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Abstract Optimal location (OL) queries are a type of spa-
tial queries that are particularly useful for the strategic plan-
ning of resources. Given a set of existing facilities and a set
of clients, an OL query asks for a location to build a new
facility that optimizes a certain cost metric (defined based
on the distances between the clients and the facilities). Sev-
eral techniques have been proposed to address OL queries,
assuming that all clients and facilities reside in an Lp space.
In practice, however, movements between spatial locations
are usually confined by the underlying road network, and
hence, the actual distance between two locations can differ
significantly from their Lp distance.

Motivated by the deficiency of the existing techniques,
this paper presents a comprehensive study on OL queries
in road networks. We propose a unified framework that ad-
dresses three variants of OL queries that find important ap-
plications in practice, and we instantiate the framework with
several novel query processing algorithms. We further ex-
tend our framework to efficiently monitor the OLs when lo-
cations for facilities and/or clients have been updated. Our
dynamic update methods lead to efficient answering of con-
tinuous optimal location queries. We demonstrate the effi-
ciency of our solutions through extensive experiments with
large real data.

1 Introduction

An optimal location (OL) query concerns three spatial point
sets: a set F of facilities, a set C of clients, and a set P of
candidate locations. The objective of this query is to iden-
tify a candidate location p ∈ P , such that a new facility
built at p can optimize a certain cost metric that is defined
based on the distances between the facilities and the clients.

Address(es) of author(s) should be given

OL queries find important applications in the strategic plan-
ning of resources (e.g., hospitals, post offices, banks, retail
facilities) in both public and private sectors [2, 6, 29]. As an
example, we illustrate three OL queries based on different
cost metrics.

Example 1 Julie would like to open a new supermarket in
San Francisco that can attract as many customers as possi-
ble. Given the set F (C) of all existing supermarkets (resi-
dential locations) in the city, Julie may look for a candidate
location p, such that a new supermarket on p would be the
closest supermarket for the largest number of residential lo-
cations. �

Example 2 John owns a set F of pizza shops that deliver to
a set C of places in Gotham city. In case that John wants
to extend his business by adding another pizza shop, a nat-
ural choice for him is a candidate location that minimizes
the average distance from the points in C to their respective
nearest pizza shops. �

Example 3 Gotham city government plans to establish a new
fire station. Given the set F (C) of existing fire stations
(buildings), the government may seek a candidate location
that minimizes the maximum distance from any building to
its nearest fire station. �

Several techniques [2, 6, 26, 29] have been proposed for
processing OL queries under various cost metrics. All those
techniques, however, assume that F and C are point sets in
an Lp space. This assumption is rather restrictive because,
in practice, movements between spatial locations are usu-
ally confined by the underlying road network, and hence,
the commute distance between two locations can differ sig-
nificantly from their Lp distance. Consequently, the existing
solutions for OL queries cannot provide useful results for
practical applications in road networks.
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Problem Formulation. This paper presents a novel and com-
prehensive study on OL queries in road network databases.
We consider a problem setting as follows. First, any facility
in F or any client in C should locate on an edge in an undi-
rected connected graph G◦ = (V ◦, E◦), where V ◦ (E◦) de-
notes the set of vertices (edges) in G◦. Second, every client
c ∈ C is associated with a positive weightw(c) that captures
the importance of the client. For example, if each client point
c represents a residential location, then w(c) may be speci-
fied as the size of the population residing at c. Third, there
should exist a user-specified setE◦c of edges inE◦, such that
a new facility f can be built on any point on any edge in E◦c ,
as long as f does not overlap with an existing facility in F .
E◦c can be arbitrary, e.g., we can have E◦c = E◦. We define
P as the set of points on the edges in E◦c that are not in F ,
and we refer to any point in P as a candidate location. For
example, Figure 1 illustrates a road network that consists of
5 vertices and 8 edges. The squares (crosses) in the Figure
denote the facilities (clients) in the road network. The high-
lighted edges are the user-specified set E◦c of edges where a
new facility may be built.

We investigate three variants of OL queries as follows:
1) The competitive location query asks for a candidate lo-
cation p ∈ P that maximizes the total weight of the clients
attracted by a new facility built on p. Specifically, we say
that a client c is attracted by a facility f , and that f is an at-
tractor for c, if the network distance d(c, f) between c and
f is at most the distance between c and any facility in F . In
other words, the competitive location query ensures that

p = argmax
p∈P

∑
c∈Cp

w(c), (1)

where Cp = {c | c ∈ C ∧ ∀f ∈ F, d(c, p) ≤ d(c, f)},
i.e.,Cp is the set of clients attracted by p. Example 1 demon-
strates an instance of this query.
2) The MinSum location query asks for a candidate location
p ∈ P on which a new facility can be built to minimize
the total weighted attractor distance (WAD) of the clients.
In particular, the WAD of a client c is defined as â(c) =

w(c) · a(c), where a(c) denotes the distance from c to its
attractor (referred as the attractor distance of c). That is, the
MinSum location query requires that

p = argmin
p∈P

∑
c∈C

w(c) ·min
{
d(c, f) | f ∈ F ∪ {p}

}
= argmin

p∈P

∑
c∈C

â(c). (2)

Example 2 shows a special case of the MinSum location
query where all clients have the same weight.
3) The MinMax location query asks for a candidate location
p ∈ P to construct a new facility that minimizes the maxi-
mum WAD of the clients, i.e.,

p = argmin
p∈P

(
max
c∈C

{
â(c) | F = F ∪ {p}

})
. (3)

Example 3 illustrates a MinMax location query.

One fundamental challenge in answering an OL query is
that there exists an infinite number of candidate locations in
P where the new facility may be built, i.e., P is a continuous
domain on the edges of the network. (Recall that P contains
all points on the edges in the user-specified set E◦c , except
the points where existing facilities are located.) This neces-
sitates query processing techniques that can identify query
results without enumerating all candidate locations. Another
complicating issue is that the answer to an OL may not be
unique, i.e., there may exist multiple candidate locations in
P that satisfy Equation 1, 2, or 3. We propose to identify
all answers for any given optimal location query, and return
them to the user for final selection. This renders the problem
even more challenging, since it requires additional efforts to
ensure the completeness of the query results.

Lastly, in some applications it is common that clients or
existing facilities have moved on the road network after the
last execution of OL queries. Instead of computing the OLs
again from scratch, we expect to monitor the query results in
an incremental fashion, which may dramatically reduce the
query cost (compared to the naive approach of recomputing
the OLs after location updates for facilities and clients).

Contributions. In this paper, we propose a unified solution
that addresses all aforementioned variants of optimal loca-
tion queries in road network databases. Our first contribution
is a solution framework based on the divide-and-conquer
paradigm. In this framework, we process a query by first
(i) dividing the edges in G◦ into smaller intervals, then (ii)
computing the best query answers on each interval, and fi-
nally (iii) combining the answers from individual intervals
to derive the global optimal locations. A distinct feature of
this framework is that most of its algorithmic components
are generic, i.e., they are not specific to any of the three
types of OL queries. This significantly simplifies the design
of query processing algorithms, and enables us to develop
general optimization techniques that work for all three query
types.
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Secondly, we instantiate the proposed framework with a
set of novel algorithms that optimize query efficiency by ex-
ploiting the characteristics of OL queries. We provide the-
oretical analysis on the performance of each algorithm in
terms of time complexity and space consumption.

Thirdly, we present extensions to our framework to en-
able the incremental monitoring of the query results from
OL queries, when the locations of facilitates or clients have
changed.

Last, we demonstrate the efficiency of our algorithms
with extensive experiments on large-scale real datasets. In
particular, our algorithms can answer an OL query efficiently
on a commodity machine, in a road network with 174,955
vertices and 500,000 clients. Furthermore, the query result
can be incrementally updated in just a few seconds after a
location update for either a client or a facility.

2 Related Work

The problem of locating “preferred” facilities with respect
to a given set of client points, referred to as the facility lo-
cation problem, has been extensively studied in past years
(see [8,20] for surveys). In its most common form, the prob-
lem (i) involves a finite set C of clients and a finite set P of
candidate facilities, and (ii) asks for a subset of k (k > 0) fa-
cilities in P that optimizes a predefined metric. The problem
is polynomial-time solvable when k is a constant, but is NP-
hard for general k [8, 20]. Furthermore, existing solutions
do not scale well for large P and C. Hence, existing work
on the problem mainly focuses on developing approximate
solutions.

OL queries can be regarded as variations of the facility
location problem with three modified assumptions: (i) P is
an infinite set, (ii) k = 1, i.e., only one location in P is to
be selected (but all locations that tie with each other need
to be returned), and (iii) a finite set F of facilities has been
constructed in advance. These modified assumptions distin-
guish OL queries from the facility location problem.

Previous work [2, 6, 26, 29] on OL queries considers the
case when the transportation cost between a facility and a
client is decided by their Lp distance. Specifically, Cabello
et al. [2] and Wong et al. [26] investigate competitive lo-
cation queries in the L2 space. Du et al. [6] and Zhang et
al. [29] focus on the L1 space, and propose solutions for
competitive and MinSum location queries, respectively. None
of the solutions developed therein is applicable when the fa-
cilities and clients reside in a road network.

There also exist two other variations of the facility lo-
cation problem, namely, the single facility location prob-
lem [8, 20] and the online facility location problem [9, 17],
that are related to (but different from) OL queries. The sin-
gle facility location problem asks for one location in P that

optimizes a predefined metric with respect to a given set C
of clients. It requires that no facility has been built previ-
ously, whereas OL queries consider the existence of a set F
of facilities.

