
Flexible Aggregate Similarity Search

Yang Li1 Feifei Li2 Ke Yi3 Bin Yao2 Min Wang4

rainfallen@sjtu.edu.cn1, {lifeifei, yao}@cs.fsu.edu2, yike@cse.ust.hk3, min.wang6@hp.com4

Shanghai JiaoTong University1, Florida State University2

Hong Kong University of Science and Technology3, HP Labs China4

ABSTRACT
Aggregate similarity search, a.k.a. aggregate nearest neigh-
bor (Ann) query, finds many useful applications in spatial
and multimedia databases. Given a group Q of M query ob-
jects, it retrieves the most (or top-k) similar object to Q from
a database P , where the similarity is an aggregation (e.g.,
sum, max) of the distances between the retrieved object p
and all the objects in Q. In this paper, we propose an added
flexibility to the query definition, where the similarity is an
aggregation over the distances between p and any subset of
φM objects in Q for some support 0 < φ ≤ 1. We call this
new definition flexible aggregate similarity (Fann) search,
which generalizes the Ann problem. Next, we present al-
gorithms for answering Fann queries exactly and approx-
imately. Our approximation algorithms are especially ap-
pealing, which are simple, highly efficient, and work well
in both low and high dimensions. They also return near-
optimal answers with guaranteed constant-factor approxi-
mations in any dimensions. Extensive experiments on large
real and synthetic datasets from 2 to 74 dimensions have
demonstrated their superior efficiency and high quality.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
Systems. Subject: Query processing

General Terms
Algorithms

1. INTRODUCTION
Aggregate similarity search extends the classical similarity

search problem with a group Q of query objects, and the goal
is to retrieve the most (or top-k) similar object to the query
group from the underlying database P , where similarity is
defined by applying an aggregation function (usually sum
or max) over the set of distances between the retrieved ob-
ject and every query object [15–19,23]. It is also commonly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

known as the aggregate nearest neighbor (Ann) or group
nearest neighbor query. This generalizes the classical nearest
neighbor (NN) search, while offering richer semantics with
broader applications in spatial and multimedia databases,
as pointed out by previous studies [15,17–19,23]. Due to its
importance, this problem has already been studied in the
Euclidean space [15,17,18], the road-network space [23], and
the general metric space [19]. However, a major limitation
of Ann search is that all objects in the query group must
be involved in defining the optimal answer. As a result, any
subset of points in the query group could affect the quality
and the usefulness of the query answer. In other words, Ann

requires that an object from P must be similar to all objects
in Q in order to qualify as a good answer, which could be
too restrictive in practice.

We observe that in many practical applications, it is of-
ten good enough, and in some cases actually desired, to find
similar objects to a fraction of the objects from the query
group. For example, suppose P is a collection of candidate
locations, and Q is a set of potential customers. When try-
ing to find a location to hold a marketing campaign from P ,
instead of trying to meet all customers where the meeting
place should minimize the total (or maximum) traveled dis-
tance of all customers, it is often desired to find a place that
is good for a certain fraction, say 50%, of the customers.
In this case, the meeting place should be close (in terms of
the total or maximum traveled distance) to 50% of the cus-
tomers, regardless of which customers are in this 50% (i.e.,
meet 50% of potential customers). More precisely, a better
and more general approach is to allow the user to specify a
support 0 < φ ≤ 1, and the goal is to find the best (or the
top-k) object from the database that is the most similar to
any φ|Q| objects from the query group. We call it flexible
aggregate similarity search, or Fann in short. Clearly, Ann

is a special instance of Fann when φ = 1.
Fann also finds applications in similarity search in mul-

timedia databases, which usually map objects to points in
high dimensional feature spaces. When the query Q con-
sists of a set of objects (e.g. images), the Ann will find an
object in the database that is similar to all query objects,
which might be too restrictive in many cases. While Fann

returns an object of a certain support, namely being simi-
lar to φ|Q| of the query objects. This allows the user to be
less careful (in other words, more flexible) when formulating
his/her query group Q. When returning the top-k objects
(called the k-Fann problem in Section 6.1), the diversity of
the query answers also increases: the k objects might be
similar to k different subsets of φ|Q| query objects each.

This added flexibility could make the problem a lot harder:
a Fann query implicitly incorporates

`

|Q|
φ|Q|

´

Ann queries as

each subset of φ|Q| objects of Q could be the best subset
that an object in the database is similar to. Indeed, if one
wants to answer a Fann query exactly, the cost is quite high.
In Section 4 we present two algorithms based on standard
techniques for answering Fann queries exactly, but the ex-
periments show that they could be expensive; especially in
high dimensions, they could be as bad as linear scans.

Therefore, we investigate approximation algorithms that
greatly improve the efficiency while returning near-optimal
answers. We present two such algorithms (for the sum and
max versions of the problem respectively) in Section 5, which
have the following appealing features:

• Guaranteed approximation ratios: We prove that the
two algorithms return answers with guaranteed ap-
proximation ratios of 3 and 1 + 2

√
2, for the sum and

max versions of the problem, respectively, and more
importantly, they hold in any dimensions. Note that
since Fann degenerates into the Ann problem when
φ = 1, our results also imply a 3-approximation for
the sum Ann problem, for which only heuristics are
known and they work only in low dimensions [16–19].

• Excellent query answer quality in practice: The proved
approximation ratios hold for the worst data. In prac-
tice, extensive experiments (in Section 7) on real and
synthetic datasets show that the actual approximation
ratios are much lower, usually below 1.3.

• Superior efficiency: The benefit of not returning the
exact answer is superior efficiency. In low dimensions
(d = 2), the algorithms answer a query Q with |Q| =
300 on a dataset of 2 million records in just about 1
millisecond; in high dimensions (d = 30), a query on a
dataset of similar scale takes 0.01 to 0.1 second. De-
tailed experimental results are provided in Section 7.

• Simplicity: Our algorithms are actually very simple.
They reduce the problem to a few instances of the
standard nearest neighbor (NN) search, which is a well
studied problem, and efficient solutions are known in
both low and high dimensions. This is actually the
main leverage on which these algorithms easily and
nicely extend to high dimensions.

Below we first formally define the Fann problem in Sec-
tion 2 and survey the related work in Section 3. Then we
present two exact algorithms aiming at low and high di-
mensions respectively, in Section 4. We describe the two
approximation algorithms, together with the proofs on their
approximation ratios, in Section 5. We then talk about the
extensions of these algorithms in Section 6, present the ex-
perimental results in Section 7, and conclude in Section 8.

2. PROBLEM FORMULATION
We use P to denote the set of points in the database, and

Q as the set of query points, where |P | = N and |Q| =
M . Both P and Q are in a metric space with the distance
function δ(p, q) defined for any two points. Let g be the
aggregation function, either sum or max, and φ be a support
value in (0, 1]. We further define g(p, S), for any point p and
a group of points S, as:

g(p, S) = g(δ(p, q1), . . . , δ(p, q|S|)), qi ∈ S for i = 1, . . . , |S|,

i.e., it is the aggregate distance between p and all points in
S aggregated by g. The flexible aggregate similarity search
(Fann) problem is formally defined as follows.

Definition 1 (Fann query) Given P , Q, δ, g and φ, a
Fann query returns:

(p∗, Q∗
φ) = argmin

p∈P,Qφ⊆Q
g(p,Qφ), where |Qφ| = ⌈φM⌉.

Let r∗ = g(p∗, Q∗
φ) denote the optimal aggregate distance.

Since finding the optimal p∗ achieving r∗ is expensive, we
will mostly focus on finding approximately optimal answers.
For any β ≥ 1, we say that (p, Qφ) is a β-approximate answer
to the Fann query if Qφ ⊆ Q, |Qφ| = ⌈φM⌉, and

r∗ ≤ g(p,Qφ) ≤ βr∗.

For convenience, we will ignore the ceiling and assume
that φM is an integer. A first observation is that, for any p,
the Qφ that minimizes g(p,Qφ) consists of the φM points in
Q closest to p. Thus, if we define Qp

φ as such a set of points,
the definition of a Fann query can be stated as finding

p∗ = argmin
p∈P

rp, where rp = g(p,Qp
φ). (1)

Similar to previous studies for the Ann problem, in most
applications, P is large and disk-based, and Q is small and
memory resident. We assume this setting by default, but will
discuss the case when Q becomes disk-resident in Section 6.
We assume the d-dimensional Euclidean space as the default
metric space, and briefly discuss general metric spaces in
Section 6. We summarize the main notations in Figure 1.

