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Abstract— This work presents a novel index structure, MHR-
tree, for efficiently answering approximate string match queries
in large spatial databases. The MHR-tree is based on the R-tree
augmented with the min-wise signature and the linear hashing
technique. The min-wise signature for an index node u keeps a
concise representation of the union of q-grams from strings under
the sub-tree of u. We analyze the pruning functionality of such
signatures based on set resemblance between the query string
and the q-grams from the sub-trees of index nodes. MHR-tree
supports a wide range of query predicates efficiently, including
range and nearest neighbor queries. We also discuss how to
estimate range query selectivity accurately. We present a novel
adaptive algorithm for finding balanced partitions using both
the spatial and string information stored in the tree. Extensive
experiments on large real data sets demonstrate the efficiency
and effectiveness of our approach.

I. INTRODUCTION

Keyword search over a large amount of data is an important

operation in a wide range of domains [22]. Felipe et al. has

recently extended its study to spatial databases [17], where

keyword search becomes a fundamental building block for an

increasing number of practical, real-world applications, and

proposed the IR2-Tree. A major limitation of the IR2-Tree

is that it only supports efficient keyword search with exact

matches. In reality, for many scenarios, keyword search for

retrieving approximate string matches is required [5], [10],

[12], [28], [29], [31], [34], [37]. Since exact string match is

a special case of approximate string match, it is clear that

keyword search by approximate string matches has a much

larger pool of applications. Approximate string search could be

necessary when users have a fuzzy search condition or simply

a spelling error when submitting the query, or the strings in the

database contain some degree of uncertainty or error. In the

context of spatial databases approximate string search could

be combined with any type of spatial queries, including range

and nearest neighbor queries. An example for the approximate

string match range query is shown in Figure 1, depicting a

common scenario in location-based services: find all objects

within a spatial range r that have a description that is similar to

“theatre”. Similar examples could be constructed for k nearest

neighbor (kNN) queries. We refer to these queries as Spatial

Approximate String (SAS) queries.

A key issue in understanding the semantics of these queries

is to define the similarity between two strings. The edit

distance metric is often adopted for such approximate string

queries [5], [10], [12], [28], [29], [31], [34], [37]. Specifically,

given strings σ1 and σ2, the edit distance between σ1 and
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Fig. 1. Approximate string search with a range query.

σ2, denoted as ε(σ1, σ2), is defined as the minimum number

of edit operations required to transform one string into the

other. The edit operations refer to an insertion, deletion, or

substitution of a single character. Clearly, ε is symmetric, i.e.,

ε(σ1, σ2) = ε(σ2, σ1). For example, let σ1 =‘theatre’ and

σ2 =‘theater’, then ε(σ1, σ2) = 2, by substituting the first ‘r’

with ‘e’ and the second ‘e’ with ’r’. We do not consider the

generalized edit distance in which the transposition operator

(i.e., swapping two characters in a string while keeping others

fixed) is also included. The standard method for computing

ε(σ1, σ2) is a dynamic programming formulation. For two

strings with lengths n1 and n2 respectively, it has a complexity

of O(n1n2).

A straightforward solution to any SAS query is to simply use

any existing techniques for answering the spatial component of

a SAS query and verify the approximate string match predicate

either in a post-processing step or on the intermediate results

of the spatial search. This means that for a SAS range query

with a query range r and a query string σ over a spatial

data set P, one could use an R-tree to index points in P

and find all points Ac that fall into range r. Finally, for

each point from Ac the similarity of its associated string

will be compared against σ. Similarly, in a SAS kNN query

with a query point t and a query string σ, one could use

the same R-tree index and apply the normal kNN search

algorithm w.r.t. t, then evaluate the similarity between the

query string σ and the candidate nearest neighbors encountered

during the search. The search terminates when k points with

strings that satisfy the string similarity requirement have been

retrieved. We generally refer to these approaches as the R-

tree solution. Another straightforward solution is to build a

string matching index and evaluate the string predicate first,

completely ignoring the spatial component of the query. After

all similar strings are retrieved, points that do not satisfy the

spatial predicate are pruned in a post-processing step. We refer

to this solution as the string index approach.

While being simple, the R-tree solution could suffer from

unnecessary node visits (higher IO cost) and string similarity



comparisons (higher CPU cost). To understand this, we denote

the exact solution to a SAS query as A and the set of

candidate points that have been visited by the R-tree solution

as Ac. An intuitive observation is that it may be the case

that |Ac| ≫ |A|, where | · | denotes set cardinality. In an

extreme example, considering a SAS range query with a query

string that does not have any similar strings within its query

range from set P , A = ∅. So ideally, this query should

incur a minimum query cost. However, in the worst case,

an R-tree solution could possibly visit all index nodes and

data points from the R-tree that indexes P . In general, the

case that r contains a large number of points could lead to

unnecessary IO and CPU overhead, since computing the edit

distance between two strings has a quadratic complexity. The

fundamental issue here is that the possible pruning power from

the string match predicate has been completely ignored by the

R-tree solution. Similar arguments hold for the string index

approach, where a query might retrieve a very large number

of similar strings only to prune everything based on the spatial

predicate at post-processing. Clearly, in practice none of these

solutions will work better than a combined approach that

prunes simultaneously based on the string match predicate and

the spatial predicate.

Another interesting problem in this context is the selectivity

estimation for SAS queries. The goal is to accurately estimate

|A| with cost significantly smaller than that of actually exe-

cuting the query itself. Selectivity estimation is very important

for query optimization purposes and data analysis and has

been studied extensively in database research for a variety of

approximate string queries and spatial queries [3], [32].

Motivated by these observations, this work proposes a

novel index structure that takes into account the potential

pruning capability provided by the string match predicate and

the spatial predicate simultaneously. The main challenge for

this problem is that the basic solution of simply integrating

approximate edit distance evaluation techniques (e.g., based

on q-grams [8], [18] or tries [9], [24]) into a normal R-tree is

expensive and impractical.

Our main contributions are summarized as follows:

• We formalize the notion of spatial approximate string

queries and selectivity estimation for spatial approximate

string range queries in Section II.

• We introduce a new index for answering SAS queries

efficiently in Section IV. We first present the problems

associated with storing q-grams for approximate edit

distance evaluation directly into the R-tree. Then, we

propose the solution of embedding min-wise signatures

of q-grams into the R-tree and convert the problem into

that of evaluating set resemblance.

• We present a novel algorithm that builds a robust selectiv-

ity estimator for SAS range queries in Section V. Our idea

is to leverage an adaptive algorithm that finds balanced

partitions of nodes from any R-tree based index, including

the MHR-tree, based on both the spatial and string

information in the R-tree nodes. The identified partitions

are used as the buckets of the selectivity estimator.

• We discuss issues related with associating multiple strings

with query and data points, other spatial query types, and

dynamic updates in Section VI.

• We demonstrate the efficiency, practicality and effective-

ness of the MHR-tree for answering SAS queries, as well

as the selectivity estimation algorithms for SAS range

queries using a comprehensive experimental evaluation

in Section VII. Our experimental evaluation covers both

synthetic and real data sets of up to 10 millions points

and 6 dimensions.

We introduce the basic tools used in our construction in

Section III and survey the related work in Section VIII. The

paper concludes with Section IX.