The online facility location problem assumes a dynamic
setting where (i) the set C of clients is initially empty, and
(ii) new clients may be inserted into C as time evolves. It
asks for a solution that constructs facilities incrementally
(i.e., one at a time), such that the quality of the solution (with
respect to some predefined metric) is competitive against
any solutions that are given all client points in advance. This
problem is similar to OL queries, in the sense that they all
aim to optimize the locations of new facilities based on the
existing facilities and clients. However, the techniques [9,
17] for the online facility location problem cannot address
OL queries, since those techniques assume that the set P of
candidate facility locations is finite; in contrast, OL queries
assume that P contains an infinite number of points, e.g., P
may consist of all points (i) in anLp space (as in [2,6,26,29])
or (ii) on a set of edges in a road network (as in our setting).

In the preliminary version of this paper [27], we inves-
tigated the static version of optimal location queries. Com-
pared with the preliminary version, this paper presents a new
study on handling updates in the locations of facilities and
clients. In particular, we present novel incremental methods
to identify OLs after updates for all three types of optimal
location queries. We also include an extensive experiments
that demonstrate the efficiency of the incremental update
methods over the naive approach of recomputing OLs from
scratch after each update (using the static methods from our
preliminary version [27]).

Ghaemi et al. [10–12] studied static and dynamic ver-
sions of competitive location queries. Their solutions, how-
ever, are not applicable for MinSum and MinMax location
queries. In contrast, we present a uniform framework for all
three variants of optimal location queries. Furthermore, as
will be shown in Section 10, our solution for competitive lo-
cation queries has a much lower memory consumption than
Ghaemi et al.’s while only incurring a slightly higher com-
putation cost.

Lastly, there is a large body of literature on query pro-
cessing techniques for road network databases [3, 4, 15, 16,
19, 21–24, 28]. Most of those techniques are designed for
the nearest neighbor (NN) query [16, 21, 22] or its vari-
ants, e.g., approximate NN queries [23, 24], aggregate NN
queries [28], continuous NN queries [19], path NN queries
[3], etc. None of those techniques can address the prob-
lem we consider, due to the fundamental differences be-
tween NN queries and OL queries. Such differences are also
demonstrated by the fact that, despite the plethora of so-
lutions for Lp-space NN queries, considerable research ef-
fort [2, 6, 26, 29] is still devoted to OL queries in Lp spaces.
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3 Solution Overview

We propose one unified framework for the three variants of
OL queries. In a nutshell, our solution adopts a divide-and-
conquer paradigm as follows. First, we divide the edges in
E◦ into smaller intervals, such that all facilities and clients
fall on only the endpoints (but not the interior) of the in-
tervals. As a second step, we collect the intervals that are
segments of some edges in E◦c , i.e, all points in such an in-
terval are candidate locations in P . Then, we traverse those
intervals in a certain order. For each interval I examined, we
compute the local optimal locations on I , i.e., the points on I
that provide a better solution to the OL query than any other
points on I . The global optimal locations are pinpointed and
returned, once we confirm that none of the unvisited inter-
vals can provide a better solution than the best local optima
found so far.

In the following, we will introduce the basic idea of each
step in our framework; the details of our algorithms will be
presented in Sections 4-8. For convenience, we define n as
the maximum number of elements in V ◦, E◦, C, and F ,
i.e., n = max{|V ◦|, |E◦|, |C|, |F |}. Table 1 summarizes the
notations frequently used in the paper.

Construction of Road Intervals. We divide the edges inE◦

into intervals, by inserting all facilities and clients into the
road network G◦ = (V ◦, E◦). Specifically, for each point
ρ ∈ C ∪ F , we first identify the edge e ∈ E◦ on which ρ
locates. Let vl and vr be the two vertices connected by e. We
then break e into two road segments, one from vl to ρ and
the other from ρ to vr. As such, ρ becomes a vertex in the
network. Once all facilities and clients have been inserted
into G◦, we obtain a new road network G = (V,E) where
V = V ◦ ∪ C ∪ F . For example, Figure 2 illustrates a road
network transformed from the one in Figure 1. Transforming
G◦ to G requires only O(n) space and O(n) time, since
|C| = O(n), |F | = O(n), and it takes only O(1) time to
add a vertex in G◦. In the sequel, we simply refer to G as
our road network.

Traversal of Road Intervals. After G is constructed, we
collect the set Ec of edges in E that are partial segments
of some edges in E◦c . For example, the highlighted edges
in Figure 2 illustrate the set Ec that correspond to the set
E◦c of highlighted edges in Figure 1. As a next step, we tra-
verseEc to look for the optimal locations. A straightforward
approach is to process the edges in Ec in a random order,
which, however, incurs significant overhead, since the opti-
mal locations cannot be identified until all edges in Ec are
inspected. Section 6 addresses this issue with novel tech-
niques that avoid the exhaustive search on Ec. The idea is to
first divide Ec into subsets, and then process the subsets in
descending order of their likelihood of containing the opti-
mal locations.

Table 1 Frequently Used Notations
Symbol Description

G◦=(V ◦,E◦) the road network with vertex (edge) set V ◦ (E◦)
C the set of clients
F the set of existing facilities

E◦c
the user-specified set of edges on which the new
facility can be built

P the set of candidate locations
d(p1, p2) the network distance between points p1 and p2
w(c) the weight of a client c
a(c) the attractor distance of a client c
â(c) the weighted attractor distance of a client c
Cp the set of clients attracted by a point p
n n = max{|V ◦|, |E◦|, |C|, |F |}

G = (V,E)
the road network transformed from G◦

(see Section 3)

Ec
the set of edges in E that are segments of the
edges in E◦c (see Section 3)

A(v) the attraction set of a vertex v in G
(see Section 3)

m(p) the merit of a point p (see Section 4.2)

Identification of Local Optimal Locations. In Section 4,
we will present algorithms for computing the local optimal
locations on any edge e ∈ Ec, based on (i) the attractor dis-
tance of each client, and (ii) the attraction set A(v) of each
endpoint v of e. Specifically, the attraction set A(v) con-
tains entries of the form 〈c, d(c, v)〉, for any client c such
that d(c, v) ≤ a(c). That is,A(v) records the clients that are
closer to v than to their respective attractors (i.e., the respec-
tive nearest facilities). The attraction sets of e’s endpoints
are crucial to our algorithm, since they capture all clients
that might be affected by a new facility built on e (see Sec-
tion 4 for a detailed discussion). We will present our algo-
rithms for computing attraction sets and attractor distances
in Section 5.
Updates of Facilities and Clients. In Sections 7 and 8, we
present algorithms for incrementally monitoring the results
of OL queries when there are updates in the locations of fa-
cilities and/or clients. The basic idea of our algorithms is to
(i) maintain auxiliary information about the solutions to OL
queries, and (ii) utilize the auxiliary information to acceler-
ate the re-computation of query results in case of updates.

4 Local Optimal Locations

This section presents our initial algorithms for computing
local optimal locations on any edge e ∈ Ec, given the at-
traction sets of e’s endpoints, and the attractor distances of
the clients. For ease of exposition, we will elaborate our al-
gorithms under the assumption that none of e’s endpoints is
an existing facility in F , i.e., both endpoints of e are candi-
date locations in P . We will discuss how our algorithms can
be extended (for the general case) in the end of the discus-
sion for each query type.
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Algorithm CompLoc ( e )

1. construct an empty one-dimensional plane R
2. let ` be the length of e, and vl (vr) be the left (right)

endpoint of e
3. for each client c that appears in A(vl) but not A(vr)
4. create in R a line segment [0, a(c)− d(c, vl)]
5. assign a weight w(c) to the segment
6. for each client c that appears in A(vr) but not A(vl)
7. create in R a segment [`− a(c) + d(c, vr), `]

with a weight w(c)
8. for each client c that appears in both A(vl) and A(vr)
9. if ` ≤ 2 · a(c)− d(c, vl)− d(c, vr)
10. create in R a line segment [0, `] with a weight w(c)
11. else
12. create in R two line segments [0, a(c)− d(c, vl)] and

[`− a(c) + d(c, vr), `], each with a weight w(c)
13. compute the intervals I ⊆ [0, `], such that I maximizes the

total weights of the line segments in R that fully cover I
14. return the intervals identified at Line 13

Fig. 3 The CompLoc Algorithm

4.1 Competitive Location Queries

Recall that a competitive location query asks for a new fa-
cility that maximizes the total weight of the clients attracted
by it. Intuitively, to decide the optimal locations for such a
new facility on a given edge e ∈ Ec, it suffices to identify
the set of clients that can be attracted by each point p on e.
As shown in the following lemma, the clients attracted by
any p can be easily computed from the attraction sets of e’s
endpoints.

Lemma 1 A client c is attracted by a point p on an edge
e ∈ Ec, iff there exists an entry 〈c, d(c, v)〉 in the attraction
set of an endpoint v of e, such that d(c, v) + d(v, p) ≤ a(c).

Proof Observe that d(c, p) ≤ d(c, v)+d(v, p). Hence, when
d(c, v) + d(v, p) ≤ a(c), we have d(c, p) ≤ a(c), i.e., c is
attracted by p. Thus, the “if” direction of the lemma holds.

Now consider the “only if” direction. Since p is a point
on e, the shortest path from p to c must go through an end-
point v of e. Observe that d(p, c) ≥ d(v, c). Therefore, if c
is attracted by p, we have a(c) ≥ d(p, c) ≥ d(v, c), which
indicates that 〈c, d(c, v)〉 must be an entry in A(v).

Based on Lemma 1, we propose the CompLoc algorithm
(in Figure 3) for finding local competitive locations on an
edge e ∈ Ec. We illustrate the algorithm with an example.

Example 4 Suppose that we apply CompLoc on an edge e0
with a length ` = 5. Figure 4(a) illustratesA(vl) andA(vr),
where vl (vr) is the left (right) endpoint of e0. Assume that
each client c has a weightw(c) = 1 and an attractor distance
a(c) = 5.