Symbol Description
B(c, r) the ball centered at c with radius r
δ(p, q) distance between p and q
g sum or max
g(o, S) g(δ(o, s1), . . . , δ(o, s|S|)) for all si ∈ S
MEB(S) minimum enclosing ball of S
M, N size of Q and P respectively
nn(o, S) the nearest neighbor of o in S
Qp

φ φM nearest neighbors of p in Q
(p∗, Q∗

φ) the optimal answer to Fann on P, Q, φ
r∗ optimal agg. similarity distance g(p∗, Q∗

φ)

Figure 1: List of notations.

3. RELATED WORK
Study on aggregate similarity search was initialized by Pa-

padias et al. [17] and Li et al. [16], where sum Ann queries
have been examined in Euclidean spaces of low dimensions.
The state-of-the-art exact algorithm appears in [18], which
is an R-tree based MBM method. It adopts the typical
branch-and-bound methodology using the R-tree and relies
on the triangle inequality as the main principle for pruning
the search space. Of course, the details will vary based on
the aggregate function used. As such, the MBM method is
a good heuristic algorithm that works well in low dimen-
sions (2 or 3 dimensions). Razente et al. [19] used the same
idea for other metric spaces with distance-based indexing
structures, such as the M-tree [7]. The performance of these
algorithms degrades quickly as dimensionality increases.

To get around the curse-of-dimensionality problem of the
MBM method, approximation methods have been proposed,
but only for max Ann queries in the Euclidean space [15].

The basic idea is to find the center of the minimum enclos-
ing ball (MEB) of the Q, and then simply return the nearest
neighbor of this center from P . Li et al. [15] showed that
this simple method gives a

√
2-approximate answer to the

max Ann query in any dimensions, and its query cost is
essentially the same as one standard NN query. Alongside
the MBM method, Papadias et al. [18] also proposed a few
heuristic for approximating Ann queries, but with no prov-
able approximation ratios.

All of the above works study the Ann problem. How-
ever, in the Fann problem, we are looking for the p∗ that
minimizes its aggregate distance to any subset of φM query
points. If one were to adapt the existing Ann solutions,
`

M
φM

´

subsets of the query points would have to be consid-
ered, an exponential blowup. Thus, none of the above results
can be used to solve the Fann problem efficiently.

The standard NN search is also very relevant to our study.
In low dimensions, the R-tree provides efficient exact algo-
rithms using either the depth-first [21] or the best-first [11]
search algorithms. They do not provide theoretical guaran-
tees on the worst-case query cost, but are in general very ef-
ficient in answering exact NN queries in low dimensions. On
the other hand, the BBD-tree [1] finds (1 + ǫ)-approximate
nearest neighbors in worst-case O((1/ǫd) log N) time where
d is the dimensionality.

It is well known that the R-tree, and in general any space-
partitioning scheme, gives poor performance beyond 6 di-
mensions [2, 4]. For exact NN search in high dimensions,
iDistance [12] is the state of the art, but can still be quite
expensive. As approximation can be often tolerated in high
dimensional NN search, more efficient approximation algo-
rithms have been designed. In particular, the techniques
based on locality sensitive hashing (LSH) [10] have been
shown to be highly efficient while returning near-optimal NN
results. Currently, the most practical LSH based solution is
the LSB-tree [22], which combines the LSH idea and space
filling curves. By doing so, it is able to return 4-approximate
NNs with high probability; on typical data sets, the approx-
imation ratio is often much lower (usually close to 1). It also

has a bounded query cost of O(
p

dN/B logB N) IOs for an
NN search, where B is the disk page size.

4. EXACT METHODS
A straightforward exact method for answering a Fann

query is to do a linear scan of all points in P and find the
optimal p∗ by its definition. More precisely, for every point
p ∈ P , we find the set Qp

φ, namely, the φM nearest neigh-

bors of p in Q and calculate rp = g(p,Qp
φ). Then, we find

(p∗, Q∗
φ) with the smallest rp. We denote this method as

BFS (brute-force search).
Next, we present two imporved exact methods. The first

method is based on the R-tree and can be seen as a general-
ization of the techniques in [18]. As it is based on the R-tree,
it works only in low dimensions. The second method is based
on the TA algorithm [8,9] and works for any dimensions.

4.1 The R-tree algorithm
For any node in the R-tree, we can calculate the min-

imum possible distance from its MBR (minimum bound-
ing rectangle) b to every query point q in Q, denoted as
mindist(q, b) [11, 21]. Let Qb

φ be the subset of φM points
from Q that have the φM smallest mindist values to b.

Clearly, for any p ∈ b, we have

rp ≥ g(mindist(q1, b), . . . , mindist(qφM , b)), qi ∈ Qb
φ, (2)

which yields a lower bound in the aggregate distance rp for
any point p inside b.

Let the MBR of the query group Q be bQ. Another lower
bound for rp, which is cheaper to compute, but not as tight
as (2), is as follows. For any MBR node b in an R-tree,
we find the minimum possible distance between bQ and b,
denoted as mindist(bQ, b). Then for any p ∈ b, we have

rp ≥
(

φM · mindist(bQ, b), if g = sum;

mindist(bQ, b), if g = max .
(3)

Based on (2) and (3), we can easily construct a search al-
gorithm for Fann queries using an R-tree built on P . Specif-
ically, when a leaf node of the R-tree is accessed, for each
point p stored in the leaf, we find Qp

φ and compute the aggre-

gate distance rp = g(p,Qp
φ). When we encounter an internal

R-tree node, we first compute (3) and then (2) and check if
it is higher than the best candidate answer found so far. If
so we skip the entire subtree rooted at this internal node;
otherwise we add this node to a queue. The queue is sorted
in the ascending order of their lower bounds on the aggre-
gate distance, and we will visit the nodes from the queue in
order. We denote this algorithm as the R-tree method.

We point out that when φ = 1, the Fann problem reduces
to the Ann problem, and this R-tree method described above
also degenerates into the MBM method [18] for Ann.

4.2 The List algorithm
We conceptually build M lists, one for each query point

qi in Q. The list for qi ∈ Q sorts all points in P in the
ascending order of their distances to qi. In particular, we
refer to the jth element in the ith list as a pair (pi,j , δi,j)
where δi,j = δ(pi,j , qi), pi,j ∈ P for j = 1, . . . , N . By doing
so, for any point p ∈ P , we can view p as an object with M
attributes with its ith attribute taking value δ(p, qi), and all
points in P are given in M lists, sorted according to each
of the M attributes, respectively. The aggregated “score” of
p, g(p,Qp

φ) is the sum or max of the φM smallest attribute
values of p, which is monotone w.r.t. the M attributes. This
is exactly the setting where the TA algorithm [9] applies.
This allows us to design the List algorithm below.

Algorithm 1: List(P , Q, φ, g)

let ℓi = 1 and τi = δi,ℓi for i = 1, . . . , M ;1

set τ = g(smallest φM values from τis);2

set po =null and δo = +∞;3

while true do4

let η = argmini∈[1,M] δi,ℓi ;5

set p′ = pη,ℓη and compute δ′ = g(p′, Qp′

φ);6

if δ′ < δo then7

set po = p′ and δo = δ′;8

if ℓη < N then9

set ℓη = ℓη + 1 and τη = δη,ℓη ;10

else output (po, Q
po
φ); return;11

update τ if smallest φM values in τis have changed;12

if δo < τ then13

output (po, Q
po
φ); return;14

The basic idea of the List algorithm is to perform sorted
access to the M lists, while maintaining a lower bound for
the best possible aggregate distance for any unseen point.
We maintain one pointer per list (the ℓi’s); initially they
point to the first elements of the lists. We set the ith thresh-
old value τi to be the attribute value of the point pointed by
ℓi (line 1). In each of the subsequent steps, we pick the list
whose current element has the smallest value, say the ηth
list (line 5). We retrieve the ℓηth element from the ηth list
(line 6). This element gives a point p′ and we compute its
aggregate distance by applying g over p′ and its φM nearest
neighbors from Q (line 6). We keep the best candidate an-
swer (the point and the achieved distance) so far in po and
do (lines 3, 7–8). Then we move the ηth pointer (ℓη) down
the list by one position, and update the ηth threshold value
τη accordingly (lines 9–11). Clearly, for any unseen object
from the ith list, its minimum possible ith attribute value
will be at least τi, which indicates that applying g over the
current φM smallest threshold values gives a lower bound
on the best possible aggregate distance of any unseen point.