II. PROBLEM FORMULATION

Formally, a spatial database P contains points with strings.

Each point in P may be associated with one or more

strings. For brevity and without loss of generality, we

simply assume that each point in P has ω number of

strings. Hence, a data set P with N points is the following

set: {(p1, σ1,1, . . . , σ1,ω), . . . , (pN , σN,1, . . . , σN,ω)}. Differ-

ent points may contain duplicate strings. In the sequel, when

the context is clear, we simply use a point pi to denote both

its geometric coordinates and its associated strings.

A spatial approximate string (SAS) query Q consists of two

parts: the spatial query Qr and the string query Qs. The spatial

query specifies a spatial predicate and predicate parameters. In

this paper we concentrate on the classical range and nearest

neighbor predicates. A range query Qr is simply defined by a

query rectangle r; a kNN query Qr is defined by a pair (t, k)
where t is a point and k is an integer. The string query is

defined by one or more query strings and their associated edit

distance thresholds, i.e., Qs = {(σ1, τ1), . . . , (σβ , τβ)}, where

∀i ∈ [1, β], σi is a string and τi ∈ N.

Let the set As = {px|px ∈ P ∧ ∀i ∈ [1, β], ∃ji ∈
[1, ω], ε(σi, σx,ji

) ≤ τi}, i.e., As is the subset of points

in P such that each point in As has one or more similar

matching strings for every query string, with respect to the

corresponding edit distance threshold. We define the SAS

range and kNN queries as follows:

Definition 1 (SAS range query) A SAS range query Q :
(Qr = r, Qs) retrieves all points (denoted as A) in P such

that, A ⊆ P and,

∀p ∈ A

{
p ∈ r p is contained in r;
p ∈ As p has similar strings to all query strings.

Definition 2 (SAS kNN query) Let ‖p, t‖ be the Euclidean

distance between points p and t. A SAS kNN query Q : (Qr =
t, Qs) retrieves a subset of points A from As such that,





A = As if |As| ≤ k;
|A| = k and

∀p′ ∈ A, ∀p′′ ∈ As −A, ‖p′, t‖ < ‖p′′, t‖ if |As| > k.

A SAS kNN query finds the top-k closest points to the query

point t that have one or more similar matching strings for every



query string, with respect to the corresponding edit distance

threshold. When there are less than k such points in P , the

SAS kNN query simply finds all of them.
The problem of selectivity estimation for a SAS range query

Q is to efficiently (i.e., faster than executing Q itself) and

accurately estimate the size |A| of the query answer.
In our definition, we require that the returned points have

one or more matching strings for every query string. We

could certainly generalize this to any logical expression, for

example, define As to be those points that have at least κ
matching string(s) to some of the query strings. Our techniques

could be generalized to handle any logical expression on the

“matching” definition to the set of query strings. We discuss

such generalization in Section VI.
To simplify our discussion in the rest we assume that ω = 1

and β = 1. In this case, for every point p ∈ P , we simply

use σp to denote its associated string; and for the string query

component of a SAS query, we simply let σ and τ to denote

the query string and the edit distance threshold respectively.

We also assume that the data set P is static. Extending our

techniques to the general case and dealing with dynamic

updates will be discussed in Section VI.

III. PRELIMINARIES

Let Σ be a finite alphabet of size |Σ|. A string σ of length

n has n characters (possibly with duplicates) in Σ∗.

A. Edit distance pruning

Computing edit distance exactly is a costly operation. Sev-

eral techniques have been proposed for identifying candidate

strings within a small edit distance from a query string fast

[4], [12], [32]. All of them are based on q-grams and a q-gram

counting argument.
For a string σ, its q-grams are produced by sliding a window

of length q over the characters of σ. To deal with the special

case at the beginning and the end of σ, that have fewer than q
characters, one may introduce special characters, such as “#”

and “$”, which are not in Σ. This helps conceptually extend

σ by prefixing it with q − 1 occurrences of “#” and suffixing

it with q − 1 occurrences of “$”. Hence, each q-gram for the

string σ has exactly q characters.

Example 1 The q-grams of length 2 for the string theatre
are {#t, th, he, ea, at, tr, re, e$}. The q-grams of length 2 for

the string theater are {#t, th, he, ea, at, te, er, r$}.

Clearly, a string of length n will have n−q+1 q-grams with

each q-gram having length q. Let Gσ be the set of q-grams of

the string σ. It is also immediate from the above example that

strings within a small edit distance will share a large number

of q-grams. This intuition has been formalized in [18], [36]

and others. Essentially, if we substitute a single character in

σ1 to obtain σ2, then their q-gram sets differ by at most q
q-grams (the length of each q-gram). Similar arguments hold

for both the insertion and deletion operations. Hence,

Lemma 1 [From [18]] For strings σ1 and σ2 of length

|σ1| and |σ2|, if ε(σ1, σ2) = τ , then |Gσ1
∩ Gσ2

| ≥
max(|σ1|, |σ2|) − 1 − (τ − 1) ∗ q.

B. The min-wise signature

The min-wise independent families of permutations were

first introduced in [7], [13]. A family of min-wise independent

permutations F must satisfy the following. Let the universe

of elements be U , for any set X that is defined by elements

from U , i.e., X ⊆ U , for any x ∈ X , when π is chosen at

random in F we have:

Pr(min{π(X)}) = π(x)) =
1

|X |
.

In the above formula, min{π(A)} = min{π(x)|x ∈ A}. In

other words, all elements of any fixed set X have an equal

probability to be the minimum value for set X under permu-

tation π from a min-wise independent family of permutations.

The min-wise independent family of permutations is useful for

estimating set resemblance. The set resemblance of two sets

A and B is defined as:

ρ(A, B) =
|A ∩ B|

|A ∪ B|
.

Broder et al. has shown in [7] that a min-wise independent

permutation π could be used to construct an unbiased estimator

for ρ(A, B), specifically, let:

ρ̂(A, B) = Pr(min{π(A)} = min{π(B)}).

Then ρ̂(A, B) is an unbiased estimator for ρ(A, B). Based on

this, one can define the min-wise signature of a set A using ℓ
min-wise independent permutations from a family F as:

s(A) = {min{π1(A)}, min{π2(A)}, . . . , min{πℓ(A)}}, (1)

then, ρ̂(A, B) could be estimated as:

ρ̂(A, B) =
|{i|min{πi(A)} = min{πi(B)}}|

ℓ
.

The above can be easily extended to k sets, A1, . . . , Ak:

ρ̂(A1, . . . , Ak) =
|{i|min{πi(A1)} = · · ·min{πi(Ak)}}|

ℓ
.

(2)

Implementation of min-wise independent permutations re-

quires generating random permutations of a universe and

Broder et al. [7] showed that there is no efficient implemen-

tation of a family of hash functions that guarantees equal

likelihood for any element to be chosen as the minimum

element of a permutation. Thus, prior art often uses linear hash

functions based on Rabin fingerprints to simulate the behavior

of the min-wise independent permutations since they are easy

to generate and work well in practice [7]. Let

h(x) = (ακxκ + ακ−1x
κ−1 + · · · + α1x + α0) mod p,

for large random prime p and κ. We generate independently at

random ℓ linear hash functions h1, . . . , hℓ and let any πi = hi

for i = 1, . . . , ℓ.