CompLoc starts by creating a one-dimensional plane R.
After that, it identifies those clients that appear in A(vl) but
notA(vr). By Lemma 1, for any c of those clients, if c is at-
tracted to a point p on e0, then d(p, vl) ∈ [0, a(c)−d(c, vl)],
and vice versa. To capture this fact, CompLoc creates in R a
line segment [0, a(c)−d(c, vl)], and assigns a weightw(c) =
1 to the segment. In our example, c1 is the only client that
appears in A(vl) but not A(vr), and a(c1) − d(c1, vl) = 1.
Hence, CompLoc adds in R a segment s1 = [0, 1] with a
weight w(c1) = 1, as illustrated in Figure 4(b).

Next, CompLoc examines the only client c2 that is con-
tained in A(vr) but not A(vl). By Lemma 1, a point p ∈ e0
is an attractor for c, if and only if d(p, vl) ∈ [` − a(c2) +
d(c2, vr), `]. Accordingly, CompLoc inserts in R a segment
s2 = [`− a(c2) + d(c2, vr), `] with a weight w(c2) = 1.

After that, CompLoc identifies the clients c3 and c4 that
appear in both A(vl) and A(vr). For c3, we have ` ≤ 2 ·
a(c3)−d(c3, vl)−d(c3, vr), which (by Lemma 1) indicates
that any point on e0 can attract c3. Hence, CompLoc creates
in R a segment [0, 5] with a weight w(c3) = 1. On the other
hand, since ` > 2 · a(c4) − d(c4, vl) − d(c4, vr), a point
p on e0 can attract c4, if and only if d(p, vl) ∈ [0, a(c4) −
d(c4, vl)] or d(p, vl) ∈ [`− a(c4) + d(c4, vr), `]. Therefore,
CompLoc inserts in R two segments s4 = [0, 2] and s′4 =

[4, 5], each with a weight 1 (see Figure 4(b)).
As a next step, CompLoc scans through the line seg-

ments in R to compute the local competitive locations on
e0. Let p be any point on e0, and o be the point in R whose
coordinate equals the distance from p to vl. Observe that, a
client c ∈ C is attracted by p, if and only if there exists a
segment s in R, such that (i) s is constructed from c and (ii)
s covers o. Therefore, to identify the local competitive loca-
tions on e0, it suffices to derive the intervals I inR, such that
(i) I ⊆ [0, `], and (ii) I maximizes the total weight of the line
segments that fully cover I . Such intervals can be computed
by applying a standard plane sweep algorithm [1] on the line
segments in R. In our example, the local competitive loca-
tions on e0 correspond to two intervals in R, namely, [0, 1]
and [4, 5], each of which is covered by three segments with
a total weight 3. Finally, CompLoc terminates by returning
the two intervals [0, 1] and [4, 5], as well as the weight 3. �

Our discussion so far assumes that no facility in F lo-
cates on an endpoint of the given edge e. Nevertheless, Com-
pLoc can be easily extended for the case when either of e’s
endpoints is a facility. The only modification required is that,
we need to exclude the facility endpoint(s) of e, when we
construct the line segment(s) on R that corresponds to each
client. For example, if we have a line segment [0, 5] and the
left endpoint of e is a facility, then we should modify seg-
ment as (0, 5] before we compute the local competitive loca-
tions on e. The case when the right endpoint of e is a facility
can be handled in a similar manner.
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Fig. 4 Demonstration of CompLoc

CompLoc runs inO(n log n) time andO(n) space. First,
constructing line segments in R takes O(n) time and O(n)

space, since (i) there exist O(n) clients in the attraction sets
of the endpoints of e, (ii) at most two segments are created
from each client. Second, since there are onlyO(n) line seg-
ments in R, the plane sweep algorithm on the segments runs
in O(n log n) time and O(n) space.

4.2 MinSum Location Queries

For any candidate location p, we define the merit of p (de-
noted as m(p)) as

m(p) =
∑
c∈C

w(c) ·max{0, a(c)− d(c, p)}.

That is, m(p) captures how much the total WAD of all
clients may reduce, if a new facility is built on p. A point is
a local MinSum location on an edge e ∈ Ec, if and only if it
has the maximum merit among all points on e. Interestingly,
the merit of the points on any edge e is always maximized
at one endpoint of e, as shown in the following lemma.

Lemma 2 For any point p in the interior of an edge e ∈ E,
if m(p) is larger than the merit of one endpoint of e, then
m(p) must be smaller than the merit of the other endpoint.

Proof Let vl (vr) be the left (right) endpoint of e. Recall that
Cp is the set of clients attracted by p. First of all,

m(vl) =
∑
c∈C

w(c) ·max{0, a(c)−d(c, vl)}

≥
∑
c∈Cp

w(c) ·
(
a(c)− d(c, vl)

)
, and similarly,

m(vr) ≥
∑
c∈Cp

w(c) ·
(
a(c)− d(c, vr)

)
. (4)

Assume w.l.o.g. that m(p) > m(vl). We have

m(p) =
∑
c∈Cp

w(c) ·
(
a(c)− d(c, p)

)
≥ m(vl) ≥

∑
c∈Cp

w(c) ·
(
a(c)− d(c, vl)

)
,

which leads to∑
c∈Cp

w(c)(d(c, vl)− d(c, p)) > 0. (5)

Let Clp (Crp ) be the subset of clients c in Cp, such that
the shortest path from c to p passes through vl (vr). Clearly,
Crp = Cp − Clp, and d(c, p) = d(c, vl) + d(vl, p) for any
c ∈ Clp. By Equation 5,∑
c∈Cr

p

w(c) ·
(
d(c, vl)− d(c, p)

)
>
∑
c∈Cl

p

w(c) ·
(
d(c, p)− d(c, vl)

)
= d(vl, p) ·

∑
c∈Cl

p

w(c). (6)

Since d(c, vl) ≤ d(c, p) + d(vl, p) for any c ∈ Crp , we have

d(vl, p) ·
∑
c∈Cr

p

w(c) ≥ LHS of (6) ≥ d(vl, p) ·
∑
c∈Cl

p

w(c),

which means that∑
c∈Cr

p

w(c) >
∑
c∈Cl

p

w(c). (7)

Note that d(c, p) = d(c, vr) + d(vr, p) for any c ∈ Crp , and
d(c, vr) ≤ d(c, p)+d(vr, p) for any c ∈ Clp. By Eqn. 4 & 5,

m(vr)−m(p)≥−m(p)+
∑
c∈Cp

w(c)·(a(c)−d(c, vr))

=
∑
c∈Cl

p

w(c)·
(
d(c, p)− d(c, vr)

)
+
∑
c∈Cr

p

w(c)·
(
d(c, p)− d(c, vr)

)
≥ d(vr, p) ·

(
−
∑
c∈Cl

p
w(c) +

∑
c∈Cr

p
w(c)

)
(8)

By Equations 7 and 8, m(vr) − m(p) ≥ 0. Hence, the
lemma is proved.

By Lemma 2, if the endpoints of an edge e ∈ Ec have
different merits, then the endpoint with the larger merit should
be the only local MinSum location on e. But what if the
merits of the endpoints are identical? The following lemma
provides the answer.

Lemma 3 Let e be an edge in E with endpoints vl, vr, such
that m(vl) = m(vr). Then, either all points on e have the
same merit, or vl and vr have larger merit than any other
points on e.

Proof First of all, by Lemma 2, for any point ρ on e, it must
satisfym(ρ) ≤ m(vl) = m(vr), given thatm(vl) = m(vr).
Now, assume on the contrary that there exist two points p
and q on e, such thatm(vl) = m(vr) = m(p) 6= m(q). This
indicates that m(q) < m(vl) = m(vr) = m(p). Assume
without loss of generality that d(vl, p) < d(vl, q). We will
prove the lemma by showing that m(p) = m(vl) cannot
hold given m(p) > m(q).

Let Cp be the set of clients attracted by p. We divide Cp
into three subsets C1, C2, and C3, such that

C1 = {c ∈ Cp | d(c, p) = d(c, q)− d(p, q)},
C2 = {c ∈ Cp | d(c, p) = d(c, q) + d(p, q)},
C3 = Cp − C1 − C2.
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It can be verified that, for any client c ∈ C3, the shortest
path from c to p must go through vl. This indicates that,

d(c, vl) = d(c, p)− d(vl, p),∀c ∈ C3. (9)

Given m(p) > m(q) and Cp ⊆ C, we have∑
c∈C1

w(c) ·
(
d(c, q)− d(c, p)

)
−
∑
c∈C2

w(c)
(
d(c, p)− d(c, q)

)
+
∑
c∈C3

w(c) · |d(c, q)− d(c, p)| > 0.

This leads to∑
c∈C1∪C3

w(c)−
∑
c∈C2

w(c) > 0 (10)

On the other hand, we have

m(vl)−m(p)≥
∑

c∈C1∪C3

w(c) ·
(
d(c, p)− d(c, vl)

)
−
∑
c∈C2

w(c) ·
(
d(c, vl − d(c, p)

)
= d(vl, p) ·

( ∑
c∈C1∪C3

w(c)−
∑
c∈C2

w(c)
)

> 0. (By Equation 10) (11)

Thus, the lemma is proved.

By Lemmas 2 and 3, we can identify the local MinSum
locations on any given edge e as follows. First, we compute
the merits of e’s endpoints based on their attraction sets. If
the merits of the endpoints differ, then we return the end-
point with the larger merit as the answer. Otherwise (i.e.,
both endpoints of e have the same merit γ), we inspect any
point p in the interior of e, and derive m(p) using the at-
traction sets of the endpoints. If m(p) < γ, both endpoints
of e are returned as the result; otherwise, we must have
m(p) = γ, in which case we return the whole edge e as the
answer. In summary, the local MinSum locations on e can be
found by computing the merits of at most three points on e,
which takes O(n) time and O(n) space given the attraction
sets of e’s endpoints.

