-
tion technology to a mass number of mobile clients

with battery-constraint portable wireless devices. Instead of
point-to-point query-reply mode, a server broadcasts public
information like traffic conditions, TV streams, etc., over
multiple channels periodically. Each mobile client can
access onto the channel, wait for the required data items,
and download its required data packet sequence each at a
time slot.

Each mobile device has two modes: active mode and doze
mode. Its energy consumption in active mode is far greater
than that in doze mode. Intuitively, the criteria to evaluate
the performance of a wireless data broadcast system are the
downloading time and energy consumption of mobile devi-
ces. Correspondingly, access latency (AL) and tuning time
(TT) are two widely accepted system evaluation standards.
The former denotes the time interval from when a client
sends a request to the time when it receives the required
datum, while the latter denotes the activating time of the
mobile device during data retrieval process.

Indexing technology and data/index allocation methods
are the most effective methods to reduce the tuning time
and access latency. On one hand, indices help to reduce the

active time of a mobile device significantly. Clients can fol-
low the direction of indices, turn off during the waiting
period, and turn on again right before the required datum
appears. On the other hand, proper allocation methods can
assign relevant data items and indices as closely as possible,
and thus reduce the clients’ waiting time. Hence, a broad-
cast service provider often considers both of the two techni-
ques to improve the system performance. It first constructs
indices according to the data set features. Then it linearizes
the indices and allocates both indices and data onto the
broadcasting channels.

Many works discussed efficient indexing schemes, which
can be classified into three categories: hashing-based index-
ing [1], [2], tree-based indexing [3], [4], [5], and table-based
indexing [6]. Among them, tree-based indices are more pop-
ular according to their easy-searching and fast-constructing
characteristics. Additionally, based on the investigation of
website popularity [7], say, few data items have high popu-
larity while majority of data items actually get low prefer-
ence, we choose the Alphabet Huffman Tree (AH-Tree) to
build indices, which dealswith skeweddatawell. In a typical
AH-Tree, the higher the frequency of a datum, the shorter the
path from the root to the corresponding leaf index.

After constructing an index tree, researchers tended to
modify the index tree into a distributed index sequence to
further improve the system performance [3], [8], [9]. This
scheme relies on a control table structure, which is attached
to some index nodes and directs the clients the nearest
proper index node.

The next step is to linearize the index tree and allocate
both the data and indices onto the broadcasting channels.
For index allocation, several methods can be found in [5],
[10], [11], [12], [13]. A typical example is [5], in which the
authors proposed a heuristic linearization method to main-
tain the order of the index tree while keep the relative index
nodes as close as possible. For data allocation, researchers
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hope to arrange the data items according to their popularity,
so that the average client waiting time is minimized. Yee et al.
[14] gave an Oðt2mÞ dynamic programming called DP to
find an optimal schedule for data set with uniform length,
wherem is the number of data channels. Ardizzoni et al. [15]
improved DP and proposed Dichotomic with Oðmt
log tÞ-time. For non-uniform data lengths, the problem has
been proved to be strong NP-hard for arbitrarym [15]. In this
case, several greedy strategies are proposed in [14], [15], [16].

Although many literatures discussed almost every aspect
to construct a broadcast system, none of them have consid-
ered this system globally and analyzed the inherent rela-
tionship among these aspects. Actually, each intermediate
step does influence the overall system performance, and
there still exist many optimization problems. For instance:

For tree construction, many literatures have studied AH-
Tree. In [17], Hu and Tucker first proposed a binary AH-
Tree algorithm in Oðt log tÞ, where t is the size of data items.
Their design relies on a complex queue technology, which
cannot be directly extended to arbitrary k-ary AH-Tree [18].
Later, Shivakumar et al. [19] extended Hu-Tucker Algo-
rithm into k-ary AH-Tree, and first implemented it for data
broadcast. However, they only mentioned a skeleton of
how to build a k-ary AH-Tree, lack of specification of inter-
nal node construction with k branches. The time complexity

of their design would be high up to OðtkÞ without adopting
any particular queue structure. Similarly, [5], [8], and [20]
discussed AH-Tree index for data broadcast respectively,
none of which provided complete tree-construction process
with time complexity analysis. How to construct an arbi-
trary k-ary AH-Tree efficiently remains an open question.

For control table generation, we found that enrolling con-
trol table results in two problems. Firstly, it brings addi-
tional space overhead, which is a non-negligible factor since
we found that a large number of items in the control table
are redundant. Secondly, it is hard to predict the perfor-
mance of the index structure since with the help of control
tables, clients will not always search the tree from the root.

For index allocation, we found that all the previous works
have two impractical assumptions. The first assumption is
that clients can get any of the next m broadcasted items, so
researchers allocated relevant indices as closely as possible
for better performance. However, their designsmay perform
poorly because when the client hops to a channel, there are
potential synchronization costs [21], which is not small com-
pared to the time downloading an index node. Thus clients
may miss some intermediate directions and fail to get the
correct index location. The second assumption is that clients
always search the index tree from the root. After introducing
control tables into the system, this is not necessary.

For data allocation, all the previous methods did not take
the advantage of data size.

In this paper we consider a skewed data broadcast sys-
tem with single query requests and provide a global optimi-
zation with the following improvements:

1) We propose an efficient dynamic programming to
build a k-ary AH-Tree index in Oðt2Þ time, which

outperforms the previous OðtkÞ greatly.
2) We provide novel scheme to eliminate redundant

entries in control tables using tolerable time, which

saves up to 50 percent index size while keeps the
searching efficiency. We also analyze the effect of
control table and prove that an optimal alphabetic
tree has the minimum average tuning time among
all tree-based indices for skewed data broadcast.

3) We design the new index and data allocation meth-
ods to better improve the system performance. Our
index allocation methods consider the effects of
hopping and data size.

Our paper is organized as follows. Section 2 introduces
the related works. Section 3 illustrates the problem formula-
tion and system architecture. In Section 4 we describe index
construction, including a dynamic programming for k-ary
AH-Tree and distributed index sequence with simplified
control tables. Sections 5 and 6 describe the data and index
allocation methods respectively. In Section 7 we discuss the
dynamic index update issue. In Section 8 we compare our
allocation methods with previous works. Finally, Section 9
gives conclusion and future works.

2 RELATED WORKS

The key research topics in wireless data broadcast are basi-
cally focusing on how to deign index structures and how to
allocate data and index onto channels, in order to reduce
access latency and tuning time.

Traditional disk-based indexing techniques have been
modified to meet the requirement of data broadcast sys-
tems, which can be classified into three categories: (1).
Hashing-based schemes [1], [2], which use hash functions to
distribute data onto channels. E.g., Yao et al. [1] proposed
MHash to facilitate skewed access probabilities and reduce
access latency. (2). Table-based schemes, like exponential
index [6], which shares links in different search tables and
allows users to start searching at any index node. However,
it may not perform well under non-uniform access probabil-
ities. (3). Tree-based schemes, e.g., B tree [3], [4], Huffman
tree [5]. They are sometimes faster to design and easier to
maintain, thus achieving more attentions. One common
tree-based index, i.e., Bþ-tree distributed index (BTD)
was extended to satisfy different system requirements.
Gao et al. [9] redesigned BTD and built a complete multi-
channel broadcasting system with non-uniform data access
probabilities and unequal data sizes.

