Dr. Sheng Bin (B%3#t)
Shanghai Jiao Tong University
Lecture 6

CS230/CS238: Virtual Reality

wikipedia

CS230/CS238: Virtual Reality

Py

Lecture Overview

» short review of coordinate systems, tracking in flatland, and
accelerometer-only tracking

 rotations: Euler angles, axis & angle, gimbal lock
 rotations with quaternions

« ©6-DOF IMU sensor fusion with quaternions

* Vertex Blending
* Morphing

CS230/CS238: Virtual Reality

Y
A

g) Yaw

* primary goal: track
orientation of head or
device

* inertial sensors required to
determine pitch, yaw, and
roll

oculus.com /

CS230/CS238: Virtual Reality

Y

A from lecture 2:
g) Yaw))
vertex in clip space vertex
Clzp = MprOJ Mvzew Mmodel

oculus.com /

CS230/CS238: Virtual Reality

Y

A from lecture 2:
g) Yaw))
vertex in clip space vertex
Clzp = MprOJ Mvzew Mmodel

¢ t

projection matrix ~ view matrix model matrix

Pitch . .
Roll rotation translation

v o
X M =R-T(—eye)

view

oculus.com /

CS230/CS238: Virtual Reality

i Euler angles

9 g) Yaw

Pitch

Roll rotation translation
, Py
X — " -
view
M, =R-T(—eye)

R=R (-6.)-R.(~6,)-R,(~6,)

roll pitch yaw

oculus.com

CS230/CS238: Virtual Reality

i Euler angles

9 g) Yaw

2 important
coordinate systems:

Pitch body/sensor world/inertial
frame frame

R M =R-T(—eye)

o = 4
R=R(-0.)-R (-0,)-R,(-6,)
— / roll pitch yaw

CS230/CS238: Virtual Reality

Py

Euler Angles and Gimbal Lock

* so far we have represented head rotations with Euler angles: 3
rotation angles around the axis applied in a specific sequence

» problematic when interpolating between rotations in keyframes
(in computer animation) or integration = singularities

CS230/CS238: Virtual Reality P o

Gimbal Lock

Play the

video

EULER EXPLAINED

The Guerrilla CG Project, The Euler (gimbal lock) Explained — see youtube.com

CS230/CS238: Virtual Reality

Rotations with Axis-Angle Representation
and Quaternions

CS230/CS238: Virtual Reality

Py

Rotations with Axis and Angle Representation

» solution to gimbal lock: use axis and angle representation for
rotation!

* simultaneous rotation around a
normalized vector v by angle 6

* no “order” of rotation, all at once around 0
that vector V = (Vz, vy, ;)

CS230/CS238: Virtual Reality

Quaternions

» think about quaternions as an extension of complex numbers
to having 3 (different) imaginary numbers or fundamental
quaternion units /,j,k

q=4,tiq,.+jq,+kq.

jj=—ji=k
i ok ki =—ik =

==k =gk=~1 jk=—kj=i

CS230/CS238: Virtual Reality

Quaternions

» think about quaternions as an extension of complex numbers
to having 3 (different) imaginary numbers or fundamental
quaternion units /,j,k

q=4,tiq,.+jq,+kq.

» quaternion algebra is well-defined and will give us a powerful
tool to work with rotations in axis-angle representation in
practice

CS230/CS238: Virtual Reality

Quaternions

» axis-angle to quaternion (need normalized axis V)

q(@,v)zcos(g)+ivxsin(g)+jv sin(g)+kv sin(g)
2 2 d 2 : 2

' ' Vo

qw q,\' q y qZ

CS230/CS238: Virtual Reality

Quaternions

» axis-angle to quaternion (need normalized axis v)

q(@,v)zcos(g)+ivxsin(g)+jv sin(9)+kv sin(g)
2 2 Y 2 ‘ p

' ' Vo

9y qy qy q

 valid rotation quaternions have unit length

lall= a2 +a2 +a2+ 42 =1

CS230/CS238: Virtual Reality

Py

Two Types of Quaternions

* vector guaternions represent 3D points or vectors u=(u,,u,,u,)
can have arbitrary length

q,=0+iu +ju, +ku,

« valid rotation quaternions have unit length

lall= a2 +a2 +a2+ 42 =1

CS230/CS238: Virtual Reality

Py

Quaternion Algebra

* quaternion addition:
g+p=(q,+p,)+i(q.+p.)+j(a,+p,)+k(q.+p.)