Note that the above algorithm assumes that both end-
points of e are candidate locations. To accommodate the case
when either endpoint of e is a facility, we post-process the
output of our algorithm as follows. If the set S of local Min-
Sum locations returned by our algorithm contains a facility
endpoint, we set S = ∅; otherwise, we keep S intact. To
understand this post-processing step, observe that the merit
of any facility point is zero, since building a new facility on
any point in F does not change the attractor distance of any
client. Hence, if S contains a facility point, then the max-
imum merit of all points on e should be zero. In that case,
the global MinSum location must not be on e, and hence, we
can ignore the local MinSum locations found on e.
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(a) Attractor Distances Without
the New Facility (b) Piecewise Linear Functions

Fig. 5 Representing Attractor Distances as Functions of the Location
of the New Facility

4.3 MinMax Location Queries

Next, we present our solution for finding the local MinMax
locations on any edge e ∈ Ec, i.e., the points on e where a
new facility can be built to minimize the maximum WAD of
all clients. Our solution is based on the following observa-
tion: For any client c, the relationship between the WAD of
c and the new facility’s location can be precisely captured
using a piecewise linear function.

For example, consider the edge e0 in Figure 4(a). As-
sume that there exist only 4 clients c1, c2, c3, and c4, as il-
lustrated in the attraction sets in Figure 4(a). Further assume
that (i) the clients’ attractor distances are as shown in Fig-
ure 5(a), and (ii) all clients have a weight 1. Then, if we add
a new facility on e0 that is x (x ∈ [0, 5]) distance away from
the left endpoint vl of e0, the WAD of c3 can be expressed
as a piecewise linear function:

g3(x) =

{
x+ 1, if x ∈ [0, 3]

7− x, if x ∈ (3, 5]

We define g3 as the WAD function of c3. Similarly, we can
also derive a WAD function gi for each of the other client ci
(i = 1, 2, 4). Figure 5(b) illustrates gi (i ∈ [1, 4]).

Let gup be the upper envelope [1] of {gi}, i.e., gup(x) =
maxi{gi(x)} for any x ∈ [0, 5] (see Figure 5(b)). Then,
gup(x) captures the maximum WAD of the clients when a
new facility is built on x. Thus, if the point (on e0) that is
x distance away from vl is a local MinMax location, then
gup must be minimized at x, and vice versa. As shown in
Figure 5(b), gup is minimized when x ∈ [0, 0.5]. Hence, the
local MinMax locations on e0 are the points p on e0 with
d(p, vl) ∈ [0, 0.5].

In general, to compute the local MinMax locations on
an edge e, it suffices to first construct the upper envelope
of all clients’ WAD functions, and then identify the points
at which the upper envelope is minimized. This motivates
our MinMaxLoc algorithm (in Figure 6) for computing local
MinMax locations.

Given an edge e ∈ Ec, MinMaxLoc first retrieves two
attraction sets A(vl) and A(vr), where vl (vr) is the left
(right) endpoint of e. After that, it creates a two-dimensional
plane R, in which it will construct the WAD functions of
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Algorithm MinMaxLoc ( e )

1. let ` be the length of e, and vl (vr) be the left (right)
endpoint of e

2. construct an empty two-dimensional plane R
3. let C− be the set of clients that appear in neither A(vl) nor A(vr)
4. find the client c0 ∈ C− with the largest WAD
5. construct the WAD function of c0, i.e., draw in R a line segment

from point with coordinate
(
0, â(c0)

)
to point with coordinate(

`, â(c0)
)

6. let C∆ be the set of clients that appear in both A(vl) and A(vr)
7. for each client c ∈ C − C∆ − C−
8. if c appears in A(vl)
9. x1 = 0, y1 = w(c) · d(c, vl)
10. x3 = `, x2 = min{`, a(c)− d(c, vl)}
11. y2 = y3 = w(c) ·

(
x2 + d(c, vl)

)
12. else /∗if c does not appear in A(vl), but appears in A(vr)∗/
13. x1 = `, y1 = w(c) · d(c, vr)
14. x3 = 0, x2 = max{0, `− a(c) + d(c, vr)}
15. y2 = y3 = w(c) ·

(
`− x2 + d(c, vr)

)
16. construct the WAD function of c, i.e., draw in R two line

segments, from (x1, y1) to (x2, y2), then to (x3, y3)
17. for each client c ∈ C∆ /∗c appears in both A(vl) and A(vr)∗/
18. x1 = 0, y1 = w(c) · d(c, vl)
19. β = 1

2
`− 1

2
d(c, vl) +

1
2
d(c, vr)

20. x2 = min{β, a(c)− d(c, vl)}, y2 = w(c) ·
(
x2 + d(c, vl)

)
21. x3 = max{β, `− a(c) + d(c, vr)}, y3 = y2
22. x4 = `, y4 = w(c) · d(c, vr)
23. construct the WAD function of c, i.e., draw in R three line

segments, from (x1, y1) to (x2, y2), then to (x3, y3), then to
(x4, y4)

24. compute the upper envelope gup of the WAD functions in R
25. identify and return the points on which gup is minimized

Fig. 6 The MinMaxLoc Algorithm

some clients. Specifically, MinMaxLoc first identifies the set
C− of clients that appear in neither A(vl) nor A(vl). By
Lemma 1, for any client c ∈ C−, the attractor distance of c
is not affected by a new facility built on e. Hence, the WAD

function of c can be represented by a horizontal line segment
in R. Observe that, only one of those segments may affect
the upper envelope gup, i.e., the segment corresponding to
the client c∗ with the largest WAD in C−. Therefore, given
C−, MinMaxLoc only constructs the WAD function of c∗,
ignoring all the other clients in C−.

Next, MinMaxLoc examines each client c ∈ C−C−, and
derive the WAD function of c based on A(vl) and A(vr). In
particular, each WAD function is represented using at most
three line segments in R. Finally, MinMaxLoc computes the
upper envelope gup of the WAD functions in R, and then
identifies and returns the points at which gup is minimized.

MinMaxLoc can be implemented inO(n log n) time and
O(n) space. Specifically, given the attractor distances of the
clients in C, we can identify the client c∗ with O(n) time
and space. After that, it takes only O(n) time and space to
construct the WAD functions of clients, since each function
is represented with O(1) line segments. As there exist O(n)

segments in R, the upper envelope gup should contain O(n)

v1 v2
f1

2
1 G2

G3

G1

Fig. 7 Example of Lemma 4
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e7

e6

e8

Fig. 8 Example of GPart

linear pieces, and can be computed in O(n log n) time and
O(n) space [13]. Finally, by scanning theO(n) linear pieces
of gup, we can compute the local MinMax locations on e in
O(n) time and space.

In addition, MinMaxLoc can also be extended to handle
the case when either endpoint of e is a facility in F . In partic-
ular, if the left endpoint vl of e is a facility, then MinMaxLoc
excludes vl when it computes the upper envelope gup of the
WAD functions. That is, the domain of gup is defined as (0, `]
instead of [0, `]. The case when the right endpoint of e is a
facility can be addressed similarly.

5 Computing Attraction Sets and Attractor Distances

Our algorithms in Section 4 require as input (i) the attractor
distances of all clients in C, and (ii) the attraction sets of the
endpoints of the given edge e ∈ Ec. The attractor distances
can be easily computed using the algorithm by Erwig and
Hagen [7]. Specifically, Erwig and Hagen’s algorithm takes
as input a road network G and a set F of facilities. With
O(n log n) time and O(n) space, the algorithm can identify
the distance from each vertex v in G to its nearest facility
in F . In the following, we will investigate how to compute
the attraction sets of the vertices in G, given the attractor
distances derived from Erwig and Hagen’s algorithm.

5.1 The Blossom Algorithm

By definition, a client c appears in the attraction set of a
vertex v, if and only if d(c, v) is no more than the attractor
distance a(c) of c. Therefore, given the attractor distances of
all clients, we can compute the attraction sets of all vertices
in G in a batch as follows. First, we set the attraction set of
every vertex in G to ∅. After that, for each client c ∈ C,
we apply Dijkstra’s algorithm [5] to traverse the vertices
in G in ascending order of their distances to c. For each
vertex v encountered, we check whether d(c, v) ≤ a(c).
If d(c, v) ≤ a(c), c is inserted into the attraction set of v.
Otherwise, d(c, v′) > a(c) must hold for any unvisited ver-
tex v′, i.e., none of the unvisited vertices can attract c. In
that case, we terminate the traversal and proceed to the next
client. Once all clients are processed, we obtain the attrac-
tion sets of all vertices inG. We refer to the above algorithm
as Blossom, as illustrated in Figure 9.

Blossom has anO(n2 log n) time complexity, since it in-
vokes Dijkstra’s algorithm once for each client, and each ex-
ecution of Dijkstra’s algorithm takes O(n log n) time in the
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Algorithm Blossom (G)

1. initialize the attraction set of each vertex v in G as ∅
2. for each client c
3. employ Dijkstra’s algorithm to traverse the vertices in G in

ascending order of their distances to c
4. for each vertex v traversed
5. if d(c, v) ≤ a(c)
6. add an entry

〈
c, d(c, v)

〉
to the attraction set of v

7. else goto Line 2
8. return

Fig. 9 The Blossom Algorithm

worst case [5]. Blossom requires O(n2) space, as it materi-
alizes the attraction set of each vertex in G, and each attrac-
tion set contains the information ofO(n) clients. Such space
consumption is prohibitive when n is large. To remedy this
deficiency, Section 5.2 proposes an alternative solution that
requires only O(n) space.

5.2 The OTF Algorithm

The enormous space requirement of Blossom is caused by
the massive materialization of attraction sets. A natural idea
to reduce the space overhead is to avoid storing the attraction
sets, and derive them only when needed. That is, whenever
we need to compute the local optimal locations on an edge
e ∈ Ec, we compute the attraction sets of e’s endpoints on
the fly, and then discard the attraction sets once the local op-
timal locations are found. But the question is, given a vertex
v in G, how do we construct the attraction set A(v) of v?
A straightforward solution is to apply Dijkstra’s algorithm
to scan through all vertices in G in ascending order of their
distances to v. In particular, for each client c encountered
during the scan, we examine the distance d(v, c) from c to
v. If d(v, c) < a(c), we add c into A(v); otherwise, c is
ignored. Apparently, this solution incurs significant compu-
tation overhead, as it requires traversing a large number of
vertices. Is it possible to compute A(v) without an exhaus-
tive search of the vertices in G? The following lemma pro-
vides us some hints.