Alphabetical Huffman tree is a skewed index tree that
takes into account the data access probability, where
more popular data have shorter search paths [19]. It is more
practical since many types of data in social sciences can
be approximated with a Zipfian distribution [7]. Zhong
et al. [20] proposed a uniform AH-Tree indexing scheme to
satisfy all possible environments. Lu et al. [22] built a multi-
channel broadcasting system using AH-Tree index technol-
ogy. In Section 4, we prove that the average tuning time of
an optimal alphabetic tree is minimum among all index
trees with control tables. Thus an AH-Tree, an optimal
alphabetic tree, can handle various data set features without
any impractical assumptions or constraints.

When it comes to multi-channel data broadcasting, the
way to allocate index and data will produce heavy impact
on the performance. Several index allocation methods [5],
[10], [11], [12], [13] could be helpful to a specific index
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structure, but meanwhile it might reduce the efficiency of
another index scheme. Wang and Chen [10] proposed an
index allocation method named TMBT, which creates a
virtual BTD for each data channel and multiplexes them
on the index channel. Lo and Chen [12] proposed an opti-
mal index and data allocation, which minimizes the
access latency, by representing all the possible allocations
as a tree. However, most of these works do not consider
the effects of hopping time, which makes them impracti-
cal. In [21], Yee and Navathe pointed out that each hop
takes milliseconds, which should be added to the access
time for clients.

Several works [8], [14], [15], [16], [21] deal with data
allocation for multi-channel data broadcast. For the data
set of uniform lengths, [14] proposed an Oðt2mÞ dynamic
programming to find the optimal schedule and a near
optimal greedy algorithm to reduce the time complexity.
In [15], an improved Oðmt log tÞ algorithm named Dichoto-
mic was proposed. For non-uniform lengths case, the prob-
lem has been proved to be strong NP -hard for arbitrary
m [15], so researchers tend to design algorithms based on
greedy and heuristic strategy [15], [16], [23]. While most
of the researches dealt with the data allocation problem
from server side, several works [24], [25], [26], [27], [28]
discussed data retrieval scheduling problem from the cli-
ent side.

3 SYSTEM ARCHITECTURE

3.1 Symbols and Definitions

Let D ¼ fd1; . . . ; dtg be the data set to broadcast, where t is
the number of data items. A Bucket is the smallest broadcast
unit and a datum may be split into several buckets. Let each
datum di has bucket size si and access frequency qi. Define
smax ¼ maxfs1; s2; . . . ; stg. In this system, we assign m chan-
nels to the data and n channels to the index.

Clients request a single datum di each time. The Access
Latency is the time from when clients send the request to the
time they receive the server response. The Tuning Times is
the number of times that clients tune into the channel. The
system aims at minimizing these two measurement.

Table 1 summarizes the symbols used in this paper.
Some of them will be described later.

3.2 System Architecture

The system architecture is illustrated in Fig. 1. The flow of
the data broadcast system can be described as follows:
Firstly, Database Manager collects the data from DBMS and
each datum has an access probability generated by Access
Probability Manager from historical record. Next, Channel
Allocator assigns index channels and data channels. Then
Index Generator will generate index sequences from the data
set D and Index Allocator assigns these sequences into the
index channels, while at the same time, Data Allocator
allocates data bucket onto data channels. Finally, Broadcast
Cycle Constructor combines these together to form a com-
plete broadcast program. In this paper, we proposed meth-
ods to optimize the key parts of this system.

4 INDEX GENERATOR

In this section, we describe the Index Generator, which con-
structs index based on the data set. In this modular, we use
AH-Tree as index and propose an efficient AH-Tree con-
struction algorithm that can build arbitrary k-ary AH-Tree

index in Oðt2Þ, which outperforms the previous OðtkÞ
greatly [5], [8], [19], [20].

4.1 AH-Tree Construction

First, let us introduce the two-stage construction process of
the k-ary AH-Tree [17], [19]. In the first stage, we build an
optimal k-ary Huffman tree without alphabetic order,
where dynamic programming is employed to simplify the
algorithm. In the second stage, we adjust the tree in a bot-
tom-up approach to generate a new tree, which preserves
the alphabetic order while keeping the same cost. The con-
struction process is shown in Algorithm 1.

Stage 1 (Line 4 to 10) contains several iterations. During
each iteration, we select k nodes to merge into one new par-
ent node and then insert it into the data sequence. The fre-
quency of the new node is the frequency sum of its k
children. Then mark the k nodes as processed leaf nodes,
and delete them from the sequence. After that, we start a
new iteration and repeat until there is only one node left in
the sequence, which is the root of the tree. At the end of
Stage 1, we produce a tree T 0 without alphabetic order.

Note that k is the number of tree branches. The selected k
nodes should satisfy three conditions: (1). There are no leaf
nodes among them; (2). The sum of their frequencies is min-
imum among all k candidate groups; and (3). They should
be the leftmost nodes.

Stage 2 (Line 11 to 17) adjusts T 0 in a bottom-up, left-
right approach such that every k consecutive nodes at

TABLE 1
Symbol Description

Symbol Description

D Data setD ¼ fd1; . . . ; dtg, totally t items
si, pi Size and access probability of di
smax smax ¼ maxfs1; s2; . . . ; stg
m, n Number of data and index channels
T An AH-Tree
Si, Pi

P
dj
sj,
P

dj
pj (dj is assigned to channel i).

L, l Height and the cut level of T
k Maximum branch no. for T

hj
i

The jth index at the ith level of T

Di The ith sub-tree at level lþ 1
DFSðDiÞ Use Deep-First Search to linearize subtree Di.

PATHðhj1
i1
; h

j2
i2
Þ A path from h

j1
i1
to h

j2
i2
, excluding h

j2
i2

MAXðhj
iÞ Maximum key hj

i domains

Fig. 1. System architecture.
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the same level have a same parent. Finally, an AH-Tree
T is constructed. The correctness proof is provided
in [29].

Algorithm 1. AH-Tree Construction

1: Input:D, P ;
2: Output:Node setH of AH-Tree T .
3: Create t leave nodes for di 2 D and push them into N . Set

I ¼ f1; . . . ; tg.
4: while jIj > 1 do
5: if

Pk
i¼1 pni ¼ minðPk

i¼1 pxiÞ, where ni, xi 2 I and no
leaves among n1; . . . ; nk and n1; . . . ; nk are the leftmost k
nodes then

6: Merge n1; . . . ; nk as n0 with rn0 ¼
Pk

i¼1 rni (n
0 is parent

of n1; . . . ; nk) ;
7: Insert n0 into N , mark n1; . . . ; nk as “processed” and

remove them from I;
8: end if
9: n ¼ n� ðk� 1Þ;
10: end while
11: Traverse T , mark each node’s level from the root and get

max level L;
12: for l ¼ L ! 2 do
13: Find the leftmost index node p on the ðl� 1Þth level and

the leftmost k nodes n1; . . . ; nk on the lth level, and then
mark them;

14: Record “p” into field new parent of n1; . . . ; nk and
“n1; . . . ; nk” into array new children of p without altering
their original parent/children;

15: Keep finding new nodes until no unmarked nodes exist
in level l;

16: end for
17: Replace parent and children of all nodes with new parent

and new children.