Implementation. Note that we do not have to materialize
the M lists in order to run the algorithm above. The obser-
vation is that the jth element in the ith list, (pi,j , δi,j), is
simply the jth nearest neighbor of qi from P and the corre-
sponding distance. Thus, lines 5 and 6 in Algorithm 1 can
be easily done by finding the ℓith nearest neighbor of qi from
P (similarly for line 1 and 10), as long as we have an index
that can return the nearest neighbors for any given qi in the
ascending order of their distances to qi. This is the standard
k-NN problem and has been well studied.

In low dimensions, we can index P using an R-tree. We
do not have to find the ℓith nearest neighbor of qi from
scratch every time when we move down the ith list. Rather,
with some simple bookkeeping, the R-tree’s nearest neighbor
search can be carried out incrementally, that is, to find the
jth nearest neighbor of qi, we can resume the search from the
end of the search for the (j−1)th nearest neighbor. In higher
dimensions, we can index P using the iDistance index [12]
and also find the jth nearest neighbor of qi incrementally.
Alternatively, we can index P using a LSB-tree [22] for faster
nearest neighbor retrieval. However, since the LSB-tree only
returns approximate NNs, using a LSB-tree over P no longer
guarantees that List will return an exact answer. Neverthe-
less, we can easily prove the following result (the proof is
quite straightforward and omitted).

Proposition 1 Given a β-approximate kNN algorithm, List
gives a β-approximation for the Fann problem.

5. APPROXIMATE METHODS
Our exact methods for the Fann problem outperform the

BFS approach, but they are still quite expensive, especially
on large datasets (as shown in our experimental study). Fur-
thermore, it is well known that in high dimensions, even the
standard NN search itself will require a linear scan of the
dataset in most cases we are to find exact answers (see [22]
and the references therein). Thus, it is not surprising that
the exact methods become very expensive as dimensionality
increases. In most applications of similarity search, how-
ever, approximate answers are often good enough, and past
research has shown that allowing approximation can bring
significant improvement on the query efficiency [1, 10, 22].

This motivates us to design approximate algorithms for the
Fann problem with quality and efficiency guarantees.

5.1 Approximation algorithms for sum Fann

We first concentrate on the sum Fann problem. Our ap-
proximate method is given in Algorithm 2, which is denoted
as the Asum method. The algorithm is actually very simple,
provided that we have a method for standard NN search.

In line 4, recall that Qpi
φ simply consists of the φM nearest

neighbors of pi in Q and rpi = sum(pi, Q
pi
φ). As Q is small

and fits in memory, finding Qpi
φ is easy and cheap. That

said, the algorithm just finds pi, the NN in P for each of
the M query point qi, and returns the one with the smallest
aggregate distance, in this case the sum of the distances from
pi to its φM closest points in Q.

Algorithm 2: Asum (P , Q, φ, sum)

set minr = +∞; α = −1;1

for i = 1, . . . , M do2

let pi = nn(qi, P), where qi is the ith point in Q;3

find Qpi
φ and rpi ;4

if rpi < minr then5

set α = i, and minr = rpi ;6

return (pα, Qpα
φ);7

We can prove that the algorithm returns a 3-approximate
answer to a sum Fann query in any dimensions.

Theorem 1 Asum returns a 3-approximate answer to the
sum Fann query in any dimensions.

Proof. Let (p∗, Q∗
φ) be the optimal answer to the query

group Q, and the optimal aggregate distance is

r∗ =
X

x∈Q∗

φ

δ(p∗, x).

Let q∗ = nn(p∗, Q∗
φ), and p′ = nn(q∗, P). Clearly, if p′ = p∗,

Asum will return the optimal answer p′ = p∗, since Q∗
φ ⊆ Q

and it iterates through all points in Q and finds their nearest
neighbors in P as the set of candidate answers.

Consider the case p′ 6= p∗. Given p′ = nn(q∗, P) we have:

δ(p′, q∗) ≤ δ(p∗, q∗). (4)

Since rp′ = sum(p′, Qp′

φ), where Qp′

φ are the φM nearest

neighbors of p′ in Q. We have:

rp′ =
X

x∈Q
p′

φ

δ(p′, x) ≤
X

x∈Q∗

φ

δ(p′, x). (5)

X

x∈Q∗

φ

δ(p′, x)

≤
X

x∈Q∗

φ

(δ(p′, p∗) + δ(p∗, x)) (triangle inequality)

= φM · δ(p′, p∗) +
X

x∈Q∗

φ

δ(p∗, x)

≤ φM · (δ(p′, q∗) + δ(q∗, p∗)) + r∗ (triangle inequality)

≤ 2φM · δ(q∗, p∗) + r∗ (by (4))

≤ 2r∗ + r∗ = 3r∗. (by (7)) (6)

The last ‘≤’ holds because q∗ = nn(p∗, Q∗
φ), i.e., for any

x ∈ Q∗
φ, δ(q∗, p∗) ≤ δ(x, p∗). Therefore:

φM · δ(q∗, p∗) ≤
X

x∈Q∗

φ

δ(x, p∗) = r∗. (7)

By (5) and (6), we have rp′ ≤ 3r∗. Lines 2–6 in Algorithm

2 guarantee that (p′, Qp′

φ) is one of the M candidates to be
considered, which completes the proof.

When exact NN search is expensive, we can replace the nn
function in Algorithm 2 with approximate NN search. We
can show that this still delivers a good approximation.

Theorem 2 If the exact nn function in Asum is replaced
with a β-approximate NN search, then the Asum algorithm
gives a (β + 2)-approximation to the sum Fann query.

Proof. Let p′ and q∗ be defined similarly as in the proof
of Theorem 1. However, we can no longer guarantee to find
p′ precisely. Instead, we are guaranteed a point p′′ that
satisfies δ(p′′, q∗) ≤ β · δ(p′, q∗). Going through the proof of
Theorem 1, inequality (4) becomes

δ(p′′, q∗) ≤ β · δ(p′, q∗) ≤ β · δ(p∗, q∗), (8)

and the derivation in (6) becomes
X

x∈Q∗

φ

δ(p′′, x) ≤ φM · (δ(p′′, q∗) + δ(q∗, p∗)) + r∗

≤ φM · (β + 1)δ(q∗, p∗) + r∗ (by (8))

≤ (β + 1)r∗ + r∗ = (β + 2)r∗. (by (7))

Thus, the returned answer will be a (β+2)-approximation.

5.1.1 Reducing the cost of Asum

The main cost of algorithm Asum is the M NN queries
on the data set P , which are quite expensive when M is
large, as each NN query involves accessing a disk-based NN
index built on P . One idea to reduce this cost is to only run
lines 3–6 of the Asum algorithm on a subset of points in Q.
Interestingly enough, it turns out that doing so simply on
a randomly chosen subset of Q suffices to (almost) preserve
the approximation ratio, as shown in the next theorem.

Theorem 3 For any 0 < ǫ, λ < 1, executing lines 3–6 of the
Asum algorithm only on a random subset of f(φ, ǫ, λ) points
of Q returns a (3+ǫ)-approximate answer to the Fann query
in any dimensions with probability at least 1 − λ, where

f(φ, ǫ, λ) =
log λ

log(1 − φǫ/3)
= O(log(1/λ)/φǫ). (9)

Proof. Following the proof of Theorem 1, we note that
the approximation ratio is guaranteed as long as q∗ is one
of the points in Q that have gone through lines 3–6 of the
algorithm. Of course it is difficult to know which query point
in Q is q∗ since that depends on the optimal answer p∗, so
the algorithm simply tries all possible q ∈ Q.

Now since we execute lines 3–6 of the algorithm only on
a randomly chosen subset of Q, q∗ may not be one of them.
Nevertheless, if some other q′ has been chosen that is among
the ǫφM/3 closest points in Q∗

φ (thus also in Q) to p∗, i.e.,

q′ ∈ Qp∗

ǫφM/3, the proof can still go through except inequality

(7), hence (6).

However, in this case given q′ ∈ Qp∗

ǫφM/3
, we have:

(φM − ǫφM

3
)δ(q′, p∗) ≤

X

x∈Q
p∗

φ
−Q

p∗

ǫφM/3

δ(x, p∗)

≤
X

x∈Q
p∗

φ

δ(x, p∗) =
X

x∈Q∗

φ

δ(x, p∗).