Lemma 4 Given two vertices v and v′ inG, such that d(v, v′)
is larger than the distance from v′ to its nearest facility f ′.
Then, ∀c ∈ A(v), the shortest path from v to c must not go
through v′.

Proof Assume on the contrary that the shortest path from v

to c goes through v′. Then, we have

d(v, c) = d(v, v′) + d(v′, c) > d(v′, f ′) + d(v′, c)

≥ d(f ′, c).

This contradicts our assumption that c is attracted by v.

Algorithm OTF (v)

1. initialize the attraction set A(v) of v as ∅
2. employ Dijkstra’s algorithm to traverse the vertices in G in

ascending order of their distances to v
3. for each vertex v′ examined
4. let λ be distance from v′ to its closest facility
5. if d(v, v′) ≤ λ and v′ is a client point
6. insert an entry 〈v′, dist(v′, v)〉 into A(v)
7. if d(v, v′) > λ

8. ignore all edges adjacent to v′, i.e., regard them as
deleted

9. if none of the unvisited vertices can be reached from v

10. return A(v)
11. return A(v)

Fig. 10 The OTF Algorithm

Consider for example the road network in Figure 7, which
contains three subgraph G1, G2, and G3 that are connected
by a facility f1 and two vertices v1 and v2. In addition,
d(v1, v2) = 2, d(v2, f1) = 1, and f1 is the facility clos-
est to v2. Since d(v1, v2) > d(v2, f1), by Lemma 4, v2 must
not be on the shortest path from v1 to any client attracted by
v1. This means that no client in G2 or G3 can be attracted
by v1, because all paths from v1 to G2 or G3 go through v2.
Therefore, if we are to computeA(v1), it suffices to examine
only the clients in G1.

Based on Lemma 4, we propose the OTF (On-The-Fly)
algorithm (in Figure 10) for computing the attraction set of
a vertex v in G. Given v, OTF first sets A(v) = ∅, and
then applies Dijkstra’s algorithm to visit the vertices in G in
ascending order of their distances to v. For each vertex v′

visited, OTF retrieves the distance λ from v′ to its closest
facility (recall that λ is computed using Erwig and Hagen’s
algorithm [7]). If d(v, v′) ≤ λ and v′ is a client, then OTF
adds v′ into A(v). On the other hand, if d(v, v′) > λ, then
OTF ignores all edges adjacent to v′ when it traverses the
remaining vertices in G. This does not affect the correct-
ness of OTF, since, by Lemma 4, deleting v′ from G does
not change the shortest path from v to any client attracted
by v. After v is processed, OTF checks whether any of the
unvisited vertices in G is still connected to v. If none of
those vertices is connected to v, OTF terminates by return-
ing A(v); otherwise, OTF proceeds to the unvisited vertex
that is closest to v.

It is not hard to verify that OTF runs in O(n log n) time
and O(n) space. Therefore, if we employ OTF to compute
the local optimal locations on every edge in G, then the to-
tal time required for deriving the attraction sets would be
O(n2 log n), and the total space needed is O(n) (as OTF
does not materialize any attraction sets). In contrast, com-
puting the attraction sets with Blossom incurs O(n2 log n)

time and O(n2) space overhead. Hence, OTF is more favor-
able than Blossom in terms of asymptotic performance.
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6 Pruning of Road Segments

Given the algorithms in Sections 4 and 5, we may answer
any OL query by first enumerating the local optima on each
edge in Ec, and then deriving the global optimal solutions
based on the local optima. This approach, however, incurs
a significant overhead when Ec contains a large number of
edges. To address this issue, in this section we propose a
fine-grained partitioning (FGP) technique to avoid the ex-
haustive search on the edges in Ec.

6.1 Algorithm Overview

At a high level, FGP works in four steps as follows. First, we
divide G into m edge-disjoint subgraphs G1, G2, . . . , Gm,
wherem is an algorithm-specific parameter. Second, for each
subgraph Gi (i ∈ [1,m]), we derive a potential client set Ci
of Gi, i.e., a superset of all clients that can be attracted by a
new facility built on any edge in Gi.

As a third step, we inspect each potential client set Ci
(i ∈ [1,m]), based on which we derive an upper-bound of
the benefit of any candidate location p in Gi. Specifically,
for competitive location queries, the benefit of p is defined
as the total weight of the clients attracted by p; for MinSum
(MinMax) location queries, the benefit of p is quantified as
the reduction in the total (maximum) WAD of all clients,
when a new facility is built on p.

Finally, we examine the subgraphs G1, G2, . . . , Gm in
descending order of their benefit upper-bounds. For each
subgraph Gi, we apply the algorithms in Sections 4 and 5
to identify the local optimal locations in Gi. After process-
ing Gi, we inspect the set S of best local optima we have
found so far. If the benefits of those locations are larger than
the benefit upper-bounds of all unvisited subgraphs, we ter-
minate the search and return S as the final results; otherwise,
we move on to the next subgraph.

The efficacy of the above framework rely on three issues,
namely, (i) how the subgraphs of G are generated, (ii) how
the potential client set Ci of each subgraph Gi is derived,
and (iii) how the benefit upper bound of Gi is computed. In
the following, we will first clarify how FGP derives benefit
upper-bounds, deferring the solutions to the other two issues
to Section 6.2. We begin with the following lemma.

Lemma 5 Let Gi be a subgraph of G, Ci be the potential
client set of Gi, and p be a candidate location in Gi. Then,
for any competitive location query, the benefit of p is at most∑
c∈Ci

w(c). For any MinSum location query, the benefit of
p is at most

∑
c∈Ci

â(c). For any MinMax location query,
the benefit of p is at most maxc∈C â(c)−maxc∈C−Ci

â(c).

Algorithm GPart (G, θ)

1. construct a set V ′ that contains all the endpoints of the edges
that appear in both G and Ec

2. randomly sample a set V∆ of vertices from V ′ with a sampling
rate θ

3. create |V∆| empty subgraphs, and assign each vertex in V∆ as
the “center” of a distinct subgraph

4. feed G and V∆ as input to Erwig and Hagen’s algorithm [7] to
compute, for each vertex v in G, (i) the vertex v′ ∈ V∆ that is
closest to v, as well as (ii) the distance d(v, v′) from v to v′

5. insert each edge in G to the subgraph whose center is the
closest to either endpoint of the edge

6. return all subgraphs

Fig. 11 The GPart Algorithm

Proof The lemma follows from the facts that (i) Ci contains
all clients that can be attracted by p, and (ii) for any client in
Ci, its WAD is at least zero after a new facility is built on p.

The benefit upper-bounds in Lemma 5 require knowl-
edge of all clients’ attractor distances, which, as mentioned
in Section 5, can be computed in O(n log n) time and O(n)

space using Erwig and Hagen’s algorithm [7]. We can fur-
ther sort the attractor distances in a descending order with
O(n log n) time and O(n) space. Observe that, given the
sorted attractor distances and the potential client set Ci of
a subgraph Gi, the benefit upper-bound of Gi (for any OL
query) can be computed efficiently inO(|Ci|) time andO(n)

space.

6.2 Graph Partitioning

We are now ready to discuss how FGP generates the sub-
graphs from G and computes the potential client set of each
subgraph. In particular, FGP generates subgraphs from G

by applying an algorithm called GPart (as illustrated Fig-
ure 11), which takes as input G and a user defined parame-
ter θ ∈ (0, 1]. GPart first identifies the set V of vertices in
G that are adjacent to some edges in Ec. As a second step,
GPart computes a random sample set V∆ of the vertices in V
with a sampling rate θ, after which it splitsG into subgraphs
based on V∆.

Specifically, GPart first constructs |V∆| empty subgraphs,
and assigns each vertex in V∆ as the “center” of a distinct
subgraphs. After that, for each vertex v in G, GPart iden-
tifies the vertex v′ ∈ V∆ that is the closest to v, and com-
putes d(v, v′). This step can be done by applying Erwig and
Hagen’s algorithm [7], with G and V∆ as the input. Next,
for each edge e in G, GPart checks the two endpoints vl
and vr of e, and inserts e into the subgraph whose center v′

minimizes min{d(v′, vl), d(v′, vr)}. After all edges inG are
processed, GPart terminates by returning all subgraphs con-
structed. For example, if G equals the graph in Figure 8 and
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Algorithm P-OTF (G, Gi)

1. let V ′i be the set of endpoints of the edges in Gi ∩ Ec
2. insert a new vertex v0 in G
3. connect v0 to each vertex in V ′i via an edge with a length 0
4. compute the attraction set of v0 in G using the OTF algorithm
5. return the set of clients in the attraction set of v0

Fig. 12 The P-OTF Algorithm

V∆ = {v1, v2, v3}, then GPart would construct three sub-
graphs {e1, e2, e3}, {e4, e5, e6}, and {e7, e8}, whose cen-
ters are v1, v2, and v3, respectively. In summary, GPart en-
sures that the edges in the same subgraph form a cluster
around the subgraph center. As such, the edges belonging to
the same subgraph tend to be close to each other. This helps
tighten the benefit upper-bounds of the subgraph because,
intuitively, points in proximity to each other have similar
benefits. Regarding asymptotic performance, it can be veri-
fied that GPart runs in O(n log n) time and O(n) space.

Given a subgraph Gi obtained from GPart, our next step
is to derive the potential client set for each Gi. Let EGi

be
the set of edges in Gi that also appear in Ec, and VGi be the
set of endpoints of the edges in EGi

. By Lemma 1, for any
candidate location p on an edge e in Gi, the set of clients at-
tracted by p is always a subset of the clients in the attraction
sets of e’s endpoints. Therefore, the potential client set ofGi
can be formulated as the set of all clients that appear in the
attraction sets of the vertices in VGi

. In turn, the attraction
sets of the vertices in VGi can be derived by applying either
the Blossom algorithm or the OTF algorithm in Section 5. In
particular, if Blossom is adopted, then we feed the graph G
as the input to Blossom1. In return, we obtain the attraction
sets of all vertices in G, based on which we can compute the
potential clients set of all subgraphs in G. In addition, the
attraction sets can be reused when we need to compute the
local optimal locations on any edge in G.

