Spring 2024, CS 3611: Computer Networks

Homework 6

Solution to problem 1

 $1\ 1\ 1\ 0\ 1$

0 1 1 0 0

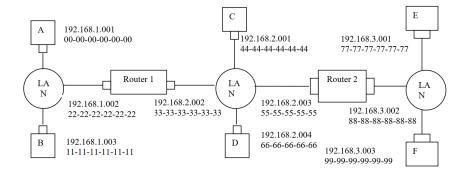
10010

00101

 $0\ 0\ 1\ 1\ 0$

Solution to problem 2

If we divide 10011 into 0101101010 0000, we get 0101010101, with a remainder of R=1111. Note that, G=10011 is CRC-4-ITU standard.


Solution to problem 3

- 1. we get 10110101111, with a remainder of R=1001.
- 2. we get 1011011100, with a remainder of R=0100.
- 3. we get 1000110000, with a remainder of R=0000.

Solution to problem 4

part 1,2

See figure below.

part 3

- a) Forwarding table in E determines that the datagram should be routed to interface 192.168.3.002.
- b) The adapter in E creates and Ethernet packet with Ethernet destination address 88-88-88-88-88.
- c) Router 2 receives the packet and extracts the datagram. The forwarding table in this router indicates that the datagram is to be routed to 198.162.2.002.
- d) Router 2 then sends the Ethernet packet with the destination address of 33-33-33-33-33 and source address of 55-55-55-55-55 via its interface with IP address of 198.162.2.003.
 - e) The process continues until the packet has reached Host B.

part 4

ARP in E must now determine the MAC address of 198.162.3.002. Host E sends out an ARP query packet within a broadcast Ethernet frame. Router 2 receives the query packet and sends to Host E an ARP response packet. This ARP response packet is carried by an Ethernet frame with Ethernet destination address 77-77-77-77-77.

Solution to problem 5

At t=0 A transmits. At t=576, A would finish transmitting. In the worst case, B begins transmitting at time t=319, which is the time right before the first bit of A's frame arrives at B. At time t=319+320=639 B's first bit arrives at A. Because 639>576, A finishes transmitting before it detects that B has transmitted. So A incorrectly thinks that its frame was successfully transmitted without a collision.

Solution to problem 6

Action	Switch Table State	Link(s) packet is forwarded to	Explanation
B sends a	Switch learns interface	A, C, D, E, and F	Since switch table is
frame to E	corresponding to MAC		empty, so switch
	address of B		does not know the
			interface
			corresponding to
			MAC address of E
E replies with a	Switch learns interface	В	Since switch already
frame to B	corresponding to MAC		knows interface
	address of E		corresponding to
			MAC address of B
A sends a	Switch learns the	В	Since switch already
frame to B	interface corresponding		knows the interface
	to MAC address of A		corresponding to
			MAC address of B
B replies with	Switch table state	A	Since switch already
a frame to A	remains the same as		knows the interface
	before		corresponding to
			MAC address of A