Thus, (7) becomes

φM · δ(q′, p∗) ≤ 1

1 − ǫ/3

X

x∈Q∗

φ

δ(x, p∗) =
1

1 − ǫ/3
r∗,

where equality holds in the worst case when the (ǫφM/3−1)
closest points to p∗ in Q all have distance 0 to p∗, q′ is exactly
the (ǫφM/3)-th closest point, and the next (1 − ǫ/3)φM
closest points are all at the same distance to p∗ as q′. Then
(6) becomes

2

1 − ǫ/3
r∗ + r∗ ≤ 2(1 + ǫ/2)r∗ + r∗ = (3 + ǫ)r∗.

Thus it suffices to ensure that at least one of the ǫφM/3
closest points in Q to p∗ is chosen. In a random subset
of f(φ, ǫ, λ) points in Q, the probability that none of these

ǫφM/3 points is chosen is at most (1− ǫφ/3)f(φ,ǫ,λ). Setting
f(φ, ǫ, λ) as (9) makes this probability at most λ.

Note that by this optimization the number of NN searches
we need to issue is independent of the size of Q and dimen-
sionality, which makes the result especially appealing for a
large Q and data in high dimensions.

5.1.2 A simpler algorithm for φ = 1

When φ = 1, the sum Fann problem reduces to the sum
Ann problem [17, 18]. A simple heuristic approximate al-
gorithm was proposed in [18], denoted as Asum1 (Algo-
rithm 3), which simply returns the nearest neighbor of the
geometric median of Q. However, no approximation ratio
was proved in [18]. Here we show that this algorithm also
gives a 3-approximation for sum Ann and the bound is tight.

Algorithm 3: Asum1 (P , Q, sum)

let qm be the geometric median of Q;1

return pm = nn(qm, P);2

The geometric median of a set of points Q is the point qm

minimizing the sum of distances from qm to the points of Q,
where qm is not required to be one of the points in Q.

Theorem 4 The Asum1 algorithm finds a 3-approximation
for the sum Ann problem using only one nearest neighbor
search, and the bound is tight.

Proof. The query cost is obvious. To show the approx-
imation bound, consider:

rpm =
X

q∈Q

δ(pm, q) ≤
X

q∈Q

(δ(p, qm) + δ(qm, q))

≤
X

q∈Q

(δ(p∗, qm) + δ(qm, q)) (since pm = nn(qm, P))

≤
X

q∈Q

(δ(p∗, q) + δ(q, qm) + δ(qm, q))

=
X

q∈Q

δ(p∗, q) + 2
X

q∈Q

δ(qm, q) ≤ 3r∗.

The last ‘≤’ holds due to the definition of pm, which is the
point in the whole space minimizing the sum of distances
to Q, where as p∗ is the point from P minimizing the sum
of distances to Q and it cannot yield a strictly better result
than pm. Hence,

P

q∈Q δ(qm, q) ≤ P

q∈Q δ(p∗, q) = r∗.
To see that this bound is tight, consider the example in

Figure 2, where P = {p1, p2} and Q = {q1, q2}. Clearly,
any point on the line segment q1q2 (inclusive) is a geometric
median for Q. Suppose q2 is returned as qm, which means
that pm = nn(q2, P) = p2. However, rp2

= 3r−ǫ, and in this
case p∗ = p1 and rp1

= r. We can construct this example
in any dimension and make ǫ arbitrarily small, which shows
that the bound is tight.

q1 q2 p2

r r − ǫ

p1

Figure 2: Asum1’s approximation bound is tight.

Remark: Computing the geometric median poses a chal-
lenge, as no algorithm can compute it exactly. However,
one can use the Weiszfeld algorithm, a form of iteratively
re-weighted least squares, to iteratively compute the coordi-
nates of pm to an arbitrary precision efficiently.

5.2 Approximation algorithms for max Fann

We next present our approximation algorithm for the max
Fann problem. Recall that here we aim at finding the point
p ∈ P that minimizes the maximum distance from p to Qp

φ,

where Qp
φ consists of the φM closest points to p in Q.

For a point q ∈ Q, we also use Qq
φ to denote the set of

the φM closest points to q in Q, including q itself. We use
MEB(S) to denote the minimum enclosing ball of a set of
points S, namely the smallest ball that fully contains S.
Our algorithm, Amax, is presented in Algorithm 4. This
algorithm is actually almost identical to Asum, except for
each qi ∈ Q, we find the NN in P for ci, the center of the
minimum enclosing ball of Qqi

φ , instead of qi itself.

Algorithm 4: Amax (P , Q, φ, max)

set minr = +∞; α = −1;1

for i = 1, . . . , M do2

find Qqi
φ , and its minimum enclosing ball3

bi = MEB(Qqi
φ);

let ci be the center of bi;4

let pi = nn(ci, P), find Qpi
φ and calculate rpi ;5

if rpi < minr then6

set α = i, and minr = rpi ;7

return (pα, Qpα
φ);8

Below we show that Amax returns a (1+2
√

2)-approximate
answer to the max Fann query, which is slightly worse than
our approximation ratio for the sum Fann problem.

We need a few technical lemmas first in order to prove
this. Let B(c, r) be the ball centered at c with radius r. For
a point o, a value γ, let So,γ be any set of points such that

o ∈ So,γ and So,γ ⊆ B(o, 2γ). (10)

Lemma 1 For any So,γ, let B(s, rs) = MEB(So,γ), then
δ(o, s) ≤ rs ≤ 2γ.

o

a

b

c

p

e

2γ

j

π

Figure 3: Lemma 2.

o

a

e hs

2γ

rs

S:

B(o, 2γ)

B(s, rs)

b
f

c

Figure 4: e cannot be outside
the line interval os.

Proof. Given So,γ ⊆ B(o, 2γ), rs ≤ 2γ is immediate by
the definition of the minimum enclosing ball. Next, o ∈ So,γ

and B(s, rs) = MEB(So,γ) ensures that δ(o, s) ≤ rs.

Pick any point e inside B(o, 2γ). Extend the segment oe
(from the e side) and hit ∂B(o, 2γ), the boundary of B(o, 2γ),
at b. Consider the hyperplane π(o, e) passing e and orthog-
onal to oe. Please see Figure 3 for an illustration in two
dimensions. In 2D, π(o, e) is a line, whose intersection with
B(o, 2γ) is a segment ac. In d dimensions, the intersection
of π(o, e) with B(o, 2γ) is a ball in d−1 dimensions; we let a
be any point on the boundary of this ball in this case. The
hyperplane π(o, e) divides B(o, 2γ) into two portions, and
we denote the one containing b as a cap C(o, e, b). Next,
let p be any point on the segment oe, and consider the ball
B(p, δ(p, a)). Extend oe and hit ∂B(p, δ(p, a)) at j. Simi-
larly, let C(p, e, j) be the cap of B(p, δ(p, a)) separated out
by π(p, e) = π(o, e). We have the following:

Lemma 2 For any e ∈ B(o, 2γ) and any p on the segment
oe, C(o, e, b) ⊆ C(p, e, j).

Proof. Since the two caps C(o, e, b) and C(p, e, j) share
the same base, which is the intersection of π(o, e) with B(o, 2γ),
we only need to show that b ∈ C(p, e, j). As p belongs to the
segment oe, in △opa, δ(o, p) + δ(p, a) > δ(o, a) = δ(o, b) =
δ(o, p) + δ(p, b). Thus, δ(p, j) = δ(p, a) > δ(p, b).

Lemma 3 For any point set So,γ satisfying (10), let B(s, rs) =

MEB(So,γ), and δ(o, s) = z, then rs ≤
p

(2γ)2 − z2.