On the other hand, if OTF is adopted, then we feed each
vertex in VGi to OTF to compute its attraction set, after
which we collect all clients that appear in at least one of
the attraction sets. The drawback of this approach is that it
requires multiple executions of OTF, which leads to infe-
rior time efficiency. To remedy this drawback, we propose
the P-OTF algorithm (in Figure 12) for computing the po-
tential client set of a subgraph Gi. Given the graph G, P-
OTF first creates a new vertex v0 in G, and then constructs
an edge between v0 and each vertex in VGi

, such that the
edge has a length 0. After that, P-OTF invokes OTF once
to compute the attraction set of v0 in G. Observe that, if
a client c is attracted by v0, then there must exist a vertex
in VGi

that attracts c, and vice versa. Hence, the potential
client set of Gi should be equal to the set of clients in the

1 Note that we cannot apply Blossom on Gi directly, since a candi-
date location in Gi may attract a client outside Gi.

attraction set A(v0) of v0. Therefore, once A(v0) is com-
puted, P-OTF terminates by returning all clients in A(v0).
In summary, P-OTF computes the potential client set of Gi
by invoking OTF only once, which incurs O(n log n) time
and O(n) space overhead.

Before closing this section, we discuss how we set the
input parameter θ of GPart. In general, a larger θ results
in smaller subgraphs, which in turn leads to tighter bene-
fit upper-bounds. Nevertheless, the increase in θ would also
lead to a larger number of subgraphs, which entails a higher
computation cost, as we need to derive the potential client
set for each subgraph. Ideally, we should set θ to an appro-
priate value that strikes a good balance between the tight-
ness of the benefit upper-bounds and the cost of deriving the
bounds. We observe that, when the potential client sets of
the subgraphs are computed using Blossom, θ should be set
to 1. This is because, Blossom derives potential client sets
by computing the attraction sets of all vertices, regardless of
the value of θ. As a consequence, the computation cost of
the benefit upper-bounds is independent of θ. Hence, we can
set θ = 1 to obtain the tightest benefit upper-bounds with-
out sacrificing time efficiency. On the the hand, if P-OTF
is adopted, then the overhead of computing potential client
sets increases with the number of subgraphs. To ensure that
this computation overhead does not affect the overall perfor-
mance, θ should be set to a small value. We suggest setting
θ = 1h across the board.

7 Recomputation of Local Optimal Locations after
Updates

In this section, we present solutions for efficiently monitor
the local OLs given continuous updates in the locations of
facilities and clients. This problem setting can be illustrated
with following example.

Example 5 John owns a set of trucks for food service in San
Francisco, and he would like to position his trucks to attract
the largest number of clients against competition from other
food-service trucks. Given that the locations of clients and
other competing trucks may change as time evolves, John
would like to continuously monitor the optimal locations for
positioning his trucks. �

The updates of facilities and/or clients on a road-network
are natural and common operations. For users who would
like to track optimal location(s) in the face of updates over a
time period, our dynamic monitoring techniques are essen-
tial. Note that tracking optimal location(s) over a period of
time, rather than finding an optimal location in a given time-
instance and building a facility there right away, often is a
natural choice for many business operations. For example,
a corporation would like to monitor the optimal location for
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their business to build a new facility in a chosen time pe-
riod, before making the final decision. This gives them the
opportunity to carry out market analysis, learn how other
facilities may update their locations, and more importantly,
how clients may move on the road network over a period of
time.

Furthermore, our dynamic monitoring techniques can be
used to answer continuous optimal location queries efficiently,
where a service provider needs to answer a sequence of opti-
mal location queries from different users, and very naturally,
updates may take place in-between any two OLQs. Instead
of always answering an OLQ from scratch, it is obviously
desirable to answer them in an incremental and monitoring
fashion.

In what follows, we will first present an overview of our
solutions for handling updates (Section 7.1), and then dis-
cuss detailed algorithms for the three variants of optimal lo-
cation queries (Sections 7.2-7.4).

7.1 Overview

We consider four types of updates to the locations of clients
and facilities:

1. Insertion of a client c (denoted as AddC(c));
2. Deletion of a client c (denoted as DelC(c));
3. Insertion of a facility f (denoted as AddF (f));
4. Deletion of a facility f (denoted as DelF (f)).

A straightforward method for handle such updates is to adopt
our algorithms in Section 3-6, i.e., we recompute the OLs
from scratch after each update. Intuitively, this method is
highly inefficient as it performs a large amount of redun-
dant computation in the identification of OLs. To address
this issue, we extend our unified framework in Section 3 and
enables it to incrementally process updates.

First, for each edge e ∈ Ec, we maintain the set I0 of
local OLs on e, as well as the benefit m0s of those OLs. For
the competitive location query, the benefit m0 is the total
weights of clients attracted by a facility built on the OLs. For
the MinSum location query, m0 is the merit of the OLs. For
the MinMax location query,m0 is the maximum WAD of all
clients. Given an update of clients or facilities, we process
the update in four steps as follows:

1. Step 1: We compute a set Vc of clients whose attractor
distances are affected by the update.

2. Step 2: For each client c ∈ Vc, we identify its previous
attractor distance a0(c) and new attractor distance a′(c),
and we construct two sets U−c and U+

c , where

U−c = {〈v, d(c, v)〉|d(c, v) < a0(c)},
U+
c = {〈v, d(c, v)〉|d(c, v) < a′(c)}.

3. Step 3: We update I0 and m0 for each edge e, based on
the sets Vc, a0(c), a′(c), U−c , and U+

c associated with
each client c ∈ Vc.

4. Step 4: We derive and return the global OLs when none
of the unvisited e ∈ Ec can provide a better solution than
the best optima found so far.

To explain, recall that the local OLs on an edge e are
decided by (i) the attraction sets for the endpoints of e and
(ii) the attractor distances of the clients. Therefore, if we are
to derive the new I and m for each edge, we can first iden-
tify the changes in the aforementioned attraction sets and
attractor distances. Steps 1 and 2 serve this purpose since
(i) for any client c, the change in the attractor distance of
c can be derived from a0(c) and a′(c), and (ii) the change
in the attraction sets of e’s endpoints can be derived given
U−c and U+

c for each c. In the following, we will first dis-
cuss how Steps 1 and 2 can be implemented for the four
types of updates, namely, AddC(c), DelC(c), AddF (f),
and DelF (f).

AddC(c)AddC(c)AddC(c) and DelC(c)DelC(c)DelC(c): Given a client c to be inserted or
deleted, we can easily perform Step 1 by setting Vc = {c}.
For Step 2, we employ the Dijkstra’s algorithm to traverse
the vertices in G in ascending order of their distances to
c, until we reach the facility f nearest to c. Then, we set
a0(c) = 0 and a′(c) = d(c, f) if f is just inserted; other-
wise (i.e., f is just deleted), we set a0(c) = d(c, f ′) and
a′(c) = d(c, f). Finally, for each vertex v visited by Dijk-
stra’s algorithm, we insert an entry 〈v, d(c, v)〉 into U+

c .

AddF (f)AddF (f)AddF (f) and DelF (f)DelF (f)DelF (f): When a facility f is inserted or
deleted, the set Vc of clients in Step 1 is exactly the setA(f),
i.e., the attraction set of f . To compute A(f), we can use
either the Blossom algorithm in Section 5.1 or the OTF al-
gorithm in Section 5.2. After that, we can perform Step 2

as follows. For each client c ∈ A(f), we employ Dijkstra’s
algorithm to traverse the vertices in G in ascending order of
their distances to c, until we reach a facility f ′ 6= f . Then,
we set a0(c) = d(c, f ′) and a′(c) = d(c, f). Finally, for
each vertex v visited Dijkstra’s algorithm, we insert an en-
try 〈v, d(c, v)〉 into U−c if d(c, v) ≤ d(c, f); otherwise, we
insert an entry 〈v, d(c, v)〉 into U+

c .
Next, we clarify how Step 3 can be implemented. In our

solution, for each c ∈ Vc, we update the local OLs for each
edge using the change in attractor distances and attraction
sets caused by c, which can be derived from a0(c), a′(c), U−c
and U+

c . Note that not all edges’ local OLs can be affected
by a client c. In other words, when we update local OLs for
each edge with the effect of c, we can initially identify a set
of edges whose I and m will remain unchanged. Therefore,
for each c ∈ Vc, we first prune this set of edges and then
update the local OLs for remaining edges. In the following,
we will clarity how we can perform the pruning of edges and
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Algorithm CompLoc ClientUpdate (c)

1. initialize an empty set of edges Ec
2. for each edge e(vl, vr) ∈ E
3. if 〈vl, d(c, vl)〉 ∈ U−c ∪ U+

c or 〈vr, d(c, vr)〉 ∈ U−c ∪ U+
c

4. insert e into Ec
5. for each e(vl, vr) ∈ Ec
6. initialize two empty sets of intervals I−, I+

7. if 〈vl, d(c, vl)〉 ∈ U−c and 〈vr, d(c, vr)〉 6∈ U−c
8. add a line segment [0, a0(c)− d(c, vl)] into I−

9. if 〈vl, d(c, vl)〉 6∈ U−c and 〈vr, d(c, vr)〉 ∈ U−c
10. add a line segment [`− a0(c) + d(c, vr), `] into I−

11. if both 〈vl, d(c, vl)〉 ∈ U−c and 〈vr, d(c, vr)〉 ∈ U−c
12. if ` ≤ 2 · a0(c)− d(c, vl)− d(c, vr)
13. add a line segment [0, `] into I−

14. else
15. add two line segments [0, a0(c)− d(c, vl)] and

[`− a0(c) + d(c, vr), `] into I−

16. compute I+ similarly to line 7-15 but use U+
c instead of U−c ,

a′(c) instead of a0(c)
17. if a0(c) < a′(c)
18. set flag = ADD, I′ = I+ − I−
19. else
20. set flag = DEL, I′ = I− − I+
21. if I′ is empty
22. continue to next e
23. if flag is ADD
24. I = I0 ∩ I′
25. if I is empty
26. recompute I and m using the CompLoc Algorithm

in Figure 3
27. else
28. m = m0 + w(c)
29. if flag is DEL
30. if I′ = [0, `]
31. m = m0 − w(c), I = I0
32. else
33. I = I0 − I′
34. if I is empty
35. recompute I and m using the CompLoc Algorithm

in Figure 3
36. else
37. m = m0

38. keep I,m for e instead of I0,m0

39. return I,m (I0,m0 if unchanged) for each edge e

Fig. 13 The CompLoc ClientUpdate Algorithm

the update of the local OLs, for each of the three variants of
OL queries.