IV. THE MHR-TREE

Suppose the disk block size is B. The R-tree [20] and its

variants (R∗-tree in particular [6]) share a similar principle.

They first group ≤ B points that are in spatial proximity with

each other into a minimum bounding rectangle (MBR); these

points will be stored in a leaf node. The process is repeated

until all points in P are assigned into MBRs and the leaf level

of the tree is completed. The resulting leaf node MBRs are

then further grouped together recursively till there is only one

MBR left. Each node u in the R-tree is associated with the

MBR enclosing all the points stored in its subtree, denoted by

MBR(u). Each internal node also stores the MBRs of all its

children. An example of an R-tree is illustrated in Figure 2.
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Fig. 2. The R-tree.

For a range query r, we start from the root and check the

MBR of each of its children, then recursively visit any node

u whose MBR intersects or falls inside r. When a leaf node

is reached, all the points that are inside r are returned. A

kNN query t is answered by either the depth-first [33] or the

best-first [21] approach. These algorithms follow the branch

and bound principle [6], [20]. The MinDist metric between

MBR(u) and t (the minimum possible distance from any

objects inside u to t) is used to maintain a min priority queue

to organize the search order among R-tree nodes [21].

To incorporate the pruning power of edit distances into the

R-tree, we can utilize the result from Lemma 1. The intuition

is that if we store the q-grams for all strings in a subtree rooted

at an R-tree node u, denoted as Gu, given a query string σ,

we can extract the query q-grams Gσ and check the size of

the intersection between Gu and Gσ , i.e., |Gu ∩ Gσ|. Then

we can possibly prune node u by Lemma 1, even if u does

intersect with the query range r or it needs to be explored

based on the MinDist metric for the kNN query. Formally,

Lemma 2 Let Gu be the set for the union of q-grams of

strings in the subtree of node u. For a SAS query with

Qs = (σ, τ), if |Gu ∩ Gσ| < |σ| − 1 − (τ − 1) ∗ q, then

the subtree of node u does not contain any element from As.

Proof: Gu is a set, thus, it contains distinct q-grams. The

proof follows by the definition of Gu and Lemma 1.

By Lemma 2, we can introduce pruning based on string

edit distance into the R-tree by storing sets Gu for all R-tree

nodes u. However, the problem with this approach is that Gu

becomes extremely large for nodes located in higher levels of

the R-tree. This not only introduces storage overhead, but more

importantly, it drastically reduces the fan-out of the R-tree and

increases the query cost. For large data sets, the overhead of

storing large number of q-grams in an R-tree node significantly

out-weights the potential savings offered by the pruning based

on these q-grams.

To address this issue, we embed the min-wise signature of

Gu in an R-tree node, instead of Gu itself. The min-wise

signature s(Gu) has a constant size (see Equation 1; assuming

ℓ is some constant), and this means that |s(Gu)| (its size) is

independent of |Gu|. We term the combined R-tree with s(GU )
signatures embedded in the nodes as the Min-wise signature

with linear Hashing R-tree (MHR-tree). The rest of this section

explains its construction and query algorithms.

A. The construction of the MHR-tree

For a leaf level node u, let the set of points contained in u
be up. For every point p in up, we compute its q-grams Gp

and the corresponding min-wise signature s(Gp). In order to

compute the min-wise signature for the node, a straightforward

solution is to first compute Gu =
⋃

p∈up
Gp and then obtain

s(Gu) based on the q-gram set Gu. However, this approach

requires storing all Gps as intermediate results and computes

the set union of a potentially large number of sets. Based on

the definition of the min-wise signature, we can do this much

more efficiently. Specifically, let s(A)[i] be the ith element

for the min-wise signature of A, i.e., s(A)[i] = min{πi(A)}.

Given the set of min-wise signatures {s(A1), . . . , s(Ak)} of

k sets, by Equation 1, one can easily derive that:

s(A1 ∪ · · · ∪ Ak)[i] = min{s(A1)[i], . . . , s(Ak)[i]}, (3)

for i = 1, . . . , ℓ, since each element in a min-wise signature

always takes the smallest image for a set. This simple property

has been leveraged by many works using min-wise indepen-

dent permutations.

We can obtain s(Gu) using Equation 3 and s(Gp)s for every

point p ∈ up, directly. Finally, we store all (p, s(Gp)) pairs in

node u, and s(Gu) in the index entry that points to u in u’s

parent.

For an index level node u, let its child entries be

{c1, . . . , cf} where f is the fan-out of the R-tree. Each entry

ci points to a child node wi of u, and contains the MBR for

wi. We also store the min-wise signature of the node pointed

to by ci, i.e., s(wi). Clearly, Gu =
⋃

i=1,...,f Gwi
. Hence,

s(Gu) = s(Gw1
∪ · · · ∪ Gwf

); based on Equation 3, we can

compute s(Gu) using s(Gwi
)s. This implies that we do not

have to explicitly produce Gu to get s(Gu), which requires

computing and storing Gwi
s as intermediate results.

This procedure is recursively applied in a bottom-up fashion

until the root node of the R-tree has been processed. The

complete construction algorithm is presented in Algorithm 1.

B. Query algorithms for the MHR-tree

The query algorithms for the MHR-tree generally follow the

same principles as the corresponding algorithms for the spatial

query component. However, we would like to incorporate the

pruning method based on q-grams and Lemma 2 without the

explicit knowledge of Gu for a given R-tree node u. We need

to achieve this with the help of s(Gu). Thus, the key issue

boils down to estimating |Gu ∩ Gσ| using s(Gu) and σ.



Algorithm 1: CONSTRUCT-MHR(Data Set P , Hash Func-

tions {h1, . . . , hℓ})

Use any existing bulk-loading algorithm A for R-tree;1

Let u be an R-tree node produced by A over P ;2

if u is a leaf node then3

Compute Gp and s(Gp) for every point p ∈ up;4

Store s(Gp) together with p in u;5

else6

for every child entry ci with child node wi do7

Store MBR(wi), s(Gwi
), and pointer to wi in ci;8

for i = 1, . . . , ℓ do9

Let s(Gu)[i] = min(s(Gw1
)[i], . . . , s(Gwf

[i]));10

Store s(Gu) in parent of u;11

We can easily compute Gσ and s(Gσ) from the query

string once, using the same hash functions that were used for

constructing the MHR-tree in Algorithm 1. When encountering

a node u, let G refer to Gu ∪ Gσ (G cannot be computed

explicitly as Gu is not available). We compute s(G) = s(Gu∪
Gσ) based on s(Gu), s(Gσ) and Equation 3. Next, we estimate

the set resemblance between G and Gσ , ρ(G, Gσ) as follows:

ρ̂(G, Gσ) =
|{i|min{hi(G)} = min{hi(Gσ)}}|

ℓ
. (4)

Equation 4 is a direct application of Equation 2. Note that:

ρ(G, Gσ) =
|G ∩ Gσ|

|G ∪ Gσ|
=

|(Gu ∪ Gσ) ∩ Gσ|

|(Gu ∪ Gσ) ∪ Gσ|
=

|Gσ|

|Gu ∪ Gσ|
.