Proof. Note that by Lemma 1, z ≤ 2γ, so
p

(2γ)2 − z2

is always a real number. Suppose for contradiction that
rs >

p

(2γ)2 − z2.
First, when this happens, we show that ∂B(s, rs) and

∂B(o, 2γ) must intersect. Consider the line passing through
o and s. It intersects ∂B(s, rs) at two points, say b and f ,
and let the one closer to o of the two be b (see an illustration
in Figure 4). Now,

δ(o, f) = δ(o, s) + δ(s, f)

= z + rs

> z +
p

(2γ)2 − z2 (by the hypothesis)

≥
p

z2 + ((2γ)2 − z2) = 2γ,

which means that f is outside B(o, 2γ). Note that the last
inequality is due to the fact that for any x, y ≥ 0, (x+y)2 ≥
x2 + y2, hence x + y ≥

p

x2 + y2.
Since B(s, rs) contains both o and f , one inside B(o, 2γ)

and one outside, and has a radius rs smaller than 2γ (by

o

a

e fs

2γ rs

S:
B(o, 2γ)

B(s, rs)

c

B(e, δ(e, a))

b

h
i

j

Figure 5: Proof of Lemma 3

Lemma 1), ∂B(s, rs) must intersect ∂B(o, 2γ). The intersec-
tion in 2D is two points, and a (d−2)-sphere in d dimensions.
Let a be any point on this (d− 2)-sphere. Now consider the
situation on the plane defined by o, s, and a (Figure 4). On
this plane, the (d − 2)-sphere becomes two points a and c.
Suppose ac intersects bf at e. We first show that e must
be inside the line segment os. Suppose not, i.e., it is to the
right of s. In the right triangle △oae,

δ(a, e)2 = δ(o, a)2 − δ(o, e)2

= (2γ)2 − (δ(o, s) + δ(s, e))2

= (2γ)2 − z2 − δ(s, e)2 − 2zδ(s, e). (11)

While in the right triangle △sae,

δ(s, a)

=
p

δ(s, e)2 + δ(a, e)2

=
p

δ(s, e)2 + (2γ)2 − z2 − δ(s, e)2 − 2zδ(s, e) (by (11))

=
p

(2γ)2 − z2 − 2zδ(s, e),

which contradicts with our assumption that δ(s, a) = rs >
p

(2γ)2 − z2. This means that e cannot lie outside os.
Given this, we must end up at a case in Figure 5. Clearly,

rs = δ(s, a) > δ(e, a), (12)

and since So,γ ⊆ B(o, 2γ) and So,γ ⊆ B(s, rs), we have:

So,γ ⊆ B(o, 2γ) ∩ B(s, rs). (13)

Now, consider B(o, 2γ) ∩ B(s, rs). It is formed by two caps
C(o, e, h) from B(o, 2γ) and C(s, e, b) from B(s, rs). Con-
sider the ball B(e, δ(e, a)) and suppose its boundary inter-
sects with the line through b, f at i and j. The ball B(e, δ(e, a))
can be divided into two half-balls C(e, e, i) and C(e, e, j),
which are special caps where the separating hyperplane passes
its center. By Lemma 2, we know that C(o, e, h) ⊆ C(e, e, j)
and C(s, e, b) ⊆ C(e, e, i). Therefore,

B(o, 2γ) ∩ B(s, rs) ⊆ B(e, δ(e, a)).

This means that there is a ball with radius δ(e, a) < rs that
contains So,γ , which contradicts with the fact that B(s, rs)
is the MEB of So,γ .

Lemma 4 For any point set So,γ satisfying (10), let B(s, rs) =
MEB(So,γ), and δ(o, s) = z, then z + rs ≤ 2

√
2γ.

Proof.

z + rs ≤ z +
p

(2γ)2 − z2 (by Lemma 3)

≤
p

2(z2 + (2γ)2 − z2) = 2
√

2γ. (14)

Note that the second inequality is due to the fact that for
any x, y ≥ 0, x2 + y2 ≥ 2xy. Thus, (x + y)2 ≤ 2(x2 + y2),

and x + y ≤
p

2(x2 + y2).

We are now ready to present the main theorem.

Theorem 5 Amax gives a (1 + 2
√

2)-approximate answer
to the max Fann query in any dimensions, and it is tight.

Proof. Let (p∗, Q∗
φ) be the optimal answer to the max

Fann query with query group Q on P . Let r∗ be the optimal
aggregate distance, i.e.,

r∗ = max(p∗, Q∗
φ) = max

q∈Q∗

φ

δ(p∗, q).

Let B(x, rx) = MEB(Q∗
φ). Since B(x, rx) is the minimum

enclosing ball of Q∗
φ and Q∗

φ ⊆ B(p∗, r∗), we have

rx ≤ r∗. (15)

Consider any q ∈ Q∗
φ. Clearly q is contained in B(x, rx).

This indicates that the maximum distance of q to any point
in Q∗

φ is bounded by the diameter of B(x, rx), i.e.,

max(q, Q∗
φ) ≤ 2rx. (16)

Note that Qq
φ found by line 3 of the algorithm Amax consists

of the φM nearest neighbors of q in Q (including q itself),
and Q∗

φ ⊆ Q. Thus,

max(q, Qq
φ) ≤ max(q, Q∗

φ) ≤ 2rx, (17)

If we view q as o and rx as γ, clearly So,γ = Qq
φ satisfies

(10). Line 3 in Amax also finds b = B(c, rq) = MEB(Qq
φ),

by Lemma 4, we have:

δ(q, c) + rq ≤ 2
√

2rx. (18)

Now, p = nn(c, P), and Qp
φ and rp are found in line 5 of

Amax. Recall that Qp
φ is the φM nearest neighbors of p in

Q and rp = max(p, Qp
φ). We have:

rp = max
y∈Q

p
φ

δ(p, y)

≤ max
y∈Q

q
φ

δ(p, y) (Qp
φ is the φM NNs of p in Q)

≤ max
y∈Q

q
φ

(δ(p, c) + δ(c, y))

≤ max
y∈Q

q
φ

(δ(p∗, c) + δ(c, y)) (p = nn(c, P))

= δ(p∗, c) + rq (B(c, rq) = MEB(Qq
φ))

≤ δ(p∗, q) + δ(q, c) + rq

≤ r∗ + 2
√

2rx (due to q ∈ Q∗
φ and (18))

≤ (1 + 2
√

2)r∗. (by (15)) (19)

Finally, note that some q from Q∗
φ must have been iterated

through by the Amax algorithm. Thus, the point p define
above must have been checked as a candidate answer, which
completes the proof. We show it is tight in Appendix A.

Remark. When φ = 1, the max Fann problem reduces
to the max Ann problem, which is also referred to as the
group enclosing query (Geq) in [15]. In this case, since all
the Qqi

φ ’s are the same, which is the entire Q, the Amax

algorithm degenerates to finding the nearest neighbor of the
center of MEB(Q). This is exactly the algorithm proposed
in [15] for the Geq problem. However, for this special case,
a better approximation ratio of

√
2 can be proved [15].

Computational issues. Computing the minimum enclos-
ing ball is well studied. For any point set S, MEB(S) can
be computed efficiently in linear time in any constant di-
mensions [3]. In high dimensions, one can find a (1 + ǫ)-
approximation of the minimum enclosing ball efficiently [13].

However, as we have pointed out in Section 5.1, exact
NN search is expensive in high dimensions, and we can
replace the exact NN search in line 5 of Amax with a β-
approximate NN search. When doing so, the approximation
ratio of Amax gets an extra β factor correspondingly.

Theorem 6 Replacing the exact nn function in Amax with
a β-approximate NN search, Amax gives a ((1 + 2

√
2)β)-

approximate answer to the max Fann query.

Proof. Suppose the final answer returned now is (p′, Qp′

φ)
and the answer returned by Amax with an exact nn method
is (p, Qp

φ). Following the derivation in (19), we have:

rp′ = max
y∈Q

p′

φ

δ(p′, y)

≤ max
y∈Q

q
φ

δ(p′, y)

≤ max
y∈Q

q
φ

(δ(p′, c) + δ(c, y))

≤ max
y∈Q

q
φ

(βδ(p, c) + δ(c, y)) (p′ is β-approx. of p)

≤ β max
y∈Q

q
φ

(δ(p, c) + δ(c, y))

≤ β(1 + 2
√

2)r∗, (by the same derivation in (19))

which shows that p′ is a ((1+2
√

2)β)-approximate answer.

As in Section 5.1.1, we can reduce the cost of Amax by
executing lines 3–7 of the algorithm on a random subset of
points in Q, except that the analysis is simpler in this case.

Theorem 7 For any 0 < λ < 1, executing lines 3–7 of the
Amax algorithm only on a random subset of f(φ, λ) points
of Q returns a (1 + 2

√
2)-approximate answer to the Fann

query with probability at least 1−λ in any dimensions, where

f(φ, λ) =
log λ

log(1 − φ)
= O(log(1/λ)/φ).

Proof. We note that the proof of Theorem 5 only relies
on at least one of the points in Q∗

φ being considered by the
algorithm. If we run lines 3–7 on a random subset of f(φ, λ)
points, the probability that none of φM points in Q∗

φ is

considered is at most (1−φ)f(φ,λ). Setting f(φ, λ) as in the
theorem makes this probability at most λ.

Again, the theorem shows that the number of NN searches
we need to issue is independent of |Q| and dimensionality.

6. EXTENSIONS

6.1 The k-Fann problem
All of our algorithms can be extended to return the top-k

Fann of a query group Q, that is, the k points p in P with
the smallest aggregate distance g(p,Qp

φ), where g is either
sum or max. We briefly discuss these extensions next.

