Spring 2024, CS 3611: Computer Networks

Homework 6

Solution to problem 1

11101
01100
10010
00101
00110

Solution to problem 2

If we divide 10011 into 01011010100000 , we get 0101010101, with a remainder of $\mathrm{R}=1111$. Note that, $\mathrm{G}=10011$ is CRC-4-ITU standard.

Solution to problem 3

1. we get 1011010111 , with a remainder of $\mathrm{R}=1001$.
2. we get 1011011100 , with a remainder of $\mathrm{R}=0100$.
3. we get 1000110000 , with a remainder of $R=0000$.

Solution to problem 4

part 1,2
See figure below.

part 3
a) Forwarding table in E determines that the datagram should be routed to interface 192.168.3.002.
b) The adapter in E creates and Ethernet packet with Ethernet destination address 88-88-88-88-88-88.
c) Router 2 receives the packet and extracts the datagram. The forwarding table in this router indicates that the datagram is to be routed to 198.162.2.002.
d) Router 2 then sends the Ethernet packet with the destination address of 33-33-33-33-33-33 and source address of $55-55-55-55-55-55$ via its interface with IP address of 198.162.2.003.
e) The process continues until the packet has reached Host B.
part 4
ARP in E must now determine the MAC address of 198.162.3.002. Host E sends out an ARP query packet within a broadcast Ethernet frame. Router 2 receives the query packet and sends to Host E an ARP response packet. This ARP response packet is carried by an Ethernet frame with Ethernet destination address 77-77-77-77-77-77.

Solution to problem 5

At $t=0 A$ transmits. At $t=576, A$ would finish transmitting. In the worst case, B begins transmitting at time $t=319$, which is the time right before the first bit of A 's frame arrives at B. At time $t=319+320=639 B$'s first bit arrives at A. Because $639>576, A$ finishes transmitting before it detects that B has transmitted. So A incorrectly thinks that its frame was successfully transmitted without a collision.

Solution to problem 6

Action	Switch Table State	Link(s) packet is forwarded to	Explanation
B sends a frame to E	Switch learns interface corresponding to MAC address of B	A, C, D, E, and F	Since switch table is empty, so switch does not know the interface lorresponding to MAC address of E
E replies with a frame to B	Switch learns interface corresponding to MAC address of E B	B the	Since switch already knows interface corresponding to MAC address of B
A sends a frame to B	Switch learns the interface corresponding to MAC address of A	B	Since switch already knows the interface corresponding to MAC address of B
B replies with a frame to A	Switch table state remains the same as before	A	Since switch already knows the interface corresponding to MAC address of A