7.2 Competitive Location Queries

Figure 13 shows the algorithm for updating local OLs for a
competitive location query, given a client c ∈ Vc. The algo-
rithm first prunes the edges whose I and m will not change
(Lines 1-4 in Figure 13. Specifically, if an edge’s endpoints
cannot attract c either before the update or after the update,
its local OLs will not change. The reason is that, when we
compute local OLs on e(vl, vr) (see Section 4.1), we use
A(vl),A(vr) and a(c)s only if c appears inA(vl) orA(vr).

Algorithm MinSumLoc ClientUpdate (c)

1. construct a set of vertices S = {v|〈v, d(c, v)〉 ∈ U−c ∪ U+
c }

2. for each v ∈ S
3. if 〈v, d(c, v)〉 ∈ U−c and 〈v, d(c, v)〉 6∈ U+

c

4. set m(v) = m(v)− w(c) · (a0(c)− d(v, c))
5. if 〈vl, d(c, v)〉 6∈ U−c and 〈v, d(c, v)〉 ∈ U+

c

6. set m(v) = m(v) + w(c) · (a′(c)− d(v, c))
7. if both 〈vl, d(c, v)〉 ∈ U−c and 〈v, d(c, v)〉 ∈ U+

c

8. set m(v) = m(v) + w(c) · (a′(c)− a0(c))
9. return m(vl),m(vr) for each edge e(vl, vr)

Fig. 14 The MinSumLoc ClientUpdate Algorithm

As a next step, we update the local OLs for each of
the remaining edges (Ec). First, we construct the set I− of
points on e that attracts c before the update, and the set I+

of points on e that attracts c after the update (lines 6 - 16), in
a similar fashion as what we do in the CompLoc Algorithm
(Figure 3) for each client. There are three possible cases:

1. I− = I+, i.e., the set of points that attracts c remains
unchanged. In this case, we keep I0 andm0 as new local
OLs and their benefits of e.

2. I− ⊂ I+, i.e., there is a new set of points that can attract
c. Let I ′ = I+ − I−. In this case, we compute I0 ∩ I ′.
If I0 ∩ I ′ = ∅, then we recompute the new local OLs. If
I0 ∩ I ′ 6= ∅, then I0 ∩ I ′ must be the the new local OLs,
in which case we update m accordingly.

3. I+ ⊂ I−, i.e., there is a set of points that can attract
c before the update but cannot attract c any more after
the update. Let I∗ = I− − I+. In this case, if I∗ fully
covers e, then the local OLs remain the same, and m =

m0−w(c). Otherwise, we compute I0−I∗. If I0−I∗ is
not empty, the OLs will be I0 − I ′ (lines 30 and 31). On
the other hand, if I0 − I∗ is empty, then we recompute
the local optima using the CompLoc Algorithm in Figure
3.

Note that one of the three cases must occur since we have
I− ⊂ I+ whenever a0(c) ≤ a′(c), and I+ ⊂ I− otherwise.

Given the CompLoc ClientUpdate algorithm, we can im-
plement Step 3 in Section 7.1 as follows. For AddC(c) and
DelC(c), we have Vc = {c}, and hence, we only need
to invoke CompLoc ClientUpdate once, with c as the in-
put. For AddF (f) and DelF (f), we need to apply Com-
pLoc ClientUpdate once for each client in Vc = {c|〈c, d(c, v)〉
∈ A(f)}. Such multiple execution of the algorithm may
lead to repeated computation of the local OLs on an edge e.
To avoid this unnecessary overhead, when handlingAddF (f)
and DelF (f), we will first identify the edges whose local
OLs need to be updated, and we compute the local OLs for
each of those edge in a batch, without any redundant com-
putation.
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Algorithm MinMaxLoc ClientUpdate (c)

1. initialize an empty set of edges Ec
2. for each edge e ∈ E
3. if w(c) ·max{a0(c), a′(c)} ≥ m0

4. insert e into Ec
5. for each e ∈ Ec
6. if w(c) · a0(c) ≥ mo
7. use a0(c) to construct gc(x) on e
8. if max{gc(x)} < m0

9. m = m0, I = I0
10. else
11. recompute I and m using the MinMaxLoc Algorithm
12. if w(c) · a′(c) ≥ mo
13. use a′(c) to construct gc(x) on e
14. construct g′up(x) = max{gc(x), g0(x) = m0(0 ≤ x ≤ `)}
15. construct a set of intervals I′ = argminx g

′
up(x)

16. if min{g′up(x)} = m0 and I′ ∩ I0 6= ∅
17. set m = m0, I = I′ ∩ I0
18. else
19. recompute I and m using the MinMaxLoc Algorithm
20. keep I,m for e instead of I0,m0

21. return I,m(I0,m0 if unchanged) for each edge e

Fig. 15 The MinMaxLoc ClientUpdate Algorithm

7.3 MinSum Location Queries

Recall that, to compute the local OLs for a MinSum location
query, we only need the merit value of an edge’s two end-
points, m(vl) and m(vr). Hence, we only need to update
the merit value for each vertex v, which can attract those
clients affected by the update (i.e. Vc). There are three con-
ditions in which a vertex’s merit value has to be updated.
In the first case, v can attract c before the update but can-
not attract c after the update. In this case we should subtract
w(c) · (a0(c) − d(v, c)) away from m(v). Secondly, v can
now attract c thus we should add w(c) · (a′(c) − d(v, c))
to m(v). The last condition is that v can attract c both be-
fore and after the update but a(c) has changed. In this case
we should update m(v) with the difference between a0(c)
and a′(c). The details of the MinSumLoc ClientUpdate al-
gorithm are shown in the Figure 14. To achieve step 3 dur-
ing an update for a MinSum location query, we execute the
MinSumLoc ClientUpdate Algorithm for each c ∈ Vc.

7.4 MinMax Location Queries

Recall that the local MinMax locations on an edge e are the
points x on e at which gup(x) is minimized (see Section
4.3). Therefore, for any edge e, if m0 is larger than both
â0(c) and â′(c), then e would not be affected by the change
in the attractor distance of c. In that case, we can omit e
when processing the update.

On the other hand, if m0 is smaller than either â0(c)
or â′(c), then we first check if the previous gc(x) can af-
fect e’s gup(x). If it does, we should evaluate how removing

gc(x) can affect e’s I and m. Secondly, we check if the new
gc(x) can affect e’s gup(x). If it does, we should evaluate
how adding gc(x) can affect e’s I and m. Here the previous
gc(x) can be easily derived from a0(c) and U−c while the
new gc(x) can be derived from a′(c) and U+

c (see Section
4.3).

To evaluate how removing gc(x) from e can affect I and
m, if the maximum value of gc(x) is less than m0, the local
MinMax locations remain the same; otherwise, we recom-
pute them using the MinMaxLoc algorithm in Figure 6. To
evaluate how adding gc(x) to emay affect I andm, we com-
pute the envelope of g(x) = m0 and gc(x) as g′up(x). After
that, if there exist points in I0 where g′up(x) is minimized
with value m0, we return those points with local optima
m0. Otherwise, we recompute the local MinMax locations
using the MinMaxLoc algorithm. The details of the Min-
MaxLoc ClientUpdate algorithm are shown in Figure 15.

To implement Step 3 during an update for a MinMax lo-
cation query, we execute the MinMaxLoc ClientUpdate Al-
gorithm for each c ∈ Vc. If the type of update is AddF (f)
or DelF (f), we can delay the recomputation operation to
the end of update in order to avoid redundant computations,
as we discussed in Section 7.2.

8 Updates with FGP

In this section, we discuss how the FGP technique proposed
in Section 6 can be incorporated with the solutions in Sec-
tion 7 to efficiently monitor the global optimal locations in
the event of updates.

At a high level, handling updates with FGP works as fol-
lows. We maintain a list of subgraphs obtained in Section 6
by FGP. Note that in Section 6, the FGP method may only
compute the local optima for each edge in some of the sub-
graphs, which have larger upper bounds than others. We de-
note those subgraphs as computed and uncomputed, those
have not executed the local optima computation due to rel-
atively smaller upper bounds. When there is an update, we
compute the set of affected subgraphs and update their up-
per bounds. If an affected subgraph Gi is computed, we
update the local optima for its edges by applying the al-
gorithms in Section 7; otherwise, we keep it in the group
of uncomputed. The update of upper bounds for all four
types of update operation can be easily achieved according
to Lemma 5. The next step is similar to the last step of FGP.
Specifically, we examine the subgraphs in descending order:
for uncomputed subgraphs, we sort them by their upper
bounds; for computed subgraphs, we sort them by their lo-
cal optima. For each examined Gi, if it is uncomputed, we
apply the algorithm in Sections 4 and 5 to identify the local
optima in Gi and move it to computed; if it is computed,
we take its local optima. If the current global optima is larger
than the local optima (upper bound for uncomputed sub-
graphs) of the next subgraph, we terminate the search.
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The benefit of incorporating FGP for updates is that we
do not need to maintain the local optima for all edges; this
saves both running time and memory consumption. How-
ever, a potential limitation with the above algorithm is that
the number of computed subgraphs will never decrease. This
may lead to a situation where most subgraphs will become
computed after many update operations, which eliminates
the benefit of FGP. To avoid this problem, we propose to
control the number of computed subgraphs since we need
to maintain the local optima for all edges in computed sub-
graphs. Specifically, once we obtain the global optima, we
change those unexamined computed subgraphs, whose up-
per bound is less than the global optima, to uncomputed.