(5)

Based on Equations 4 and 5 we can estimate |Gu ∪ Gσ| as:

̂|Gu ∪ Gσ| =
|Gσ|

ρ̂(G, Gσ)
. (6)

Finally, we can estimate ρ(Gu, Gσ) by:

ρ̂(Gu, Gσ) =
|{i|min{hi(Gu)} = min{hi(Gσ)}}|

ℓ
. (7)

Note that ρ(Gu, Gσ) = |Gu ∩ Gσ|/|Gu ∪ Gσ|. Hence, based

on Equations 6 and 7 we can now estimate |Gu ∩ Gσ| as:

̂|Gu ∩ Gσ| = ρ̂(Gu, Gσ) ∗ ̂|Gu ∪ Gσ|. (8)

Given the estimation ̂|Gu ∩ Gσ| for |Gu∩Gσ |, one can then

apply Lemma 2 to prune nodes that cannot possibly contain

points from As, since they cannot produce any points from A
(recall that A ⊆ As). Specifically, an R-tree node u could be

pruned if ̂|Gu ∩ Gσ| < |σ| − 1− (τ − 1) ∗ q. Since ̂|Gu ∩ Gσ|
is only an estimation of |Gu ∩ Gσ|, the pruning based on

̂|Gu ∩ Gσ| may lead to false negatives (if ̂|Gu ∩ Gσ| < |Gu ∩
Gσ|). However, empirical evaluation in Section VII suggests

that when a reasonable number of hash functions have been

used in the min-wise signature (our experiment indicates that

ℓ = 50 is good enough for large databases with 10 million

points), the above estimation is very accurate.
The SAS range query algorithm is presented in Algorithm

2. When the object is a data point (line 6), we can obtain

Algorithm 2: RANGE-MHR(MHR-tree R, Range r,

String σ, int τ )

Let B be a FIFO queue initialized to ∅, let A = ∅;1

Let u be the root node of R; insert u into B;2

while B 6= ∅ do3

Let u be the head element of B; pop out u;4

if u is a leaf node then5

for every point p ∈ up do6

if p is contained in r then7

if8

|Gp∩Gσ | ≥ max(|σp|, |σ|)−1−(τ−1)∗q
then

if ε(σp, σ) < τ then9

Insert p in A;10

else11

for every child entry ci of u do12

if r and MBR(wi) intersect then13

Calculate s(G = Gwi
∪ Gσ) based on14

s(Gwi
), s(Gσ) and Equation 3;

Calculate ̂|Gwi
∩ Gσ| using Equation 8;15

if ̂|Gwi
∩ Gσ| ≥ |σ| − 1− (τ − 1) ∗ q then16

Read node wi and insert wi into B;17

Return A.18

|Gp ∩ Gσ| exactly. Gp is not stored explicitly in the tree, but

can be computed on the fly by a linear scan of σp. We also

know the lengths of both σp and σ at this point. Hence, in this

case, Lemma 1 is directly applied in line 8 for better pruning

power. When either σp or σ is long, calculating |Gp ∩ Gσ|
exactly might not be desirable. In this case, we can still use

s(Gp) and s(Gσ) to estimate ̂|Gp ∩ Gσ| using Equation 8.

When the object is an R-tree node, we apply Equation 8 and

Lemma 2 to prune (lines 14-17), in addition to the pruning by

the query range r and the MBR of the node (line 13).

One can also revise the kNN algorithm for the normal R-tree

to derive the kNN-MHR algorithm. The basic idea is to use a

priority queue that orders objects in the queue with respect to

the query point using the MinDist metric. However, only nodes

or data points that can pass the string pruning test (similar to

lines 14-17 and lines 8-9 respectively in Algorithm 2) will be

inserted into the queue. Whenever a point is removed from the

head of the queue, it is inserted in A. The search terminates

when A has k points or the priority queue becomes empty.

V. SELECTIVITY ESTIMATION FOR SAS RANGE QUERIES

Another interesting topic for approximate string queries in

spatial databases is selectivity estimation. Several selectivity

estimators for approximate string matching have been pro-

posed, none though in combination with spatial predicates.

Various techniques have been proposed specifically for edit

distance [26], [29], [32]. A state of the art technique based



on q-grams and min-wise signatures is VSol [32]. It builds

inverted lists with q-grams as keys and string ids as values;

one list per distinct q-gram in input strings. Each list is

summarized using the min-wise signature of the string ids

in the list. The collection on min-wise signatures and their

corresponding q-grams (one signature per distinct q-gram) is

the VSol selectivity estimator for a data set P .

VSol uses the L-M similarity for estimating selectivity.

L = |σ| − 1 − (τ − 1) ∗ q is the number of matching q-

grams two strings need to have for their edit distance to be

possibly smaller than τ (based on Lemma 1). M is the number

of q-grams in VSol that match some q-grams in the query

string σ. The L-M similarity quantifies the number of string

ids contained in the corresponding M inverted lists that share

at least L q-grams with the query. Clearly, if a given data string

shares at least L q-grams with σ, then the corresponding string

id should appear in at least L of these M lists. Identifying the

number of such string ids (in other words the selectivity of

the query), amounts to estimating the number of string ids

appearing in exactly L lists, for all M choose L combinations

of lists. Denote the set of string ids that appear in all lists

in the i-th combination with Li, 1 ≤ i ≤

(
M
L

)
. The L-M

similarity is defined as:

ρLM = | ∪ Li|. (9)

If we can estimate ρLM , we can estimate the selectivity as
ρLM

|P | . Computing ρLM exactly is very expensive, as it requires

storing inverted lists for all q-grams in the database explicitly

and also enumerating all L choose M combinations of lists. As

it turns out, estimating ρLM using the inverted list min-wise

signatures of VSol is straightforward. Further details appear in

[32] and are beyond the scope of this paper.

A key observation in [32] is that the number of neighbor-

hoods (denote it with η) in the data set P greatly affects VSol’s

performance. A neighborhood is defined as a cluster of strings

in P that have a small edit distance to the center of the cluster.

For a fixed number of strings, say N , the smaller the value

of η is, the more accurate the estimation provided by VSol

becomes. We refer to this observation as the minimum number

of neighborhoods principle.

However, VSol does not address our problem where selec-

tivity estimation has to be done based on both the spatial and

string predicates of the query. The general principle behind

accurate spatial selectivity estimation is to partition the spatial

data into a collection of buckets so that data within each bucket

is as close as possible to a uniform distribution (in terms of

their geometric coordinates). We denote this as the spatial

uniformity principle. Every bucket is defined by the MBR

of all points enclosed in it. Each point belongs to only one

bucket and buckets may overlap in the areas they cover. Given

a range query r, for each bucket b that intersects with r we

compute the area of intersection. Then, assuming uniformity,

the estimated number of points from b that also fall into r is

directly proportional to the total number of points in b, the total

area of b and the area of intersection between b and r. This

principle has been successfully applied by existing works on

spatial databases [3], [19], which mostly differ on how buckets

are formed.

A straightforward solution for our problem is to simply

build a set of buckets {b1, . . . , bk} for some budget k based

on an existing spatial range query selectivity estimator. Let the

number of points in the i-th bucket be ni and its area be Θ(bi).
For each bucket bi, we build a VSol estimator based on the

min-wise signatures of the q-gram inverted lists of the strings

contained in the bucket. Finally, the selectivity estimation for a

SAS range query Q = {r, (σ, τ)} is done as follows. For every

bucket bi that intersects with r, we calculate the intersection

area Θ(bi, r) and the L-M similarity with σ, ρi
LM , using VSol.