The R-tree method. The calculation of the pruning con-
dition is intact, and the only difference is that a node should

be compared against the kth best candidate answer found
so far to decide whether it should be pruned or not.

The List algorithm. We calculate the threshold for the
best possible aggregate similarity distance of any unseen ob-
ject in the same way as before, but comparing this threshold
value to the kth best candidate answer found so far to decide
whether the algorithm should terminate or continue.

The Asum algorithm. In line 3 of Algorithm 2, for any
q ∈ Q, we find its top-k nearest neighbors from P . For
each such point p, we carry out line 4 to find its Qp

φ and rp.
Among the kM such candidate points generated after iterat-
ing through all points in Q, we return the k candidates with
the k smallest rp values. The approximation stays the same
and the optimization in Section 5.1.1 can still be applied.

The Asum1 algorithm. After finding the geometric me-
dian of the query group, we find its top-k nearest neighbors
from P and return them as the answer. The approximation
bound stays the same.

The Amax algorithm. In line 5 of Algorithm 4, for any
point q in Q, after finding its B(c, r) = MEB(Qq

φ), we find
the k nearest neighbors of c in P . For each such point p,
we find Qp

φ and rp. Among the kM such candidate points
generated after iterating through all points in Q, we return
the k candidates with the k smallest rp values. The approx-
imation stays the same and the optimization in Theorem 7
can still be applied.

6.2 General metric spaces
Our discussion so far focuses on the Euclidean space. Nev-

ertheless, most of our algorithms generalize to other metric
spaces without any changes, given the basic NN search al-
gorithms in those spaces.

The R-tree method in principle works in any metric space,
but we will need to replace the R-tree by a metric space in-
dexing structure, such as the M-tree [7]. The List algorithm
clearly works for any metric space, since it only relies on the
basic NN search algorithm. For a similar reason, the Asum

algorithm works for any metric space as well and its approx-
imation ratio remains the same in any metric space. The
Asum1 algorithm work in any metric space as well with the
same approximation bound, as long as the geometric median
is well defined and can be computed in that space. Finally,
the Amax algorithm works for the Ld

p space for any d and
any 2 ≤ p < +∞, since it leverages on the minimum enclos-
ing balls of point sets. How to design efficient approximation
algorithms for the max Fann problem that work well in any
metric space is an interesting open problem.

6.3 When Q is large
When Q becomes large and disk-resident, the exact meth-

ods work poorly and we should only consider the approxi-
mation methods. Our main approximation algorithms can
be adapted to work with such large query groups easily.

First, consider the Asum algorithm. The only new chal-
lenge is to support the efficient search of φM nearest neigh-
bors in Q for a given point p. For this purpose, we can
simply index Q using an index structure that supports k
nearest neighbor search, such as R-tree in low dimensions,
or LSB-tree in high dimensions.

Next, consider the Amax algorithm. One of the challenges
is the same as above, i.e., to support the efficient search

1 2 3 4 5
1

1.1

1.2

1.3

1.4

1.5

M:X102

r p/r
*

ASUM
AMAX

(a) vary M .

1 2 3 4 5
1

1.1

1.2

1.3

1.4

1.5

N:X106

r p/r
*

ASUM
AMAX

(b) vary N .

0 0.1 0.3 0.5 0.7 0.9 1
1

1.2

1.4

1.6

1.8

φ

r p/r
*

ASUM
AMAX

(c) vary φ.

2 3 4 5 6
1

1.1

1.2

1.3

1.4

1.5

d

r p/r
*

ASUM
AMAX

(d) vary d.

Figure 6: Approximation quality of Asum and Amax methods in low dimensions.

of the φM nearest neighbors in Q for a given point p (or
q), which can be addressed similarly. The other challenge
now is to efficiently find the minimum enclosing ball of φM
points from Q. Since M is large, φM points could be a
large set too. This can be addressed as follows. For any
large point set S, note that its minimum enclosing ball is
only determined by the convex hull of S. In other words,
if we denote the set of vertices in the convex hull of S as
CS , then, MEB(S) = MEB(CS). There are I/O efficient
algorithms for computing the convex hulls of disk-based data
sets in multi-dimensions [5]. In most cases, |CQ| ≪ |Q|
which enables us find MEB(Q) efficiently. However, in some
rare cases |CQ| could be close to |Q|. When it does happen,
we can obtain an approximate convex hull of Q efficiently
using Dudley’s approximation based on the coreset idea [24].

7. EXPERIMENTS
We implemented all algorithms in C++, and executed our

experiments on a machine with an Intel Xeon 2GHz CPU
and 4GB memory. For all index structures and data files,
the page size is set to 4KB. For both of our approximation
algorithms, namely Asum and Amax, we used the optimized
versions with 1/φ sampled query points from Q as guided by
Theorems 3 and 7. The sample sizes indicated in Theorems
3 and 7 were necessary for the upper bound analysis, which
are loose. In practice, we observed that simply taking a
random sample of size 1/φ is sufficient for both algorithms.

Datasets. In 2 dimensions, we obtained the Texas (TX)
points of interest and road-network dataset from the Open
Street map project, where each point is represented by its
longitude and latitude. The TX dataset has 14 million
points. We also generated synthetic datasets for 2 to 6 di-
mensions. To capture the clustering nature of real-world
data, we generated random cluster (RC) datasets where clus-
ters of different sizes and radius have been generated with
random center locations in the space.

In high dimensions (d ≥ 10), we used the Color dataset [6]
consisting of 68, 040 points in 32 dimensions, the MNIST
dataset [14] with 60, 000 points in 50 dimensions, and the
Cortina dataset [20] with 1, 088, 864 points in 74 dimensions.

Query groups. For the Fann problem, the cost of the
query depends on several critical factors, including the loca-
tion of the center (either the geometric median or the center
of the minimum enclosing ball) of Q, the covering range of
Q (i.e., the space enclosed by MEB(Q)), how points are dis-
tributed within the covering range, the size of Q and the
value of φ. Thus, we generated queries as follows. For a
certain query group size M , we set A = 5% as the default
volume of its covering range in terms of the percentage of
the entire data space. Next a random location in the data
space is selected as the center of the query group. Then M

random points within a ball of volume A, centered at this
center location are generated. Two types of distributions
were used to generate query points: uniform distribution
(uu) and random cluster (rc). The relative performance of
all algorithms were similar for these two distributions, so we
only report the results using the rc query distribution. For
each test, 40 random queries were generated. The efficiency
(running time and the number of IOs) is very stable so we
just report the average; the quality (approximation ratio)
has some variation, so we report both the average as well as
the 5%–95% interval.

7.1 Low dimensions

Setup. For the low-dimensional experiments, we used the
following default values: M = 200, N = 2, 000, 000, φ = 0.5
and d = 2. We then varied each of them while keeping the
others fixed at their default values. Specifically, we con-
ducted 4 sets of experiments, where we respectively varied
M from 100 to 500, N from 1 to 5 million, φ from 0.1 to 1
and d from 2 to 6. For the first three sets of experiments,
we used the 2-dimensional real dataset TX where we picked
N points randomly out of its 14 millions points. For the last
set of experiments varying d, the synthetic RC datasets were
used instead. In low dimensions, Asum and Amax utilize
an R-tree which indexes P to answer NN queries.

Quality of approximation. The approximation ratios of
Asum and Amax for the 4 sets of experiments are shown in
Figure 6. Clearly, in all these cases, both methods achieved
excellent approximation quality for the sum and max Fann

problems, respectively. The average approximation ratio is
between 1.1 to 1.3 in all these experiments. More impor-
tantly, both algorithms behave quite stably, with the 95%
percentile at 1.5 for most scenarios. Figures 6(a) and 6(b)
show that their approximation qualities are not affected by
the size of the query group or the dataset. Figure 6(c) in-
dicates that a larger φ value leads to better approximation
quality (we used the Asum1 algorithm for the sum Fann

when φ = 1). This is due to the fact that when φM is small,
the probability that our 1/φ sampled points do not cover
at least one point from Q∗

φ is higher. Finally, Figure 6(d)
shows that their approximation qualities actually improve
slightly as d increases. This supports our theoretical anal-
ysis that the approximation ratios of Asum and Amax do
not depend on dimensionality. The slight improvement of
the approximation ratio may be attributed to the fact that
the optimal distance, r∗, increases faster as d increases than
the distance returned by the algorithm.