Example 1. Throughout the paper, we use a data set in
Table 2 as an example. The freq. means the access fre-
quency of each datum from historical record.

We apply Algorithm 1 to this data set to construct the
AH-Tree. After that, we generate T 0 and T as shown in
Fig. 2, respectively. T is the H-tree after Stage 1, while T 0 is

the AH-tree after Stage 2. Data items are labeled by gray
circles with access frequencies and the numbers below the
circle are their keys. Note that data items are ordered by
keys after Stage 2.

4.2 Dynamic Programming for Data Selection

It is time-consuming to choose k nodes from the data
sequence in stage 1. Without any special data structure, we

need OðikÞ to select each group, where i is the number of
nodes in the current iteration and k is the number of
branches in the tree, so totally the time complexity should

be OðtkÞ. In this section, we design a novel dynamic pro-
gramming to reduce the time complexity to OðtkÞ. We first
describe the basic idea and derive the recursive relation,
and then verify the correctness in the following part.

Consider the problem of selecting j nodes from sequence
½d1; d2; . . . ; di�. There are two cases to consider.

Case 1: There is at least one unselected leaf node in
½jþ 1; . . . ; i�. Let fði; jÞ be the minimal weight sum of the j
selected nodes in this case.

Case 2: There is no unselected leaf node in ½jþ 1; . . . ; i�.
Let gði; jÞ be the minimal weight sum of the j selected nodes
in this case.

We now derive the recursive relation. In Case 1, the ith
node is unselected, otherwise no leaf node exists in
½jþ 1; . . . ; i� 1�. There are also two subcases:

1) If the ith node is an index node, then there is at least
one unselected leaf node in ½jþ 1; . . . ; i� 1�. We
need to solve the subproblem fði� 1; jÞ;

2) If the ith node is a leaf node, then there may be no
leaf node in ½jþ 1; . . . ; i� 1�. We have to consider
both fði� 1; jÞ and gði� 1; jÞ and choose the mini-
mum one.

Then the recursive relation for f is shown below:

fði; jÞ ¼ fði� 1; jÞ; if ith node is an index node;
minðfði� 1; jÞ; gði� 1; jÞÞ; otherwise:

�
In Case 2, there are also two subcases:

1) If the ith node was an unselected leaf node, it must
be selected now, otherwise there will be an unse-
lected leaf node in ½jþ 1; . . . ; i�, which violates our
assumption of Case 2. So we need to consider the
subproblem of gði� 1; j� 1Þ.

2) If the ith node is an index node, since whether select
it or not will not violate the condition, we have to
considerminðgði� 1; j� 1Þ; gði� 1; jÞÞ.

TABLE 2
Example Data Set

Key 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Freq. 16 8 30 4 1 12 27 36 41 2 9 15 19 7 23 1

Fig. 2. T (AH-tree construction after stage 1) and T 0 (AH-tree construction after stage 2).
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Hence, the recursive relation for g is as following:

gði; jÞ ¼
gði� 1; j� 1Þ þ ri;

if ith node is an unmarked leaf;
minðgði� 1; j� 1Þ þ ri; gði� 1; jÞÞ; otherwise:

8<
:

After computing fðn; kÞ and gðn; kÞ, the final result is
minðfðn; kÞ; gðn; kÞÞ. We record the choices when generating
values in f and g to locate the k nodes.

Lemma 1. The time complexity of this subroutine dynamic pro-
gramming is OðtkÞ.

Proof. Since the time complexity of computing each fði; jÞ
and gði; jÞ is Oð1Þ and there are nk such fði; jÞ and gði; jÞ
and n � t, the time complexity of this subroutine is
OðtkÞ. tu

Theorem 1. The time complexity of Algorithm 1 is Oðt2Þ.
Proof. By Algorithm 1, this subroutine will run at most t

k�1
times. Therefore, by Lemma 1, the time complexity of

Algorithm 1 is Oðt2Þ. tu

4.3 Correctness of the Dynamic Programming

We now verify the correctness of our dynamic program-
ming. The first step is to prove that the problem has an opti-
mal substructure, then we prove that it also has overlapping
subproblems. In the following, we show that both f and g
have optimal substructures. Let’s start with g, which is inde-
pendent of f . For detailed proofs please refer our prelimi-
nary work [30].

Lemma 2 (Optimal Substructure of g). Let Di ¼ ½d1; . . . ; di�
be the data sequence, and Zj ¼ ½di1 ; . . . ; dij � be any optimal

solution satisfying the condition of Case 2 (we also call it an
optimal solution ofDi). Then:

1) If di is an unselected leaf node, then Zj�1 is an optimal
solution ofDi�1;

2) If di is an index node, then Zj�1 is an optimal solution
of Di�1 if di ¼ dij ; otherwise Zj is an optimal solution

ofDi�1.

Lemma 3 shows that solving recursion f in Case 1 also
contains an optimal substructure.

Lemma 3 (Optimal substructure of f). Let D0
i ¼ ½d1; . . . ; di�

be the sequence, Zj ¼ ½di1 ; . . . ; dij � be any optimal solution sat-

isfying Case 1 (we refer it as an optimal solution of D0
i), then

Zj is an optimal solution ofD0
i�1.

Lemma 2 and Lemma 3 imply that both f and g have
optimal substructures. The next two lemmas will complete
the final conclusion, in which Lemma 4 can be directly
derived from Lemma 2 and Lemma 3.

Lemma 4. The problem of solving minðfðn; kÞ; gðn; kÞÞ has opti-
mal substructure and overlapping problems.

Form Lemma 4, we have Theorem 2.

Theorem 2. If Zj ¼ ½dn1 ; . . . ; dnk � is the output of our dynamic
programming, then it satisfies three conditions:

1) There are no leaf nodes among these k nodes.

2) The frequency sum of Zj is the minimum among all
possible selections.

3) The k nodes should be the leftmost candidates.

4.4 Distributed AH-Tree Construction

To avoid searching from the root every time, we employ the
distributed index technique called control tables [3]. The tree
is split into replicated and non-replicated part. The basic idea is
to add the dominating range of all ancestors into the repli-
cated-part nodes. Thus, from any replicated-part node, we
know which subtree we are looking for, and can directly
tune in to the right position. However, there are two prob-
lems for control tables. The first is that control tables have
redundancy. When the tree becomes larger, the redundant
entries will be as many as half of the whole control index,
which wastes lots of resource. The second is that it is hard to
analyze the performance of an index tree because clients do
not always search from the root. In this section, we propose
an efficient algorithm to eliminate all the redundancy entries
and give theoretical analysis for distributed index trees.

4.4.1 Control Table Construction

Let l be the cut level for index tree T . The nodes in replicated
part are called control index, while the remaining nodes are

named search index. Let hj
i denote the jth index node at level

i. Note that if the jth node of level i is a data node, then hj
i

does not exist.
Let Di denote the ith subtree below the cut level l, rooted

at hi
lþ1. To generate the distributed index sequence, we use

PATHðhj
iÞ to represent a path from the root to hj

i excluding

hj
i . For instance, PATHðh4

4Þ in Fig. 2 is ½h1
1; h

2
2; h

3
3�. In order to

broadcast data, we linearize the tree by depth-first search.