Let Abi
denote the set of points from bi that satisfy Q, then

|Abi
| is estimated as:

|̂Abi
| = ni

Θ(bi, r)

Θ(bi)

ρi
LM

ni
=

Θ(bi, r)

Θ(bi)
ρi

LM . (10)

The above basic solution assumes independence between the

spatial locations of points and the strings associated with those

points. Naturally, a better approach is to minimize the reliance

on independence as much as possible to improve accuracy.

Our challenge thus becomes how to integrate the minimum

number of neighborhoods principle from VSol into the spatial

uniformity principle effectively when building buckets.

A. The Partitioning Metric

Formally, given a data set P , we define η as the number

of neighborhoods in P . The strings associated with the points

in one neighborhood must have an edit distance that is less

than τ ′ from the neighborhood cluster center. We can use any

existing clustering algorithm that does not imply knowledge

of the number of clusters (e.g., correlation clustering [15]) to

find all neighborhoods in P (notice that edit distance without

character transpositions is a metric, hence any clustering

algorithm can be used). Given a rectangular bucket b in d-

dimensions, let nb be the number of points in b, ηb the number

of neighborhoods, and {X1, . . . , Xd} the side lengths of b in

each dimension. The neighborhood and uniformity quality of

b is defined as:

∆(b) = ηbnb

∑

1,...,d

Xi (11)

Intuitively, ∆(b) measures the total “uncertainty” of all points

p in bucket b along each dimension and each neighborhood

of b, if we use b, nb and ηb to succinctly represent points

assuming a uniform probability of a point belonging to any

neighborhood in every dimension. For a bucket b, a larger

value of ∆(b) leads to larger errors for estimating string

selectivity over b using Equation 10. Intuitively, the larger the

perimeter of a bucket, the more error the spatial estimation

for the point’s location introduces (the fact that it uses the

intersection of the area of b and r); the larger the number of

neighborhoods the larger the error of VSol becomes.

Thus, our problem is to build k buckets {b1, . . . , bk} for the

input data set P and minimize the sum of their neighborhood

and uniformity qualities, i.e., min
∑k

i=1 ∆(bi), where k is a



budget specified by the user. For uniform (in terms of both the

coordinates and strings) data, nb and ηb are constant. Hence,

the problem becomes grouping the points in k buckets such

that the sum of perimeters of the buckets is minimized (which

is exactly the same heuristic as the one used by the R∗-tree

partitioning algorithm). For non-uniform data this problem is

non-trivial.

Once such k buckets are found, we build and maintain their

VSol estimators and use the method illustrated in Equation 10

to estimate the selectivity. Unfortunately, we can show that for

d > 1, this problem is NP-hard. Specifically (the proof will

appear in the full version of the paper due to space constraints):

Theorem 1 For a data set P ∈ Rd and d > 1, k > 1, let

bi,p be the set of points contained in bi. Then, the problem

of finding k buckets {b1, . . . , bk}, s.t. ∀i, j ∈ [1, k], i 6= j,

bi,p∩bj,p = ∅, bi = MBR(bi,p), bi, bj are allowed to overlap,

and
⋃k

i=1 bi,p = P , min
∑k

i=1 ∆(bi) is NP-hard.

Given this negative result, in what follows, we present

effective heuristics that work well in practice as alternatives.

B. The Greedy Algorithm

The first heuristic is based on a simple, top-down, greedy

principle. We term this algorithm Top-Down Greedy. The

algorithm proceeds in multiple iterations. In each iteration, one

bucket is produced. At every iteration, we start with a seed,

randomly selected from the unassigned points (the points that

have not been covered by existing buckets). Let Π(P ) and

Θ(P ) be the perimeter and area of the MBR that encloses a

set of points P , and P be the unassigned points at any instance.

At the beginning of the i-th iteration P = P −
⋃i−1

j=1 bj,p.

We also find the number of neighborhoods η in P . More

importantly, we store the memberships of points in these

neighborhoods. For the i-th iteration, we initialize bi,p with a

seed randomly selected from P , and set ni = 1 and ηi = 1.

Then, we try to add points to bi,p from P in a greedy

fashion. Whenever we remove a point p ∈ P and add it

to bi,p, we update ni, ηi, and η accordingly. We do not

recompute the neighborhoods in P after a point is moved.

Rather, we simply remove the corresponding point from the

already computed neighborhood. Since we have stored the

neighborhoods, updating η after removing a point is easy,

i.e., we simply decrease η by one when the last point for

some neighborhood has been removed. We re-compute the

neighborhoods of bi,p after inserting a new point, or we can

simply add new points to existing neighborhoods and rebuild

neighborhoods periodically.

At any step, the total amount of “uncertainty” caused by

the current configuration of bi and P is estimated as:

U(bi) = ηi · ni ·Π(bi,p) +
η

k − i
· |P | ·

(
Θ(P )

k − i

)1/d

· d (12)

In the above equation, the first term is simply ∆(bi).
The second term estimates the “uncertainty” for the remain-

ing buckets by assuming that unassigned points are evenly

and uniformly distributed into the remaining k − i buckets.

More specifically, each remaining bucket has an extent of(
Θ(P )
k−i

)1/d

d, i.e., a square with an area of
Θ(P )
k−i . It has

|P |/(k − i) points and η Θ(P )/(k−i)

Θ(P )
neighborhoods, where

Θ(P )/(k − i) is the average area of each bucket (i.e., the

number of neighborhoods an unassigned bucket covers is

proportional to its area). Based on this information, we can

estimate ∆(b) for any unassigned bucket over P and summing

over all of them yields the second term in Equation 12.
When deciding which point from P to add into bi, we iterate

through every point pj ∈ P . For each pj , let bj
i be a bucket

containing points bi,p∪{pj} and P
′
= P −{pj}. We compute

U(bj
i ) with P

′
as the unassigned points according to Equation

12. We select the point pj with the minimum U(bj
i ) among all

points satisfying U(bj
i ) < U(bi) and move pj from P to bi. If

no such point exists, i.e., for all pj , U(bj
i ) ≥ U(bi), we let the

current bi be the i-th bucket and proceed with bucket i+1 by

repeating the same process. The intuition is that further quality

improvement is not likely to occur by adding more points to

the i-th bucket. After the (k − 1)-th bucket is constructed,

the unassigned points form the k-th bucket. If fewer than k
buckets are created, we find all buckets with more than one

neighborhood and repeat the process. If for a given bucket no

more than one point can be added (an outlier), we select a

different seed.
The greedy algorithm has k − 1 rounds. In each round, we

have to repeatedly check all points from P and select the best

point to add to the current bucket. P has O(N) size, and in

the worst case, we may check every point O(N) times. Hence,

the complexity of the greedy algorithms is O(kN2).
Another greedy strategy, that we mention here briefly, is to

start with N buckets, one point per bucket and start merging

buckets in a bottom-up fashion. We term this algorithm

Bottom-Up Greedy. The objective function is to minimize

U(bi) =
∑N−i

j=1 ∆(bj). Notice that initially, U(b0) is as

small as possible (one point per bucket, one neighborhood

per bucket, and zero perimeter), and U(bi) is a monotone

increasing function for increasing i. During the i-th iteration

we merge the two buckets that lead to the smallest U(bi+1),
until we reach a total of k buckets. We have a total of N − k
iterations and at each iteration we evaluate at most N2 merges.