Efficiency. We next focus on the efficiency of different algo-
rithms. Since some algorithms incur both considerable disk
IOs and CPU costs, we reported both the number of IOs and

the end-to-end running time. For the exact methods in low
dimensions, we observe that the List algorithm is strictly
worse than the R-tree method. Hence, we only report the
R-tree method as the representative of our exact methods.

1 2 3 4 5
10

0

10
1

10
2

10
3

10
4

M:X102

IO

BFS R−treeSUM R−treeMAX

ASUM AMAX

(a) IO.

1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

M:X102
ru

nn
in

g
tim

e(
se

co
nd

s)

BFS R−treeSUM R−treeMAX

ASUM AMAX

(b) running time.

Figure 7: Low dimensions: vary M .
Figure 7 shows the results when we vary M . Clearly, the

R-tree method outperforms the BFS method by 2-3 orders
of magnitude in terms of IOs and running time, for the sum
and max Fann problems respectively. Our approximation
algorithms, Asum and Amax, are even more efficient. They
further outperform the R-tree method by 0.5 order of mag-
nitude in terms IOs and 2–3 orders of magnitude in terms of
the running time. This is because for each MBR node, the
R-tree method has to compute its mindist to every query
point from Q. Both Asum and Amax methods are able
to answer a query Q with 300 query points over 2 million
points in P in just about 1 millisecond and 10 IOs! This well
justifies the use of approximation instead of exactly solving
the problem. The performance curves of Asum and Amax

are almost identical. This is not surprising, as both of them
issue 1/φ NN queries, which is the main cost of these two
algorithms (computing MEBs for a group of points in Amax

in low dimensions is very cheap).

1 2 3 4 5
10

0

10
1

10
2

10
3

10
4

N:X106

IO

BFS R−treeSUM R−treeMAX

ASUM AMAX

(a) IO.

1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

N:X106

ru
nn

in
g

tim
e(

se
co

nd
s)

BFS R−treeSUM R−treeMAX

ASUM AMAX

(b) running time.

Figure 8: Low dimensions: vary N .
We next study the effect of dataset size, and Figure 8

shows a similar trend, where Asum and Amax have outper-
formed the R-tree and BFS methods by orders of magnitude.
The results show that Asum and Amax have excellent scal-
ability w.r.t. the dataset size. For example, they still only
require around 10 IOs and 1 millisecond per query for 200
query points on 5 million P points.

0.1 0.3 0.5 0.7 0.9 1
10

0

10
1

10
2

10
3

10
4

φ

IO

BFS R−treeSUM R−treeMAX

ASUM AMAX

(a) IO.

0.1 0.3 0.5 0.7 0.9 1
10

−4

10
−2

10
0

10
2

10
4

φ

ru
nn

in
g

tim
e(

se
co

nd
s)

BFS R−treeSUM R−treeMAX

ASUM AMAX

(b) running time.

Figure 9: Low dimensions: vary φ.
Our next experiment investigates the effect of φ. Since

Asum and Amax both issue 1/φ NN queries on an R-tree

indexing the P points, when φ is small, their query costs
would be higher. This trend was observed in Figures 9(a)
and 9(b). In particular, Figure 9(a) shows that Asum has
similar IO cost as the R-tree method when φ = 0.1, but
has much lower IO costs for larger φ. Amax actually has a
higher IO cost than the R-tree method when φ = 0.1, but
then achieved lower IO costs for all other φ values. In terms
of the running time, Asum and Amax are both still much
lower than the R-tree method for all φ values as shown in
Figure 9(b).

2 3 4 5 6
10

0

10
1

10
2

10
3

10
4

d

IO

BFS R−treeSUM R−treeMAX

ASUM AMAX

(a) IO.

2 3 4 5 6
10

−4

10
−2

10
0

10
2

10
4

d

ru
nn

in
g

tim
e(

se
co

nd
s)

BFS R−treeSUM R−treeMAX

ASUM AMAX

(b) running time.

Figure 10: Low dimensions: vary d.
Next experiment studies the effect of dimensionality, where

we tested all algorithms on the RC datasets from 2 to 6 di-
mensions as shown in Figure 10. Not surprisingly, the costs
for all algorithms increase as d gets higher, as all of them rely
on the underlying R-tree (except BFS), which gets less effec-
tive in higher dimensions. Nevertheless, Asum and Amax

are clearly the winner in all dimensions.

7.2 High dimensions

Setup. R-tree does not scale to high dimensions (d > 10),
so we used BFS and List as the exact methods. For List,
we also changed the underlying NN index from the R-tree
to iDistance [12], the state of the art for exact NN search
in high dimensions. For Asum and Amax, we changed the
underlying NN index to the LSB-tree [22], the state of the
art for answering approximate NN queries in high dimen-
sions. We also tested another natural approximate solution
by plugging the LSB-tree into the List method.

The main dataset we used is the Cortina dataset, from
which we extracted smaller ones for various experiments. To
get a dataset of N points in d dimensions, we randomly sam-
ple N points from Cortina and take the first d coordinates
for every such point. The default values for all parameters
are M = 200, N = 200, 000, φ = 0.5 and d = 30. Simi-
lar to the low-dimensional experiments, we performed 4 sets
of experiments, varying one of these 4 parameters respec-
tively while keeping the rest fixed at their default values.
Specifically, we varied M from 8 to 512, N from 100, 000 to
500, 000, φ from 0.1 to 1 and d from 10 to 50. Finally, we
also tested on the three datasets, MNIST, Color and Cortina
in their entirety in their original dimensions.

Quality of approximation. We first study the approxi-
mation quality of Asum and Amax, as well as List with the
LSB-tree. Results from Figure 11 show that they retain their
high quality approximations in high dimensions. The aver-
age approximation ratio for all of them is around 1.1, and
its 95% percentile is below 1.3 in all cases. This backs up
our analysis that the approximation quality is not affected
by dimensionality, and at the same time demonstrates that
the approximation ratio could be much better in practice
than the worst-case bounds of 3 and 1+ 2

√
2. Note that for

8 16 32 64 128 256 512
1

1.1

1.2

1.3

M

r p/r
*

List−LsbSum
List−LsbMax
ASUM
AMAX

(a) vary M .

1 2 3 4 5
1

1.1

1.2

1.3

N:X105

r p/r
*

ASUM
AMAX

(b) vary N .

0.1 0.3 0.5 0.7 0.9 1
1

1.1

1.2

1.3

φ

r p/r
*

ASUM
AMAX

(c) vary φ.

10 20 30 40 50
1

1.1

1.2

1.3

d

r p/r
*

ASUM
AMAX

(d) vary d.

Figure 11: Approximation quality of Asum and Amax in high dimensions.

List, we only obtained its approximation ratios for the small
M ’s, as it is too slow for M = 200 (to be seen later).

4 8 16 32 64 128 256 512
10

2

10
3

10
4

M

IO

BFS List−iDistSUM List−iDistMAX

List−LsbSUM List−LsbMAX

ASUM AMAX

(a) IO.

4 8 16 32 64 128 256 512
10

−4

10
−2

10
0

10
2

M

ru
nn

in
g

tim
e(

se
co

nd
s)

BFS List−iDistSUM List−iDistMAX

List−LsbSUM List−LsbMAX

ASUM AMAX

(b) running time.

Figure 12: High dimensions: vary M .

Efficiency. Figure 12 shows the efficiency of all methods
when varying M . It is clear that in all cases, Asum and
Amax maintain their superiority over other methods by 2–
4 orders of magnitude in terms of both IOs and running
time. In 30 dimensions, for 256 points in a query group over
200, 000 data points, Asum takes only 0.01 second per query;
Amax is more expensive, due to the higher computation
cost of the MEBs in high dimensions, but it still only takes
about 0.1–0.2 second per query. Their performance is also
very stable even when M increases. In particular, the IO
cost remains almost constant. This is because they incur
IO costs only when performing NN queries on P , while they
always issue 1/φ NN queries irrespective of M .

When M is small, the two List methods outperform BFS.
However, as M increases, they start to deteriorate rapidly
and eventually become as bad as or even worse than BFS.
This is because List has to do at least M NN searches at the
very beginning, followed by potentially more kNN searches.
These NN and kNN searches become very expensive in high
dimensions. Using the LSB-tree instead of iDistance does
help a lot in terms of efficiency, but it no longer returns exact
answers, and its approximation quality is not significantly
better than Asum and Amax. Since the two List methods
are highly expensive for our default query group size M =
200, we excluded them in the rest of the experiments.

1 2 3 4 5
10

1

10
2

10
3

10
4

N:X105

IO

BFS ASUM AMAX

(a) IO.