For replicate-part nodes, we use h
j½x�
i to denote the xth

appearance of hj
i during the process of depth-first search.

For each control index h
j½x�
i , suppose that PATHðhj½x�

i Þ ¼
½h1½x1�

1 ; h
j2½x2�
2 ; . . . ; h

ji�1½xi�1�
i�1 �, then the control table of h

j½x�
i is

shown in Table 3.
Each entry of the control table contains two elements: the

key value and the control index it hops to.MAXðDg�1Þ in the
first entry gives a lower bound of the dominating range of

h
j½x�
i . If the required key is less than MAXðDg�1Þ, it means

that the key has been broadcast, so we have to wait for the

next broadcast cycle. In this case, we jump to h
1½1�
1 . The key

value in the rth entry gives an upper bound of the dominat-

ing range of hjr
r . The second element gives a hint of which

subtree to hop to in the next step. When the client retrieves
a datum with key greater than this element, it should hop to
the control index in this entry. Note that a control index

TABLE 3
Format of the Control Table
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cannot appear more than k times in one round, but the value
of ðxr þ 1Þ in the computing process may be larger than k. In
this case, the second element of the entry is set to no.

Example 2. The control table of the tree with cut level l ¼ 4
in Fig. 2 is shown in Table 4. Look at the control table of

h
6½2�
4 in the lower left corner of the table. Since it is the sec-

ond appearance of h6
4, all the keys less than or equal to 11

have been broadcast. Thus if the searching key is less

than 11, we jump to h
1½1�
1 . The second entry means that, if

the search key is larger than 16, then there is nowhere to
go since the largest key is 16. Suppose that we want to

search the key value of 14, then the next hop is h
2½2�
2 ,

which is exactly the nearest ancestor dominating 14.

From the control tables in Table 4, we find that some
control tables, marked as gray, have redundancy. For
example, in the control table of h

4½1�
3 , there are two entries

“16 no”. As the next section shows, almost 1
k of the control

tables contain redundancy.

4.4.2 Redundancy Elimination for Control Table

In this section, we propose a scheme to eliminate redun-
dancy. We claim that our scheme is not only suitable for
AH-Tree, but also for any tree-based indices employing dis-
tributed technique. For the balance k-ary tree, the scheme

can save 1
k of the space for storing the control tables.

Having redundancy in the control tablemeans that for two
entries x and y in the control table, the key values of them are
identical. Formally speaking, suppose the ith and jth entries

are redundant in h
j½x�
i ’s control table. It means that the upper

bound of the dominating range of ith and jth ancestors of h
j½x�
i

are the same. Recall that during the process of searching the
control table, after we find the key value of some entry less
than the searching key, we jump immediately. The following
entries with the same key value will never be used. Thus we
can simply discard these following entries. The problem is
how to locate the redundant control tables.

A simple case is the rightmost path of the tree. The upper
bounds of the dominating range of the control indices
along this path are all the same. Consider the left part
of Fig. 3. Since y is the rightmost child of x, we have
MAXðxÞ ¼ MAXðyÞ. Thus the control table of z contains
redundancy. Another case maybe less obvious. The control
table of a control index also contains redundancy if one of
its ancestors’ control table contains redundancy, as shown
in the right part of Fig. 3. However, all those causes can be
combined into Theorem 3. Before that, we first give two
properties of the control table.

Property 1. If index node x and y are ancestors of z, and x
is ancestor of y, then MAXðxÞ � MAXðyÞ � MAXðzÞ, and
in the control table of z, the entry of x is in front of that
of y.

Property 2. IfMAXðxÞ ¼ MAXðyÞ and y is a child of x, then y is
the rightmost child of x and vice versa.

Theorem 3. Let PATH0ðhj½x�
i Þ ¼ ½hj2

2 ; h
j3
3 ; . . . ; h

ji
i �, which is

PATHðhj½x�
i Þ plus hj½x�

i excluding the root. The control table of

h
j½x�
i contains redundancy iff there exist consecutive index

nodes hja�1
a�1 , h

ja
a in PATH0ðhj½x�

i Þ, such that hja
a is the rightmost

child of hja�1
a�1 .

Proof. Please refer to our previous work [30]. tu
By traversing T , we can find and eliminate all redundant

entries by Theorem 3. Finally we get “light-weight” control
tables.

Theorem 4. The time complexity of the redundancy elimination
algorithm is OðtÞ.

Proof. To eliminate all the redundancy, we only need to tra-
verse the index tree, say by DFS, and check possible
redundancy by Theorem 3, which costs Oð1Þ time. This is
tolerable compared to the benefit the elimination proce-
dure brings. tu

4.4.3 Control Table Analysis

In this section, we give theoretical analysis of the distributed
index trees. Note that there are some properties when cli-
ents visit the index channel:

Property 3. Clients need to visit the index channels more than
once.

Property 4.With the help of control tables, clients need not search
the tree from the root.

These two properties make it difficult to analyze the per-
formance of index scheme. In this section, we will provide a
reasonable measurement to evaluate the performance of
index sequences.

TABLE 4
The Control Table of the Example Data Set

Fig. 3. Example of redundancy in control table.
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Recall that the system has n index channels. Because the
index nodes may be attached by control tables, the indices’
sizes may vary. We first give some definitions.

Definition 1. Extend the definition of PATH in Section 4.4. Let
PATHðhj

i ; dxÞ denote the path from index node hj
i to data node

dx, excluding dx, that is, PATHðhj
i ; dxÞ ¼ ½hj

i ; h
j1
iþ1; h

j2
iþ2 . . .�:

Additionally, if hj
i is the root of the tree, we write PATHðdxÞ

for simplity.

We next define PATHCðhj
i ; dxÞw.r.t. PATHðhj

i ; dxÞ.
Definition 2. PATHC ðhj

i ; dxÞ ¼ ½cðhj
iÞ; cðhj1

iþ1Þ; . . .�, where

cðhj
iÞ is the index channel that hj

i is assigned to.

Note that some consecutive indices in PATHðhj
i ; dxÞ may

be assigned to the same channel y, thus in PATHCðhj
i ; dxÞ,

there will be some pattern like . . . ; y; y; . . .. We define the fol-

lowing compressing operation on PATHCðhj
i ; dxÞ.

Definition 3. The compression of PATHCðhj
i ; dxÞ, denoted as

cPATHCðhj
i ; dxÞ, is a sequence of index channels, where if

there are consecutive ys in PATHCðhj
i ; dxÞ, we only write one

y in cPATHCðhj
i ; dxÞ.

Example 3. Suppose PATH ðdxÞ ¼ ½h1
1; h

2
2; h

4
3; h

7
4; h

12
5 � and

after allocation, h1
1 and h2

2 are assigned to channel c1, h
4
3 is

assigned to channel c2 and h7
4; h

12
5 are assigned to channel

c3. Then

1) PATHCðdxÞ ¼ ½c1; c1; c2; c3; c3�,
2) cPATHCðdxÞ ¼ ½c1; c2; c3�.

To analyze the effects of control tables, we make three
assumptions to simplify the analysis:

1) When visiting index channel ci, we assume on aver-

age 1
2Si logical time is needed to get all the desired

indices in this channel, where Si is the total size of
index nodes assigned to channel i.