Hence, the run-time complexity of the algorithm is O(N3).

C. The Adaptive R-tree Algorithm

Directly applying the greedy algorithm on a large spatial

database can be expensive. Note that the R-tree is a data

partitioning index and its construction metrics are to minimize

the overlap among its indexing nodes as well as the total

perimeter of its MBRs. Hence, the MBRs of the R-tree

serve as an excellent starting point for building the buckets

for our selectivity estimator. This section presents a simple

adaptive algorithm that builds the buckets based on the R-tree

nodes, instead of constructing them from scratch. We term this

algorithm the Adaptive R-Tree Algorithm.
Given an R-tree R and a budget k, descending from the root

node of the R-tree, we find the first level in the R-tree that



has more than k nodes, say it has κ > k nodes {u1, . . . , uκ}.

Then, our task is to group these κ nodes into k buckets, with

the goal of minimizing the sum of their neighborhood and

uniformity qualities.

We follow an idea similar to the greedy algorithm and

produce one bucket in each round. In the pre-processing step

we find the number of neighborhoods for each R-tree node,

denoted with {ηu1
, . . . , ηuκ

}, and the number of points that

are enclosed by each node, denoted with {nu1
, . . . , nuκ

}.

Let ni and ηi be the number of points and the number of

neighborhoods in bucket bi respectively. In the i-th round, we

select the node with the left-most MBR (by the left vertex

of the MBR) from the remaining nodes as the initial seed

for bucket bi. Next, we keep adding nodes, one at a time,

until the overall value for the neighborhood and uniformity

quality for bi and the remaining nodes cannot be reduced.

When adding a new node uj to bi, we update the number

of neighborhoods for bi by clustering points covered by the

updated bi again. This could be done in an incremental fashion

if we know the existing clusters for both bi and uj [16].

For remaining nodes, we assume that they are grouped into

k − i buckets in a uniform and independent fashion. Let

remaining nodes be {ux1
, . . . , uxℓ

} for some ℓ ∈ [1, κ − i],
and each xi ∈ [1, κ]. Then, the number of points that are

covered by these nodes is n =
∑ℓ

i=1 nuxi
. We let η be the

average number of neighborhoods for the remaining buckets,

i.e., η =
∑ℓ

i=1 ηuxi
/(k − i). Similar to the greedy algorithm,

we define the uncertainty for the current bucket as follows:

U ′(bi) = ηi ·ni ·Π(bi,p)+η ·n·

(
Θ(
⋃ℓ

i=1 uxi,p)

k − i

)1/d

·d (13)

In Equation 13, Θ(
⋃ℓ

i=1 uxi,p) is simply the area for the

MBR of the remaining points covered by the remaining nodes

{ux1
, . . . , uxℓ

}. Note that we can find this MBR easily by

finding the combined MBR of the remaining nodes.

Given Equation 13, the rest of the adaptive R-tree algorithm

follows the same grouping strategy as the greedy algorithm.

Briefly, we calculate the values of U ′(bi) by adding each

remaining node to the current bi. If no node addition reduces

the value of U ′(bi), the i-th round finishes and the current

bi becomes the i-th bucket. Otherwise, we add the node that

gives the smallest U ′(bi) value to the bucket bi, and repeat.

When there are k − 1 buckets constructed, we group all

remaining nodes into the last bucket and stop the search.

Finally, once all k buckets have been identified, we build

the VSol estimator for each bucket. For the i-th bucket, we

keep the estimator, the total number of points and the bucket

MBR in our selectivity estimator. Given a SAS range query,

we simply find the set of buckets that intersects with the query

range r and estimate the selectivity using Equation 10.

VI. OTHER ISSUES

Multiple strings. In the general case, points in the data set

P and the query may contain multiple strings. Extending our

techniques to handle this case is straightforward. For a data

point with multiple strings, we simply build one min-wise

signature for each string and take the union of these signatures

when computing the signature for the leaf node containing this

point. For a query with multiple strings and corresponding

thresholds, we simply apply the pruning discussed in Algo-

rithm 2 for each query string on every index node. As soon as

there is one string that does not satisfy the pruning test, the

corresponding node can be pruned.

Another interesting problem is to define the string query

component for a SAS query using more general conjunc-

tion/disjunction semantics. A simple solution is to check each

query string against the pruning condition as specified in

Algorithm 2 and combine the results of these individual tests

depending on the logical expression specified by the query.

Other spatial query types. Our query processing technique

is flexible enough to be adapted to work with other spatial

query types, for example, reverse nearest neighbor queries

and skyline queries. On the other hand, our query selec-

tivity techniques are designed specifically for range queries.

Generalizing our partitioning technique to other spatial query

types with approximate string matches may require leveraging

different insights, specific to those query types.

Updates. Coupling the R-tree nodes with the min-wise sig-

natures in the MHR-tree complicates dynamic updates. To

support dynamic updates one needs to do the following. For

the insertion of a new object, we follow the R-tree insertion

algorithm, then, compute the signature for the newly inserted

point and union its signature with the signature for the leaf

node that contains it, by taking the smaller value for each

position in the two signatures. For those positions that the

signature of the leaf node changes, the changes propagate to

the parent nodes in similar fashion. The propagation stops

when the values of the signature on the affected positions from

the children node are no longer smaller than the corresponding

elements for the signature of the parent. On the other hand,

deletion is a bit more involved. If some positions in the

signature of the deleted point have the same values as the

corresponding positions in the signature of the leaf node that

contains the point, then we need to find the new values

for these positions, by taking the smallest values from the

corresponding positions of the signatures of all points inside

this node. These updates may propagate further up in the tree

and a similar procedure is needed as that in the insertion case.

It is important to note here that the addition of the min-wise

signatures does not affect the update performance of the R-

tree since signature updates never result in structural updates.

Hence, the update properties and performance of the MHR-

tree is exactly the same as that of the R-tree.

Lastly, maintaining good selectivity estimators under dy-

namic updates is a challenging problem in general. Most

existing work (see Section VIII) concentrates on static data

sets. For our estimator, we can simply update the number of

points that fall into a bucket as well as adjust the shape of

the bucket by the changes of the MBRs of the R-tree nodes

it contains. However, the underlying neighborhoods in one



bucket may shift over time. Hence, the initial bucketization

may no longer reflect the actual data distribution. For this

work, we simply propose to rebuild the buckets periodically,

e.g., after a certain number of updates, and we will investigate

this issue further in future work.

VII. EXPERIMENTAL EVALUATION

We implemented the R-tree solution, the string index solu-

tion and the MHR-tree, using the widely adopted spatial index

library [2]. We do not report any results for the string index

since, first, it requires linear space with respect to the number

of data q-grams and hence space-wise it is not competitive,

and, its query performance was not up to par across the board.

The adaptive R-tree algorithm for the selectivity estimator

seamlessly works for both the R-tree and the MHR-tree. The

default page size is 4KB and the fill factor of all indexes is

0.7. All experiments were executed on a Linux machine with

an Intel Xeon CPU at 2GHz and 2GB of memory.