« quaternion multiplication:
ap=(q, +iq, + ja, +kq.)(p, +ip, + jp, + kp.)
= (4.P.-4.P.—4,P,—4.P.)+
i(g.p, +4.0, +4,P. — 4.0,)+
j(4.p, - 4.p.+ 4,0, +4.P.) +
k(quz +4,Py—4q,P. + quw) +

CS230/CS238: Virtual Reality

Py

Quaternion Algebra

guaternion conjugate: q = G W Ja,— K,

*

quaternion inverse: = ”q”2
4q
rotation of vector quaternion g, by g : q'.=499.9"
— gl
inverse rotation: 9.=49 9.4

successive rotations by g, then g, : §. =8,8,4.9," &,

CS230/CS238: Virtual Reality

Py

Quaternion Algebra

» detailed derivations and reference of general quaternion
algebra and rotations with quaternions in course notes

» please read course notes for more details!

CS230/CS238: Virtual Reality

Py

Spherical Linear Interpolation

* Spherical linear interpolation is an operation that, given two unit
quaternions, g~ and “r, and a parameter t € [0,1], computes an
interpolated quaternion. This is useful for animating objects, for
example. It is not as useful for interpolating camera orientations,
as the camera’s “up” vector can become tilted during the
interpolation, usually a disturbing effect.

* The algebraic form of this operation is expressed by the
composite quaternion, °s, below:

S(a.5.1) = (g).

CS230/CS238: Virtual Reality

Spherical Linear Interpolation

* However, for software implementations, the following form, where
slerp stands for spherical linear interpolation, is much more
appropriate:

S @ S @

ANF A A o ~1 1 _t X L ﬁ
5(q.1,t) = slerp(q. 1, t) = sin(o(1 — 1)) L sin(¢f)

24 /77 — 4
CS230/CS238: Virtual Reality » -— » A~ — i

Spherical Linear Interpolation

* To compute @, which is needed in this equation, the following fact
can be used: cos@ = q,r+ q,r,+ q,r,+ q,r,. For t € [0,1], the slerp
function computes (unique?) interpolated quaternions that
together constitute the shortest arc on a four-dimensional unit
sphere from q" (t=0) to "r (t = 1). The arc is located on the circle
that is formed from the intersection between the plane given by
q”, 'r, and the origin, and the four-dimensional unit sphere.

o . sin(o(1 —t)) . sin(ot) .
s(q,r,t) = slerp(q,r,t) = sng 4 + o

CS230/CS238: Virtual Reality

Spherical Linear Interpolation

* Thisis illustrated in the figure below. The computed rotation
quaternion rotates around a fixed axis at constant speed. A curve
such as this, that has constant speed and thus zero acceleration, is
called a geodesic curve. A great circle on the sphere is generated
as the intersection of a plane through the origin and the sphere,
and part of such a circle is called a great arc.

CS230/CS238: Virtual Reality

Spherical Linear Interpolation

* Unit quaternions are represented as points on the unit sphere.
The function slerp is used to interpolate between the quaternions,
and the interpolated path is a great arc on the sphere. Note that
interpolating from "1 to g"2 and interpolating from g”1 to g"3 to
q"2 are not the same thing, even though they arrive at the same
orientation.

CS230/CS238: Virtual Reality

Q\JM"ERNIW }wTER(ounou
Clum’:nuww

Play the video
L’ VALY (quaternion.m4v)

CS230/CS238: Virtual Reality

Py

Vertex Blending

* Imagine that an arm of a digital character is animated using two
parts, a forearm and an upper arm, as shown below.

folding
bones . /(2/3,]/3)

U N(13.2/3)

rigid-body vertex blending

[&)

Py

Vertex Blending

* This model could be animated using rigid-body transforms.

* However, then the joint between these two parts will not
resemble a real elbow. This is because two separate objects are
used, and therefore, the joint consists of overlapping parts from
these two separate objects.

* Clearly, it would be better to use just one single object.

* However, static model parts do not address the problem of

making the joint flexible.