2) When searching the index tree for datum dx, after the
first hopping, each index on PATHðdxÞ will be
accessed with equal propabality.

3) The cost of hopping from one channel to another
channel is defined as cost.

The first assumption says that on the average we will
stay at channel ci for about 1

2Si logical time. The second
assumption is based on the fact that if the clients tune to
the channels randomly, each index node in the path will be
accessed equally likely.

Using these definitions and assumptions, we derive the
measurements of average expected delays (AEDs) and aver-
age tuning times for tuning the index channels.

Lemma 5 (Average Expected Delay for Index Channels
involving Control Table (AEDCT)). For index trees
involving control tables, the average expected delay for any
allocation algorithm is

X
dx2D

px
jPATHðdxÞj

X
h
j
i
2PATHCðdxÞ

cy2cPATHCðhj
i
;dxÞ

Sy

2
þ cost

� �
: (1)

AEDCT is computed as follows. For each datum dx in D,

after the first tuning, the client will jump to index hj
i on

PATHðdxÞwith probability 1=jPATHðdxÞj. And then, the cli-

ent begins to search the tree from hj
i . The channels that the

client hops to are in cPATHCðhj
i ; dxÞ. For each channel y in

cPATHCðhj
i ; dxÞ, 1

2Sy þ cost is needed to get all the indices

needed by Assumption (1), (3). Finally, we get Eq. (1) by tak-
ing the expectation.

Next, we give the definition of average tuning time for
index trees involving control tables.

Definition 4 (Average Tuning Time for Index Tree involv-
ing Control Table (ATTCT)). The average tuning time
for an index tree involving control table is

ATTCT ¼
Xt
i¼1

pili; (2)

where li is the number of indices needed to visit when searching
di, and pi is the access probability of di.

Because of control tables, most of the time clients do not
need to search from the root. Thus li in Eq. (2) is not the
depth of di in the tree. However, Lemma 6 shows that
according to Assumption (2), there is a strong relation
between li and the depth of di.

Lemma 6. On average clients need to visit jPATHðdiÞj
2 þ 1

2 indices
to find di.

Proof. By Assumption (2), the number of indices needed
visited isPjPATHðdiÞj�1

j¼0 jPATHðdiÞj � j

jPATHðdiÞj ¼ jPATHðdiÞj
2

þ 1

2
:

Therefore the lemma holds. tu
Theorem 5. The average tuning time of an optimal alphabetic

tree is minimum among all index tree involving control tables.

Proof. By Lemma 6, li ¼ jPATHðdiÞj
2 þ 1

2. Then the average tun-
ing time is

ATTCT ¼
Xt
i¼1

pili ¼
Xt
i¼1

pi
jPATHðdiÞj

2
þ 1

2

� �

¼ 1

2

Xt
i¼1

pi � jPATHðdiÞj þ 1

2
:

Since an optimal alphabetic tree has minimum
Pt

i¼1 pi �
jPATHðdiÞj, the theorem holds. tu
Thus we have proved that optimal alphabetic trees have

the minimum ATTCT. For k ¼ 2, [31] proved that AH-Tree
is actually the optimal alphabetic tree. For other cases, [32]
provided an algorithm to construct an general optimal
alphabetic tree.

5 INDEX ALLOCATOR

In this section, we propose the index allocation methods
used in the Index Allocator. Previous works assumed that the
hopping time can be ignored. However, when the client
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hops to a channel, there are potential synchronization costs
[21]. These costs are on the order of milliseconds, which is
not small compared to the time to download an index node.
Thus clients may miss some intermediate directions and fail
to get the correct index location. In the following sections,
two algorithms considering hopping cost are presented.
The first algorithm tries to minimize the number of hopping
times while it may enlarge the length of the broadcast cycle.
The second algorithm improves the previous algorithm and
tries to balance the length of broadcast cycle and the hop-
ping times.

5.1 Minimum Hopping Allocation

The simplest way to avoid hopping is to assign all the
indices on the same path into one channel. Thus the basic
idea of this algorithm is to treat all the indices on PATHðdiÞ
as a unit and then run the algorithm for data allocation of
non-uniform lengths. The detailed description is shown in
Algorithm 2.

Algorithm 2.Minimum-Hopping Allocation

1: For each di, define a new datum d0i, which contains all the
indices on PATHðdiÞ. The size z0i of d

0
i is defined as the total

size of indices in PATHðdiÞ and the probability p0i of d
0
i is

defined as the probability pi of di. Define D0 ¼ fd01;
d02; . . . ; d

0
tg.

2: Run one of the data allocation algorithm on D0, for example,
GREEDY proposed in [14].

3: In the final schedule, replace d0i with the indices of PATHðdiÞ.

Theorem 6. The hopping number of Algorithm 2 is 1.

Proof. Since we treat each path as a unit, all the indices along
the path locate on the same channel. Therefore, clients just
need to hop to one channel to get all the desired indices. tu
The main disadvantage of Algorithm 2 is that each index

is broadcast more than once, making the broadcast cycle too
long. This is shown in Theorem 7.

Theorem 7. There are Vðt log tÞ index nodes in the broadcast
cycle in total.

Proof. Let T represent the AH-Tree constructed from data
set D. By Algorithm 2, the number of index nodes broad-

casted is
Pt

i¼1 PATHðdiÞ: Define another data set
Q ¼ fq1; q2; . . . ; qtg and each qi has the same access proba-

bility. To prove that
Pt

i¼1 PATHðdiÞ ¼ Vðt log tÞ, we need
the following property: tu

Property 5. The AH-Tree T 0 constructed from Q is a complete
k-ary tree.

Reassign the probability pi of the leaf node di in T such

that pi ¼ 1
t. Since each leaf node in T 0 has depth Oðlog tÞ, by

the property of AH-Tree,

Xt
i¼1

1

t
Oðlog tÞ �

Xt
i¼1

1

t
jPATHðdiÞj ¼ 1

t

Xt
i¼1

PATHðdiÞ:

Thus,
Pt

i¼1 PATHðdiÞ ¼ Vðt log tÞ.

5.2 Balanced Allocation

Algorithm 2 gives a minimum hopping allocation with
additional cost arising from duplicating several kernel
searching nodes by a factor of Oðlog tÞ. To improve it,
instead of treating a path as a single meta-datum, we treat
the path to a group of data items as a whole. In this way, all
the index nodes on the same path will be assigned to the
same channel, which keeps the minimum hopping time,
meanwhile only small number of index nodes are broadcast
more than once.

Suppose that l0 is an integer between 1 and the depth of
the AH-Tree. Recall that Di denotes the ith subtree at level
l0 þ 1, counting from left to right. Let DFSðDiÞ be the list of
indices getting by doing the DFS on Di. Algorithm 3 shows
the detailed improvement.

Algorithm 3. Balanced Allocation

1: For each subtree Di rooted at hi
l0þ1, define a new datum d0i for

½PATHðh1
1; h

i
l0þ1Þ;DFSðDiÞ�. Define the size s0i of d

0
i as the total

size of indices in ½PATHðh1
1; h

i
l0þ1Þ;DFSðDiÞ� and the proba-

bility p0i of d
0
i as the sum of the probabilities of data items in

the subtree Di. DefineD0 ¼ fd01; d02; . . . ; g.
2: Run one of the data allocation algorithm on D0, for example,

GREEDY proposed in [14].
3: Replace d0i by ½PATHðh1

1; h
i
l0þ1Þ;DFSðDiÞ� in the finial schedule.