Data sets. The real data sets were obtained from the open

street map project [1]. Each data set contains the road network

and streets for a state in the USA. Each point has its longitude

and latitude coordinates and several string attributes. We

combine the state, county and town names for a point as its

associated string. For our experiments, we have used the Texas

(TX) and California (CA) data sets, since they are the largest

few in size among different states. The TX data set has 14
million points and the CA data set has 12 million points. The

real data sets are in two dimension. To test the performance of

our algorithms on different dimensions we use two synthetic

data sets. In the UN data set, points are distributed uniformly

in the space and in the RC data set, points are generated with

random clusters in the space. For both the UN and the RC

data sets, we assign strings from our real data sets randomly

to the spatial points generated. For all experiments the default

size N of the data set P is 2 million. For the TX and CA

data sets, we randomly sample 2 million points to create the

default data sets. For all data sets the average length of the

strings is approximately 14.

Setup. We concentrate on the SAS range queries. A range

query r is generated by randomly selecting a center point tr
and a query area that is specified as a percentage of total space,

denoted as θ = area of r/Θ(P ). To make sure that the query

will return non-empty results, for a range query, we select the

query string as the associated string of the nearest neighbor of

tr from P . For both the MHR-tree and the VSols used in our

estimator our experiments indicate that two-grams work the

best. Hence, the default q-gram length is 2. The default value

for θ is 3%. The default size of the signature is ℓ = 50 hash

values (200 bytes), and the default edit distance threshold is

τ = 2. For all query-related experiments we report averages

over 100 randomly generated queries.

A. The SAS Range Queries

This section studies the effectiveness of the MHR-tree for

the SAS range queries. We first study the impact of the

signature size on the performance of the MHR-tree. Figure

3 summarizes the results using the TX data set. The results

from the CA data set are similar. The first set of experiments

investigates the construction cost of the two indexes. Since

the MHR-tree has to store signatures in its nodes, it has a

smaller fan-out and a larger number of nodes compared to

the R-tree. This indicates that the MHR-tree will need more

space to store the nodes, and a higher construction cost to

compute the signatures and write more nodes to the disk.

This is confirmed by our experiments. Figure 3(a) indicates

that the size of the MHR-tree increases almost linearly with

the increase of the signature size. Similar trend holds for its

construction cost as shown by Figure 3(b). Both of its size and

construction cost are approximately ℓ
10 times more expensive

than the R-tree. A larger ℓ value leads to a higher overhead for

the construction and storage of the MHR-tree, but it improves

its query accuracy. Recall that the min-wise signature may

underestimate the size of the intersection used for pruning in

Lemma 2. This could result in pruning a subtree that contains

some query results. Thus, an important measurement reflecting

the accuracy of MHR-tree query results is the recall, the

percentage of actual correct answers returned. Let Ax be the

result returned by the MHR-tree for a SAS range query, then

the recall for this query is simply
|Ax|
|A| . Note that Ax will

always be a subset of the correct result A, as the MHR-tree

will never produce any false positives (all points that pass

the threshold test will be finally pruned by their exact edit

distances to the query string). In other words, its precision is

always 1. Figure 3(c) shows the recall of the MHR-tree using

various signature sizes. Not surprisingly, larger signatures lead

to better accuracy. When ℓ = 50 recall reaches about 80%.

Finally, the query cost of the MHR-tree, for various signature

sizes, is always significantly lower than the cost of the R-tree,

as shown in Figure 3(d). Its query cost does increase with a

larger signature, however, the pace of this increment is rather

slow. This means that we can actually use larger signatures

to improve the query accuracy without increasing the query

cost by much. However, this does introduce more storage

overhead and construction cost. Hence, for our experiments,

we use the default signature size of ℓ = 50. Lastly, we would

like to highlight that storage is cheap in modern computing

environments and the construction cost is a one-time expense.
Using the default signature size of ℓ = 50, we further

investigate the improvement in query performance of MHR-

tree compared to the R-tree. The results are summarized by

Figure 4. Figure 4(a) shows the average number of IOs for

various query area sizes, θ, from 1% to 20%, using the TX

data set. Clearly, R-tree becomes more and more expensive

compared to the MHR-tree when the query area increases. For

example, when θ = 10%, R-tree is 20 times more expensive in

terms of IO compared to MHR-tree, and this gap enlarges to

more than one order of magnitude for larger area sizes. This

is due to the fact that the cost of range queries for the R-tree

is proportional to the query area. On the other hand, the cost

of the MHR-tree increases rather slowly due to the additional

pruning power provided by the string predicate.
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Fig. 3. Impact of the signature size: TX data set, d = 2, N = 2 × 106, τ = 2, θ = 3%.
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(a) vary θ, TX data set, d = 2, N =

2 × 106, τ = 2.
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(b) vary τ , TX data set, d = 2, N =

2 × 106, θ = 3%.
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(c) vary N , TX data set, d = 2, θ =

3%, τ = 2.
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Fig. 4. Query performance, ℓ = 50.

Next, we study the effect of the edit distance threshold, for

query area θ = 3%. For τ = 1, 2, 3, the MHR-tree always

significantly outperforms the R-tree in Figure 4(b). Of course,

when τ keeps increasing, the R-tree cost remains constant,

while the MHR-tree cost increases. Hence, for large τ values,

R-tree will be a better choice. Nevertheless, most approximate

string queries return interesting results only for small τ values

(relative to the average string length).
The next experiment, Figure 4(c), studies the scalability of

the MHR-tree by varying the data size N . Using the TX data

set, N ranges from 1 to 10 million. The MHR-tree scales

much better w.r.t. N . The IO difference between the MHR-tree

and R-tree enlarges quickly for larger data sets. For example,

Figure 4(c) shows that when N reaches 10 million, the IO cost

for a query with τ = 2, θ = 3% for the MHR-tree is more than

10 times smaller than the cost of the R-tree. Similar results

were observed for the CA data set when we vary θ, τ and N .
We study the scalability of the two indexes for higher

dimensions. Using the default UN and RC data sets, for

d = 3, 4, 5, 6. Figure 4(d) shows that the MHR-tree always

outperforms the R-tree in all dimensions and also enjoys better

scalability w.r.t. the dimensionality of the data set, i.e., the

MHR-tree outperforms the R-tree by larger margins in higher

dimensions. For all these experiments, with ℓ = 50, the recall

of the MHR-tree stays very close to 80%.
Finally, the relationship between the size of the MHR-tree

and its construction cost with respect to that of the R-tree is

roughly a constant, as we vary N and d. For ℓ = 50, they

are roughly 5 times the respective cost of the R-tree. Given

that storage is inexpensive the substantial query performance

improvement of MHR-tree is significant.

B. Selectivity Estimation for the SAS Range Queries

This section presents the experimental evaluation of our

selectivity estimator for the SAS range queries. We have

implemented both the greedy algorithm and the adaptive R-tree
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Fig. 5. Relative errors for the adaptive estimator for SAS range queries,
d = 2, N = 2 × 106, ℓ = 50, τ = 2, vary k.
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Fig. 6. Size and construction cost of the adaptive estimator, CA and TX
data sets, d = 2, N = 2 × 106, ℓ = 50, τ = 2, vary k.

algorithm. The adaptive algorithm is much cheaper and works

almost as well in practice. Thus, we only report the results

for the adaptive algorithm. We refer to the estimator built by

the R-tree based adaptive algorithm as the adaptive estimator.