1 2 3 4 5
10

−4

10
−2

10
0

10
2

N:X105

ru
nn

in
g

tim
e(

se
co

nd
s)

BFS ASUM AMAX

(b) running time.

Figure 13: High dimensions: vary N .
We next study the efficiency of the methods by varying

the size of the dataset. The results are shown in Figure 13.

We observe that Asum and Amax have excellent scalability
w.r.t. the size of the dataset, with only slight increases in
their IO and running times as N gets larger.

0.1 0.3 0.5 0.7 0.9 1
10

1

10
2

10
3

10
4

φ

IO

BFS ASUM AMAX

(a) IO.

0.1 0.3 0.5 0.7 0.9 1
10

−4

10
−2

10
0

10
2

φ

ru
nn

in
g

tim
e(

se
co

nd
s)

BFS ASUM AMAX

(b) running time.

Figure 14: High dimensions: vary φ.
Figure 14 shows the experimental results when we vary

φ. Similar to the results in low dimensions, smaller φ values
lead to higher costs for both Asum and Amax, due to the
1/φ sample size. Nevertheless, they are still much more
efficient than BFS.

10 20 30 40 50
10

1

10
2

10
3

10
4

d

IO

BFS ASUM AMAX

(a) IO.

10 20 30 40 50
10

−4

10
−2

10
0

10
2

d

ru
nn

in
g

tim
e(

se
co

nd
s)

BFS ASUM AMAX

(b) running time.

Figure 15: High dimensions: vary d.

We also tested their performances in different dimensions
as shown in Figure 15. Again, Asum and Amax scale very
well with dimensionality, which is primarily attributed to
the LSB-tree being able to handle high-dimensional data
very well, and the dominating cost is that of the 1/φ NN
queries. While with almost identical IO cost, the running
time of Amax is longer due to the higher cost of computing
MEBs in high dimensions.

1

1.2

1.4

1.6

1.8

r p/r
*

MNIST Color Cortina

ASUM
AMAX

(a) approximation ratio.

10
0

10
1

10
2

10
3

10
4

10
5

IO

MNIST Color Cortina

BFS
ASUM
AMAX

(b) IO.

Figure 16: All datasets in high dimensions.
Lastly, we tested BFS, Asum and Amax on the three real

datasets in high dimensions using all available points in their
original dimensions, respectively. The results are shown in

Figure 16. Similar to the previous experiments, Asum and
Amax have an 2–3 orders of magnitude of improvement in
terms of efficiency, while returning query answers of high
quality. We note that the approximation ratios are higher on
the MNIST dataset than the other two, due to some special
properties of the dataset, but they are still much lower than
the guaranteed approximation ratios.

8. CONCLUSION
Flexible aggregate similarity search (Fann) extends the

aggregate similarity search (Ann) with added flexibility that
are useful in many applications. In this paper, we presented
a comprehensive study on the Fann problem, by designing
exact and approximation methods that work well in low to
high dimensions. Our approximation methods are especially
appealing, which come with constant approximation ratios
in theory and perform extremely well in practice, in terms
of both approximation quality and query efficiency, as ev-
ident from our extensive experimental study. Future work
includes the design of an efficient approximation method for
max Fann that works well in any metric space.

9. ACKNOWLEDGMENT
Feifei Li and Bin Yao were supported by NSF Grant IIS-

0916488. The work was conducted when Yang Li was an
intern student at HP Labs China. Part of the work was done
when Feifei Li and Ke Yi were visiting HP Labs China.

10. REFERENCES
[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and

A. Y. Wu. An optimal algorithm for approximate nearest
neighbor searching in fixed dimensions. Journal of ACM,
45(6):891–923, 1998.

[2] S. Berchtold, C. Böhm, D. A. Keim, and H. P. Kriegel. A
cost model for nearest neighbor search in high-dimensional
data space. In PODS, 1997.

[3] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf.
Computational geometry: algorithms and applications.
Springer, 1997.

[4] C. Böhm. A cost model for query processing in high
dimensional data spaces. ACM Transaction on Database
Systems, 25(2):129–178, 2000.

[5] C. Böhm and H.-P. Kriegel. Determining the convex hull in
large multidimensional databases. In International
Conference on Data Warehousing and Knowledge
Discovery, 2001.

[6] K. Chakrabarti, K. Porkaew, and S. Mehrotra. The Color
Data Set. http://kdd.ics.uci.edu/databases/CorelFeatures/
CorelFeatures.data.html.

[7] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In
VLDB, 1997.

[8] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity
search and classification via rank aggregation. In SIGMOD,
2003.

[9] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, 2001.

[10] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In VLDB, 1999.

[11] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM Trans. Database Syst., 24(2), 1999.

[12] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang.
iDistance: An adaptive B+-tree based indexing method for
nearest neighbor search. ACM Trans. Database Syst.,
30(2):364–397, 2005.

[13] P. Kumar, J. S. B. Mitchell, and E. A. Yildirim.
Approximate minimum enclosing balls in high dimensions

using core-sets. ACM Journal of Experimental
Algorithmics, 8, 2003.

[14] Y. LeCun and C. Cortes. The MNIST Data Set.
http://yann.lecun.com/exdb/mnist/.

[15] F. Li, B. Yao, and P. Kumar. Group enclosing queries.
IEEE TKDE, To Appear, 2010.

[16] H. Li, H. Lu, B. Huang, and Z. Huang. Two ellipse-based
pruning methods for group nearest neighbor queries. In
GIS, 2005.

[17] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group
nearest neighbor queries. In ICDE, 2004.

[18] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui.
Aggregate nearest neighbor queries in spatial databases.
ACM TODS, 30(2):529–576, 2005.

[19] H. L. Razente, M. C. N. Barioni, A. J. M. Traina,
C. Faloutsos, and C. Traina, Jr. A novel optimization
approach to efficiently process aggregate similarity queries
in metric access methods. In CIKM, 2008.

[20] K. Rose and B. S. Manjunath. The CORTINA Data Set.
http://www.scl.ece.ucsb.edu/datasets/index.htm.

[21] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In SIGMOD, 1995.

[22] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and
efficiency in high dimensional nearest neighbor search. In
SIGMOD, 2009.

[23] M. L. Yiu, N. Mamoulis, and D. Papadias. Aggregate
nearest neighbor queries in road networks. IEEE TKDE,
17(6):820–833, 2005.

[24] H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadarajan.
Practical methods for shape fitting and kinetic data
structures using core sets. In SoCG, 2004.

APPENDIX

A. TIGHTNESS OF Amax

Here we show that the (1 + 2
√

2) approximation ratio of
Amax is tight, by giving a concrete example. Consider the
case in Figure 17 where ǫ is an arbitrarily small positive.

B(p∗, r∗)

p1

r∗r∗

2r∗ − ǫ2r∗ − ǫ

r∗ − ǫr∗ − ǫ
p3

p2

√
2r∗

√
2r∗

√
2r∗

√
2r∗

q4

q3

q1, q2 q5, q6

q7

q8

M = 8, φ = 0.5

c2c1

√
2r∗

√
2r∗

Figure 17: Amax’s approximation bound is tight.

In this case, M = 8, φ = 0.5, hence φM = 4 and φM−1 =
3. Consider q1, its 3-nearest neighbors in Q are {q2, q3, q4},
hence Qq1

φ = {q1, q2, q3, q4}. Note that MEB({q1, q2, q3, q4})
= B(c1,

√
2r∗), and nn(c1, P) = p2. Now, p2’s 4-nearest

neighbors in Q are {q4, q3, q2, q1}. Hence, Qp2

φ = {q4, q3, q2, q1},
rp2

= max(p2, {q4, q3, q2, q1}) = (1 + 2
√

2)r∗ − ǫ.
It’s easy to verify that the results from q2, q3 and q4 are

the same as q1, since Qq2
φ , Qq3

φ and Qq4
φ are the same as

Qq1
φ = {q1, q2, q3, q4}. Furthermore, q5, q6, q7 and q8 are

symmetric to q1, q2, q3 and q4, and p3 is symmetric to
p2. Thus they yield (p3, Q

p3

φ) as the answer, and rp3
=

max(p3, {q5, q6, q7, q8}) = (1 + 2
√

2)r∗ − ǫ.
As a result, Amax will return either (p2, Q

p2

φ) or (p3, Q
p3

φ)

as the answer, with r2 = r3 = (1 + 2
√

2)r∗ − ǫ. But in this
case p∗ = p1, Q∗

φ = {q1, q2, q3, q4}, and max(p∗, Q∗
φ) = r∗.