Algorithm 3 has nice properties shown below.

Theorem 8. The hopping times in Algorithm 3 is 1.

Proof. By Algorithm 3, all the indices in the same path are in
the same channel. Therefore, clients just need to hop to
one channel to get all the desired indices, which means
that only one hopping is needed. tu

Theorem 9. If l0 ¼ Oð1Þ, there are OðtÞ index nodes in the broad-
cast cycle in total.

Proof. Suppose that jDFSðDiÞj is the number of indices in

the subtree Di. It is easy to see that there are at most kl
0

subtrees. Then the number of index nodes in the broad-
cast cycle is less than

Xkl0
i¼1

ðl0 þ jDFSðDiÞjÞ ¼
Xkl0
i¼1

l0 þ
Xkl0
i¼1

jDFSðDiÞj ¼ OðtÞ;

since the tree has at most 2t� 1 index nodes. tu
It seems that Algorithm 3 is better than Algorithm 2

because they have the same hopping time but Algorithm 3
has shorter broadcast cycle. However, AEDCT does not
only depend on these two factors. In Section 8, we will fur-
ther study the relation between AEDCT and the hopping
times and other factors.

6 DATA ALLOCATOR

Now let us optimize the Data Allocator. We first introduce a
baseline method named DPYRAMID [9]. Then we design a
greedy algorithm for non-uniform data sets, taking
advantage of data sizes. For uniform length data set, our
algorithm always results in an optimal solution, while
GREEDY [14] cannot guarantee this.
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6.1 Problem Definition

Recall that there are m identical data channels to broadcast
data set D ¼ fd1; d2; . . . ; dtg. Each di has an access
probability pi and a length si. A valid data allocation
V ¼ fD1; D2; . . . ; Dmg is an m-partition for D. Each Di

contains data items assigned to data channel i. Define the
channel length Si ¼

P
dk2Di

sk, as the total data length of Di.

The average expected delay (AED) over all data channels is
defined as [14]:

AED ¼ 1

2

Xm
j¼1

Sj

X
di2Dj

pi

0
@

1
A: (3)

Data Allocation Problem is to find a valid schedule V to
minimize AED in Eq. (3).

6.2 Dynamic Pyramid Allocation (DPYRAMID)

Algorithm 4 shows DPYRAMID [9], which can be viewed as
a baseline for comparison.

Algorithm 4. Dynamic Pyramid Allocation
(DPYRAMID)

1: Input:D,m;
2: Output: A valid partition V ¼ fD1; D2; . . . ; Dmg.
3: SortD by pi

si
descendingly asD0 ¼ fd01; d02; . . . ; d0tg;

4: Set ave ¼ 0; p ¼Pt
i¼1 pi; thre ¼ p

m;Di ¼ ;; j ¼ 1;
5: for i ¼ 1 to t do
6: if ave � thre then
7: ave ¼ aveþ p0i;Dj ¼ Dj [ fd0ig;
8: else
9: p ¼ p� ave; ave ¼ 0; thre ¼ p

m�j; j++; i��;
10: end if
11: end for

There is a dynamic threshold for each data channel.
Suppose that the access frequency sum is p, then the
threshold of the first channel is p

m. We assign data items

to the first data channel one by one until the total weight
exceeds this threshold. We then assign the remaining
indices to the next channel with an updated threshold as
follows for fairness.

thre ¼ total frequency of the remaining data items

number of remaining data channels
:

We repeat the above process until no datum is left.
Note that we can apply the same method to allocate

index, which we simply define the weight of index as the
probability of this index.

6.3 GDPDA Algorithm

Lemma 7 [15] inspires the design of our grouped dynamic pro-
gramming data allocation (GDPDA) algorithm.

Lemma 7. Let Di ¼ ½di1; di2; . . .� be the data set of size i with non-
increasing order on access probability (each dij has the same

size). There is an optimal solution for partitioning the items of
D intom groupsD1; D2; . . . ; Dm such that, if a < b < c and
dia; d

i
c 2 Dj, then dib 2 Dj.(proved in [15])

In other words, there exists an optimal solution in the
form:

D1 : d11; . . . ; d
1

S
ð1Þ
1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

2Channel c1

; d1
S
ð1Þ
1

þ1
; . . . ; d1

S
ð1Þ
2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

2Channel c2

; . . . ; d1
S
ð1Þ
m�1

þ1
; . . . ; d1jD1j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2Channel cm
D2 : d21; . . . ; d

2

S
ð2Þ
1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

2Channel c1

; d2
S
ð2Þ
1

þ1
; . . . ; d2

S
ð2Þ
2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

2Channel c2

; . . . ; d2
S
ð2Þ
m�1

þ1
; . . . ; d2jD2j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2Channel cm

..

.

Dz : dz1; . . . ; d
z

S
ðzÞ
1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

2Channel c1

; dz
S
ðzÞ
1

þ1
; . . . ; dz

S
ðzÞ
2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

2Channel c2

; . . . ; dz
S
ðzÞ
m�1

þ1
; . . . ; dzjDzj|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2Channel cm

We give our data allocation algorithm in Algorithm 5.
We first group data items by data sizes, then for each group
with data size i, we try to find an partition for it to reduce
the AED as much as possible.

Algorithm 5. Grouped Dynamic Programming Data
Allocation

1: Group data itemsD by data size si’s.
2: For data group Di with size i, sort it decreasingly by access

frequency and run a dynamic programming to find the sub-
optimal assignment based on the assignments of groups
with sizes smax; smax � 1; . . . ; iþ 1.

Specifically, Algorithm 5 contains two steps:
Step 1: Group data items according to their lengths:
In the first step, we group the data items by lengths.

There are at most t different data lengths in D. Therefore, t
link lists are enough to store all groups and the total space
needed is OðtÞ. It is easy to see that the time complexity of
this step is OðtÞ.

Step 2: Group assignment:
In this step, we deal with Di’s in turn. Suppose that the

groups Dsmax ;Dsmax�1; . . . ; Diþ1 have been assigned onto

channels. Define AEDiþ1
j corresponding to channel j as

AEDiþ1
j ¼ 1

2
Piþ1
j Siþ1

j ;

where Piþ1
j and Siþ1

j are the sum of frequencies and lengths

of the data items assigned to channel j. That is, AEDiþ1
j is

the temporal AED of channel j after we finish allocating

Dsmax ;Dsmax�1; . . . ; Diþ1.
Given AEDiþ1

j for j ¼ 1; 2; . . . ;m, our algorithm finds a

partition ofDi of the form

di1; . . . ; d
i

S
ðiÞ
1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Channel c1

; di
S
ðiÞ
1

þ1
; . . . ; di

S
ðiÞ
2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Channel c2

; . . . ; di
S
ðiÞ
m�1

þ1
; . . . ; dijDij|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Channel cm

such that
P

j AED
i
j is minimum. To do this, we use the

following dynamic programming strategy. Note that the
initial stage of the algorithm is the assignment of

Dsmax ;Dsmax�1; . . . ; Diþ1.
Define M½jDij�½m� to be the minimum cost of assigning

di1; . . . ; d
i
jDij to channel 1; 2; . . . ;m. We use the following

recurrence to computeM½jDij�½m�,
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M½jDij�½m� ¼ min
1<x< jDi j

ðM½x�½m� 1� þ Cðxþ 1; jDij;mÞ; (4)

where Cðxþ 1; jDij;mÞ is the cost of assigning data items

dixþ1; . . . ; d
i
jDi j to channel m. Note that when computing

Cðl1; l2;mÞ, we need to consider the former items that have
been assigned to channel m. Thus we should use Eq. (5) to
compute Cðl1; l2;mÞ:

Cðl1; l2;mÞ ¼ 1

2
Piþ1
m þ

Xl2
x¼l1

pix

 !
ðSiþ1

m þ iðl2 � l1 þ 1ÞÞ: (5)

Given AEDiþ1
m ; P iþ1

m and Siþ1
m , Cðl1; l2;mÞ can be computed

independently. By Eq. (4) and Eq. (5), we can implement
this idea easily.