An important measure that is commonly used when measuring

the accuracy of a selectivity estimator is its relative error λ.

Specifically, for a SAS range query Q, let its correct answer

be A, and the number of results estimated by a selectivity

estimator be ξ, then λ = |ξ−|A||
|A| . Lastly, k denotes the number

of buckets that the selectivity estimator is allowed to use.

Our first experiment is to study the relationship between k
and λ. Intuitively, more buckets should lead to better accuracy.

This is confirmed by the results in Figure 5 when we vary

the number of buckets from 100 to 1, 500, on both the CA

and TX data sets. Note that our adaptive algorithm works
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Fig. 7. Relative errors of the adaptive estimator, k = 1, 000, vary θ, τ, N and d.

for any R-tree based index. Hence, in this experiment, we

have tested it on both the R-tree and the MHR-tree. Clearly,

when more buckets were used, the accuracy of the adaptive

estimator improves. On the CA data set, λ improves from

above 0.5 to below 0.1 when k changes from 100 to 1, 500
(Figure 5(a)). On the TX data set, λ improves from above

1.2 to 0.6 for the same setting (Figure 5(b)). The results

also reflect that our algorithm is almost independent of the

underlying R-tree variant, i.e., the results from the R-tree

and the MHR-tree are similar. More importantly, these results

reveal that the adaptive estimator achieves very good accuracy

on both data sets when a small number of buckets is used, say

k = 1, 000 on 2 million points. Specifically, when k = 1, 000,

on the R-tree index, the adaptive estimator has approximately

only 0.1 relative error on the CA data set (Figure 5(a)) and

approximately 0.6 relative error on the TX data set. The higher

λ value from the TX data set is mainly due to the larger errors

produced by VSol on strings in the TX data set. Note that

accurate selectivity estimation for approximate string search

is a challenging problem in itself. For example, when being

used as a stand-alone estimator, VSol on average has a relative

error between 0.3 to 0.9, depending on the data set used, as has

been shown in [32]. Thus, relatively speaking, our algorithm

by combining the insights from both the spatial and string

distributions, works very well in practice.

Since the adaptive estimator has a slightly better accuracy on

the R-tree, in the sequel, we concentrate on the results from the

R-tree only. But we emphasize that the results from the MHR-

tree are very similar. We would also like to highlight that on

each set of experiments a different set of 100 random queries

is generated. Combined with the approximate nature of the

min-wise signatures the cross-points of the same parameters

in different figures do not match exactly.

The higher accuracy delivered by using a larger number

of buckets comes at the expense of space overhead and

higher construction costs. Figure 6 investigates these issues

in detail. Not surprisingly, the size of the selectivity estimator

increases with more buckets, as shown in Figure 6(a). Since

each bucket b has to maintain the min-wise signatures of all

distinct q-grams of the strings contained in it and each min-

wise signature has a constant size, the size of each bucket b
entirely depends on the distinct number of q-grams it contains

(denoted as gb). It is important to understand that the length

of the inverted list for every q-gram does not affect the size

of each bucket, as the list is not explicitly stored. When more

buckets are used, the sum of gbs over all buckets increases.

This value will increase drastically when a large number of

buckets is used, indicated by the point k = 1, 500 in Figure

6(a). However, even in that case, due to the constant size

for the min-wise signatures, the overall size of the adaptive

estimator is still rather small, below 25 MB for the CA and

TX data sets for 2 million points. When k = 1, 000, the size

of the adaptive estimator is about 6 MB for both data sets. On

the other hand, the construction cost of the adaptive estimator

is almost linear to the number of buckets k as shown in Figure

6(b). Note that the construction cost is a one time expense.

The small number of buckets and small size of the adaptive

estimator indicates that it can be easily stored in memory for

selectivity estimations. Thus, using it for selectivity estimation

incurs much less cost than executing the query itself on disk-

based data sets. We omitted these comparisons for brevity.

We further investigate the accuracy of the adaptive estimator

when varying other parameters, such as θ, τ, N and d, using

CA, TX, UN and RC data sets. Given the results from Figures

5 and 6, we set the number of buckets to 1, 000. The results are

reported in Figure 7. These results indicate that the adaptive

estimator provides very good accuracy in a large number

of different settings. In general, the adaptive estimator gives

better accuracy in the CA data set compared to the TX data

set. The estimation, with a fixed number of buckets, is more

accurate for smaller query ranges (Figure 7(a)), smaller edit

distance thresholds (Figure 7(b)), smaller data sets (Figure

7(c)) and lower dimensions (Figure 7(d)).

C. Other Results

We also tested the performance of MHR-tree on the SAS

kNN queries, compared to the R-tree. The results are similar

to the performance comparison for range queries in Section

VII-A, i.e., the MHR-tree significantly outperforms the R-tree.

Another set of experiments was to test the impact of the q-

gram length. In general, small q-grams tend to work better

in practice. From our experiments we found that q = 2 or

3 achieves similar performance, and q = 2 is slightly better.

Hence, our default value for the q-gram length is 2.

VIII. RELATED WORK

The IR2-tree was proposed in [17] where the focus is to

perform exact keyword search with kNN queries in spatial

databases. The IR2-tree cannot support approximate string

searches, neither range queries and their selectivity estimation

was addressed therein. Another relevant study appears in [14]



where ranking queries that combine both the spatial and text

relevance to the query object was investigated.

Approximate string search has been extensively studied in

the literature [5], [8], [10], [12], [18], [28], [31], [34]–[37].

These works generally assume a similarity function to quantify

the closeness between two strings. There are a variety of these

functions such as edit distance and Jaccard. Many approaches

leverage the concept of q-grams. Our main pruning lemma is

based upon a direct extension of q-gram based pruning for

edit distance that has been used extensively in the field [18],

[35], [36]. Improvements to the q-grams based pruning has

also been proposed, such as v-grams [37], where instead of

having a fixed length for all grams variable length grams were

introduced, or the two-level q-gram inverted index [27].

Another well-explored topic is the selectivity estimation

of approximate string queries [11], [23], [25], [29], [30],

[32]. Most of these works use the edit distance metric and

q-grams to estimate selectivity. In particular, our selectivity

estimation builds on the VSol estimator proposed in [32].

Other work uses clustering [26]. Finally, special treatment was

provided for selectivity of approximate string queries with

small edit distance [29] and substring selectivity estimation

was examined in [23], [30].

Our effort in dealing with selectivity estimation for the SAS

range query is also related to the problem of selectivity estima-

tion for spatial range queries [3], [19]. Typically, histograms

and partitioning based methods are used. Our approach is

based on similar principles but we also take into account the

string information and integrate the spatial partitioning with

the knowledge of string distribution.

IX. CONCLUSION

This paper presents a comprehensive study for spatial ap-

proximate string queries. Using edit distance as the similarity

measurement, we design the MHR-tree that embeds the min-

wise signatures for the q-grams of the subtrees into the

index nodes of the R-tree. The MHR-tree supports both range

and NN queries effectively. We also address the problem of

query selectivity estimation for SAS range queries. Interesting

future work includes examining spatial approximate sub-string

queries, and designing methods that are more update-friendly.
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