Y o — 4
C5230/CS238: Virtual Reality Py _» »)

rigid-body

CS230/CS238: Virtual Reality

Py

Vertex Blending

e Vertex blending is one popular solution to this

problem.

* Inits simplest form, the forearm and the upper arm are

‘/(2/3,1/3) . .
animated separately as before, but at the joint, the two

(113,213)
parts are connected through an elastic “skin”.
* S0, this elastic part will have one set of vertices that are
transformed by the forearm matrix and another set

that are transformed by the matrix of the upper arm.

CS230/CS238: Virtual Reality

Py

Vertex Blending

e Thisresults in triangles whose vertices may be

transformed by different matrices, in contrast to using
folding a single matrix per triangle.
bones N ‘7/(2/3,]/3)
=/ y * By taking this one step further, one can allow a single
(113,213)
vertex to be transformed by several different matrices,

vertex blending

with the resulting locations weighted and blended

together.

CS230/CS238: Virtual Reality

Vertex Blending

* This is done by having a skeleton of bones for the
animated object, where each bone’s transform may
influence each vertex by a user-defined weight (w;).

* Since the entire arm may be “elastic,” i.e., all vertices
may be affected by more than one matrix, the entire

mesh is often called a skin (over the bones).

n—1

Zw@ ()M p, where sz—l w; > 0,

i=0

Figure 8.12. A real examplo of vertex blending. The top loft image shows the two bones of an arn, where p is the ori g inal vertex,

in an extended position. On the top right, the mesh is shown, with color denoting which bone owns
sach vertex. Bottom: the shaded mesh of the arm in a slightly different position. (Images courtesy

7 Jef b (968]) s and u(t) is the transformed vertex whose position depends on time t.

CS230/CS238: Virtual Reality

Play the video
(missingblending.mp4)

CS230/CS238: Virtual Reality

Morphing

* Morphing from one three-dimensional model to another can be
useful when performing animations.

* Imagine that one model is displayed at time ty and we wish it to
change into another model by time t4. For all times between t, and
t1, a continuous “'mixed’ model is obtained, using some kind of

interpolation.

CS230/CS238: Virtual Reality

Morphing

* The left side shows problems at the joints when

using /inear blend skinning.
e Onthe right, blending using aual quaternions

Improves the appearance.

CS230/CS238: Virtual Reality

Morphing

* Linear interpolation can be used directly on the vertices compute a

morphed vertex for time ¢ € [0 t1] we first compute s

to)/(t1 — tp), and then the linear vertex blend,
m = (1 — s)po + sp1,

where py and p; correspond to the same vertex
but at different times, ty and t;.

(t-

CS230/CS238: Virtual Reality

e Vertex morphing.

e Two locations and normals are defined
for every vertex.

* In each frame, the intermediate location
and normal are linearly interpolated by

the vertex shader.

CS230/CS238: Virtual Reality

Morphing

A variant of morphing

where the user has = T

more intuitive control is 0 0

referred to as DS = i s—

morph targets or blend neutral smiling difference vectors
| {

b4 T

>

shapes.

Given two mouth poses, a set of difference vectors is computed to control interpolation, or even
extrapolation. In morph targets, the difference vectors are used to “add” movements onto the neutral
face. With positive weights for the difference vectors, we get a smiling mouth, while negative weights can

give the opposite effect.

CS230/CS238: Virtual Reality

Morphing

* We start out with a neutral model, which in this case is a face. Let us denote this model by N. In addition,
we also have a set of different face poses. In the example illustration, there is only one pose, which is a

smiling face. In general, we can allow k 2 1 different poses, which are denoted P;, i € [1,...,k].

* As a preprocess, the “difference faces” are computed as:
D; = P, — N, — 47\ (
i.e., the neutral model is subtracted from each pose. \ N—
At this point, we have a neutral model, N, and a set of neutral smiling difference vectors
difference poses,D;. A morphed model M can then be @ T

obtained using the following formula:

k
M :N—FZ’UJ{D@

1=1

CS230/CS238: Virtual Reality

Morphing

The Delsin character’s face, in
INFAMQOUS Second Son, is animated
using blend shapes.

CS230/CS238: Virtual Reality

MORPH TARGETS Play the

video
kEY PQS ES y (morphing.mp4)

CS230/CS238: Virtual Reality

Play the

video
(morphing2.mp4)