Theorem 10. The time complexity of Algorithm 5 is Oðt2mÞ.
Proof. For group of size i, the most time-consuming part is

the dynamic programming of Step 2, whose time com-

plexity is OðjDij2mÞ. Summing for all i, we get the com-

plexity of Algorithm 5 is Oðt2mÞ. tu
The most important consideration made in Algorithm 5 is

that we first deal with groups of larger size. Intuitively, the
allocation for data group with larger data size in the optimal
solution tends to be similar to the optimal allocation if we
only consider this group. This is because moving a large
datum leads to large cost. By allocating groups of larger data
size first, Algorithm 5 tries to match the optimal solution as
close as possible, which results in good performance.

To further evaluate our design, Section 8 compares Algo-
rithm 5 with the traditional greedy algorithm GREEDY [14]
and the dynamic pyramid algorithm DPYRAMID [9] on the
number of data items, channels and the skew of data distri-
bution, respectively.

7 DYNAMIC UPDATE

We dynamically update our indices when the broadcasting
data change. The dynamic updating process could be classi-
fied into two categories: Simple Update, and Multipart
Update. The Database Manager checks the DBMS for potential
update periodically, since the Access Probability Manager can
update the access probability of each datum. All update
requests will be sent to a queue Q, maintained by the Data-
base Manager, and will be processed according to the order
they are received. When each update request is being proc-
essed, it may be forwarded to theData Allocator, Index Gener-
ator, Index Allocator, and Broadcast Cycle Constructor, to check
any possible changes of the broadcast sequence.

7.1 Simple Update

If the update results in no change to any datum’s key, size,
and access probability, or the update does not affect the rel-
ative position of any datum in the data set, then the index
structure remains the same. Based on the Theorem in [33],
we observe that only updates in the left-most or right-most
nodes can violate the key range of a local AH-tree. In this
case, the server will simply update the datum and the corre-
sponding index node(s) and control table(s), and then

broadcast the updated sequence from the beginning of the
next broadcast cycle. After the completion of this process,
this request will be deleted from the queue Q.

7.2 Multipart Update

If the update results in actual change of data key, size, and/or
access probability, then at least some part of the index struc-
ture and/or broadcast sequence need to be updated. The
change in the data set is completed first, then the correspond-
ing index node at the lowest level is checked for potential
update, then its parent node, etc., using the bottom-up
approach, until we reach a node which need not to be
updated. Updating the entire broadcast sequence is usually
time consuming, but it is still feasible. We can repeat those
steps according to our proposed algorithms to construct a
new AH-tree in the worst case, and then allocate index and
data correspondingly.

If the client initiates the update requests, for example,
updating a certain datum, such request will be sent to the
queue Q on the server side as well. The STUBindex
approach can be applied to our system, which supports
energy efficiency and concurrency control in wireless data
broadcast systems with dynamic updates [34]. Initially, the
server appends a timestamp to each datum in the data set,
and broadcasts the timestamp with the datum. When a
datum is updated, the server updates the timestamp as
well. The system maintains Timestamp Array (TSA) for
each transaction, and a Conflict Array (CFA) to record all
conflicts; server appends Update Broadcast (Ucast) as con-
trol information into the broadcast sequence.

8 PERFORMANCE EVALUATION

We divide our simulation into three parts. In the first part,
we compare two index schemes, which are AH-Tree and Bþ

tree. In the second part, we analyze the index allocation
methods for different hopping cost and we compare differ-
ent index allocation methods. In the last part, we compare
the performance of our data allocation method with the
GREEDY [35] and DPYRAMID [9] under various parame-
ters. Note that all the data and index allocation methods are
implemented upon the AH-Tree.

8.1 Performance of AH-Tree versus Bþ Tree

We compare the performance of AH-Tree with Bþ tree.
Firstly, we model different system conditions by setting
parameters in Table 5. We let the frequency of each data fol-
low Zipf distribution. The number data items are set as
10,000 and we generate 20,000 clients requests. The perfor-
mance of our system is mainly measured by two metrics:

TABLE 5
Parameter Setting for Index Comparisons

Parameter Default Range Meaning

t 10,000 - Num of data items
r 20,000 - Num of requests
mþ n 10 - Num of channels
k 3 2 to 20 k-ary AH-Tree
l 3 1 to ðL� 1Þ cut level
m 3 1 to 9 Num of index channels
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Average Access Latency (AAL) and Average Tuning Time
(ATT), both of which are counted in logical time units. For
index bucket with 1 head segment, k children pointers and
1 default pointer, it requires ðkþ 2Þ � 0:1 time units to visit.

Both of the two systems adopt DPYRAMID index alloca-
tion algorithm and neglect the effects of hopping times. The
results are shown in Figs. 4, 5, 6, 7, 8, and 9. Generally,
Figs. 4 , 5, 6, 7, 8, and 9 reveal that AH-Tree performs better
than Bþ-Tree on both access latency and tuning time for
data following Zipf distribution. In Fig. 5, the ATT
declines with the increase of l since more control indices
contribute to faster hopping process. The AAL in Fig. 4
firstly drops then rises again since too many control indi-
ces lengthen the index sequences, and thus increase the
access latency. Fig. 6 shows that large k has negative
effects on AH-Tree’s performance and the AAL fluctuates
severely with the variation of k. Thus, choosing a proper
k for AH-Tree is crucial for its user experience. For Zipf
distribution, the access latency is mainly determined by
the waiting time for small number of frequently visited
indices, so we find that larger m leads to the decrease of
AAL in Fig. 8. On the other hand, the change of m does
not change the structure of index sequence, hence it has
no effects on ATT as shown in Fig. 9. Note that if we deal

with uniform distribution, Bþ-Tree would guarantee a
better expected searching step due to its feature.

8.2 Performance of Index Allocation Methods

In this section, we first analyze the effects of the hopping
cost for different index allocation methods, and then com-
pare the performance of index allocation methods. We
neglect the size of control tables and assume that all the
index nodes are of the same size.

Hopping effects. Although index nodes are small, the
hopping time may take on the order of milliseconds or
more. Thus in logical time, cost may equal to as several
tens of or even several hundreds of logical time. In this
experiment, we set cost ranges from 0 to 500. We use
DPYRAMID to allocate the indices onto the channels
because it does not optimize cost, which means that it
can reflect the effects of cost well. The other parameters
are setting as shown in Table 6.

Suppose that AEDCTðxÞ is the AEDCT (defined in Eq. (1)
of Section 4.4.3) for the case cost ¼ x, thus AEDCTð20Þ
means the AEDCT when we set the hopping cost to 20. In
this experiment we use the difference AEDCT(cost)-AEDCT
(0) as the measurement.

Fig. 4. Change of AAL under zipf distribution w.r.t. l (k ¼ 3,m ¼ 3).

Fig. 5. Change of ATTunder zipf distribution w.r.t. l (k ¼ 3,m ¼ 3).

Fig. 6. Change of AAL under zipf distribution w.r.t. k (l ¼ 3,m ¼ 3).

Fig. 7. Change of ATTunder zipf distribution w.r.t. k (l ¼ 3,m ¼ 3).

Fig. 8. Change of AAL under zipf distribution w.r.t.m (k ¼ 3, l ¼ 3).

Fig. 9. Change of ATTunder zipf distribution w.r.t.m (k ¼ 3, l ¼ 3).
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The results are shown in Fig 10. Three cases are shown,
which are t ¼ 2;000; 3;000; 4;000. For a fixed t, we see that
as cost increases, AEDCT(cost)-AEDCT(0) increases as
expected. Note that the increasing speed is almost fixed.
The most interesting point is that for different t, for exam-
ple, when t ¼ 2;000 and t ¼ 4;000 (100 percent in differ-
ence), the differences of cost are only about 10 percent,
which shows that the effects of hopping cost depends little
on the number of data items, but mainly on the allocation
algorithms.

Index allocation methods. In this part, we compare the per-
formances of three index allocation algorithms. The first
two are the minimum hopping (MIN in Algorithm 2) and
balanced allocation method (BALANCE in Algorithm 3)
described in Section 5. The rest one is DPYRAMID [9]. Note
that DPYRAMID can be used in both data allocation and
index allocation.

We set the number of data items t range from 500 to 2,500
and other parameters are described in Table 6. Note that we
set the hopping cost to be 50, which is not very large.
AEDCT defined in Eq. (1) of Section 4.4.3 is the measure-
ment. The results are shown in Fig. 11. It can be seen that
BALANCE has much better performance than other two
methods. For small data set, hopping cost is the dominating
factor. Therefore, MIN and BALANCE have better

performance than DPYRIMID. However, as the data set
grows larger, the effects of hopping becomes smaller. In this
case, the performance of MIN becomes poor because of the
reduntant broadcast cycle. BALANCE does not suffer this,
therefore its performance remains good.

8.3 Performance of Data Allocation Methods

In this section, we compare our data allocation method
(GDPDA in Algorithm 5) with DPYRAMID [9] and
GREEDY [35]. We list the used parameters in Table 6. We
let the frequencies of data follow the Zipf distribution with
parameter u. It becomes increasingly skewed as u increases.
The number of data items is in the range [500, 5,000] with
default value 3,000. Performance of the data allocation
methods are mainly measured by AED defined in Eq. (3),
which is counted in logical time units.

Effects of t. To show how the number of data items affect
the performance of the three methods, we set t range from
500 to 5,000 and fix other parameters as the default values.
The results are shown in Fig. 12, where GDPDA performs
slightly better than GREEDY and much better than DPYRA-
MID. As the number of data items increases, the AED of all
three methods are increasing stably. However, DPYRAMID
increases much faster than GDPDA and GREEDY, so the
difference of AED between DPYRAMID and the other
methods is getting larger and larger.

Effects of m. We set the number of data channels m
range from 10 to 30 and other parameters as default. The
results are shown in Fig. 13. In the figure, we can see that
as the number of data channels increases, the AED of the
three methods decreases, which means that all the three
methods can effectively use the data channels. Meanwhile,
GDPDA and GREEDY are 15 to 20 percent better than
DPYRAMID. It is hard to tell which is better among GDPDA
and GREEDY.

TABLE 6
Parameter Setting for Allocation Algorithms

Parameter Range Default Meaning

t 500-5,000 3,000 Num of data items
m 5-30 20 Num of data channels
smax 5-50 20 Range of data size
u 0.1-0.9 0.5 skew of data set
cost 0-500 50 Cost of hopping

Fig. 10. Effects of hopping cost w.r.t. c (m ¼ 20; smax ¼ 20; u ¼ 0:5).

Fig. 11. Index allocation comparasion w.r.t. t (m ¼ 20;c¼ 50; u ¼ 0:5).

Fig. 12. Change of AALw.r.t. t (m ¼ 20; smax ¼ 20; u ¼ 0:5).

Fig. 13. Change of AALw.r.t.m (t ¼ 3;000; smax ¼ 20; u ¼ 0:5).
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Effects of smax. The size of the data is also a key factor
that affects the performance. we set data size, which is an
integer in our implementation, distributes uniformly on
½1; smax�. smax ranges from 5 to 50 and other parameters as
default. The results are shown in Fig. 14. Since the expec-
tation of the data size is 0:5smax, the AED will increase as
smax increases, as shown in the figure. Also, the AED of
all the three method are increasing stably, which means
that different data sizes do not cause trouble for all the
methods. It also can be seen that GDPDA is slightly bet-
ter than GREEDY and about 20 percent better than
DPYRAMID. What is more, the difference between them
is enlarged.

Effects of u.Now we discuss how well those methods deal
with skew data. As u increases, the skew of data increases.
We set u range from 0.1 to 0.9 and all other parameters to
the default values. The results are shown in Fig. 15. On the
one hand, as u increases, the AED of DPYRAMID remains
almost the same, which means that DPYRAMID do not suit
well with the distribution of the data. While GDPDA and
GREEDY are decreasing rigidly. On the other hand, we see
that GDPDA is about 10 percent better than GREEDY when
0:1 < u < 0:8, which is the typical range of u.

Above all, we can conclude that GDPDA is better than
GREEDY especially when the data is skew, and always at
least 15 percent better than DPYRAMID.

9 CONCLUSION

In this paper, we present a global optimization for multi-
channel wireless data broadcast system with AH-Tree
indexing scheme. We provide three novel designs to
improve the performance of the system. Firstly, given that
the traditional Hu-Tucker algorithm takes OðtkÞ time to con-
struct an arbitrary k-ary AH-Tree, we design a dynamic pro-

gramming to build a tree in Oðt2Þ. Next, we improve the
control table design, which eliminates up to 50 percent
redundant entries while keeps the searching efficiency. We
also theoretically prove that an optimal alphabetic tree has
the minimum average tuning time among all tree based
index structures. Finally, we design new index and data
allocation algorithms to further reduce the average tuning
time and access latency. Our index allocation algorithms
consider hopping cost, which has better performance than
the traditional ones. Simulation results validate the effec-
tiveness of our algorithms.

In all, we propose a fast distributed AH-Tree index con-
struction and effective index and data allocation algorithms

to improve the performance of multi-channel wireless data
broadcast system. Our design can be scalable to asynchro-
nous environment with difference data size and arbitrary
available channel numbers, which is time and energy effi-
cient to a mass number of mobile clients.
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