9 Continuous Optimal Location Queries

Another important and interesting contribution made by our
dynamic OLQ methods is the enabling of continuous opti-
mal location queries. Note that in numerous applications in
spatial databases, the continuous monitoring of query results
is desirable, and sometimes a critical requirement. The rea-
son is that spatial objects often are moving, and updates to
their locations are fairly common in many applications. For
example, extensive efforts have been devoted to this topic,
such as continuous nearest neighbor queries [11, 19], con-
tinuous skyline computations [14, 18], and many others. To
that end, we will show that our dynamic update techniques
enable the efficient execution of continuous optimal location
queries (continuous OLQ).

Consider the following application scenario. The city of-
fice wants to answer optimal location queries to different
business users as where the optimal location is for them to
build their new facility. Once an optimal location has been
identified, a business user is like to go ahead and build a
new facility at that location. Without our dynamic update
methods, the city needs to answer the next optimal loca-
tion query from another business user from scratch. How-
ever, with our dynamic monitoring techniques, the city of-
fice can now continuously answer a sequence of optimal lo-
cation queries, amid a number of updates in between. Note
that in this process, not only a new facility can be inserted,
an existing facility may be removed. Furthermore, clients on
the road network may also have changed their locations over
a period of time. These challenges must be addressed by our
dynamic monitoring techniques. We denote this problem as
the continuous optimal location queries. Formally, a user
supplies a ordered sequence of operations, where an oper-
ation could be an optimal location query (any one of three
types OLQs that we have studied), or an updates on either
facilities and/or clients. The goal is to be able to continu-
ously produce answers to these optimal location queries in
an incremental fashion. Between any two optimal location

queries in the sequence, there could be a (large) number of
update operations on both facilities and clients.

That said, our proposed dynamic methods can be eas-
ily adapted to answer continuous optimal location queries,
where both clients and facilities may update their positions
arbitrarily on the road network. We assume a client and/or a
facility will issue an update with a new location (and an old
location which is his/her current location on the network, if
it is an existing client or facility), whenever a change has
been made.

The first optimal location query from the sequence of
operations can be answered using our static algorithms dis-
cussed in Sections 4, 5, and 6. Subsequently, we can contin-
uously monitor the optimal locations for subsequent OLQs
in the input sequence by treating any update operation as a
deletion (if an old location exists) followed by an insertion
(of either a client or a facility), which is done using the re-
computation methods proposed in Sections 7 and 8.

10 Experiments

This section experimentally evaluates the proposed solutions.
For each type of OL queries, we examine two approaches
for traversing the edges in Ec, (i) the Basic approach that
computes the local optimal locations on every edge in Ec
before returning the final results and (ii) the Fine-Grained
Partitioning (FGP) approach. For each approach, we com-
bine it with two different techniques for deriving attraction
sets, i.e., Blossom and OTF. We implement our algorithms
in C++, and perform all experiments on a Linux machine
with an Intel Xeon 2GHz CPU and 4GB memory.

Our implementation uses the widely adopted road net-
work representation proposed by Shekhar and Liu [25]. Be-
sides the road network, in the dynamic scenario, we also
maintain a list of local optimal locations and additional in-
formation for getting attraction sets. Specifically, for Basic
approach, we maintain a list of all edges’ local optimal lo-
cations; for FGP approach, we maintain a list of subgraphs,
and each subgraph contains a list of local optimal locations
for its edges. In addition, for Blossom method, we main-
tain the attraction sets for all vertices in G, while for OTF
method, we maintain the nearest facility for each vertex in
G as well as the distance between them.

The running time reported in our OLQ computation ex-
periments includes the cost of all algorithmic components
of our framework, including the overhead for computing at-
tractor distances using Erwig and Hagen’s algorithm [7] (see
Section 5). The running time for updates reports the cost af-
ter the OLQ computation.

Datasets. We use two real road network datasets, SF and
CA, obtained from the Digital Chart of the World Server. In
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Fig. 16 Running Time vs. θ (CLQ)

particular, SF (CA) captures the road network in San Fran-
cisco (California), and contains 174,955 nodes and 223,000
edges (21,047 nodes and 21,692 edges). We obtain a large
number of real building locations in San Francisco (Cali-
fornia) from the OpenStreetMap project, and use random
sample sets of those locations as facilities and clients on SF
(CA). We synthesize the weight of each client by sampling
from a Zipf distribution with a skewness parameter α > 1.

We also generate a synthetic dataset(denoted as UN),
which has SF as its underlying road network and facilities
and clients in uniform distribution. For the facilities and clients
which are not located on road network edges, we snapped
them to the closest edge.

Default Settings. For the computation of all three types of
OL queries, we vary five parameters in our experiments:
(i) the number of facilities |F |, (ii) the number of clients
|C|, (iii) the percentage τ = |E◦c |/|E◦| of edges (in the
given road network) where the new facility can be built, (iv)
the input parameter θ of the FGP algorithm (see Figure 11),
and (v) the skewness parameter α of the Zipf distribution
from which we sample the weight of each client. For the up-
dates, we vary two parameters: |F | and |C|. For AddC(c)
and DelC(c), we randomly generate 1000 updates, and for
AddF (f) and DelF (f), we randomly generate 50 updates.
Unless specified, we set |F | =1000 and |C| =300,000, so as
to capture the likely scenario in practice where the number
of clients is much larger than the number of facilities. We
also set τ = 100%, in which case the OL queries are most
computationally challenging, since we need to consider ev-
ery point in the road network as a candidate location. The
default value of θ is set to 100% (1h) when Blossom (OTF)
is used to derive attraction sets, as discussed in Section 6.2.
Finally, we set α = +∞ by default, in which case all clients
have a weight 1.

10.1 The OLQ Computation in the Static Case

We first investigate the efficiency and scalability of various
methods for different OLQ queries in the static case.

Effect of θ. Our first sets of experiments focus on competi-
tive location queries (CLQ). Figure 16 shows the effect of θ
on the running time of our solutions that incorporate FGP.
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Fig. 17 Effect of α (CLQ on SF)
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Fig. 18 Effect of |F | (CLQ on SF)

Observe that, when Blossom is adopted to compute attrac-
tion sets, our solution is most efficient at θ = 1. This is con-
sistent with the analysis in Section 6.2 that θ = 1 (i) leads
to the tightest benefit upper-bounds, and thus, (ii) facilitates
early termination of edge traversal. In contrast, when OTF is
adopted, θ = 1 results in inferior computational efficiency.
This is because, when OTF is employed, a larger θ leads to a
higher cost for deriving benefit upper-bounds, which offsets
the efficiency gain obtained from the tighter upper-bounds.
On the other hand, θ = 1h strikes a good balance between
the overhead of upper-bound computation and the tightness
of the upper-bounds, which justifies our choice of default
values for θ. Note that another possible way of identifying a
good θ value is to run tests on a (small) random sample of
the data set on the given network.

The OTF-based solution outperforms the Blossom-based
approach in both cases. The reason is that, regardless of the
value of θ, the Blossom-based approach requires comput-
ing the attraction sets of all vertices. In contrast, the OTF-
based solution only needs to derive the attraction sets of
the vertices in each subgraph it visits. Since the OTF-based
solution visits only subgraphs whose benefit upper-bounds
are large, it computes a much smaller number of attraction
sets than the Blossom-based approach does, and hence, it
achieves superior efficiency.

For brevity, in the following we focus on the larger SF
dataset. The results on CA are qualitatively similar.

Effect of α. Figure 17 shows the effect of α on the perfor-
mance of our solutions, varying α from 2 to +∞. Evidently,
the memory consumption and running time of our solutions
are insensitive to the clients’ weight distributions. The rea-
son is that, for Basic approach, the change of α does not
change the complexity of our solution. And for FGP ap-
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Fig. 19 Effect of |C| (CLQ on SF)
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Fig. 20 Effect of |C| (CLQ on UN)

proach, the distribution of weights is independent with the
clients’ locations, so the distribution of benefit upper bounds
of subgraphs will not be affected by α, which indicates that
the performance of FGP approach is also insensitive to the
weight distribution.

Effect of |F |. Next, we vary the number of facilities (|F |)
from 32 to 4000. Figures 18(a) illustrates the memory con-
sumption of our solutions on SF. The methods based on
Blossom incur significant space overheads, and run out of
memory when |F | <1000. This is due to the O(n2) space
complexity of Blossom. In contrast, the memory consump-
tion of OTF-based methods are always below 20MB, since
OTF incurs only O(n) space overhead.

Figure 18(b) shows the running time of each of our solu-
tions as a function of |F |. The methods that incorporate FGP
outperform the approaches with Basic in all cases, since
FGP provides much more effective means to avoid visiting
the edges that do not contain optimal locations. In addition,
when FGP is adopted, the OTF-based approach is superior
to the Blossom-based approach, as is consistent with the re-
sults in Figure 16. Finally, the running time of all solutions
decreases with the increase of |F |. The reason is that, when
|F | is large, each client c tends to have a smaller attractor
distance a(c). This reduces the number of road network ver-
tices that are within a(c) distance to c, and hence, c should
appear in a smaller number of attraction sets. Therefore, the
attract set of each vertex in the road network would become
smaller, in which case that Blossom and OTF can be exe-
cuted in shorter time. Consequently, the overall running time
of our solutions is reduced.

Effect of |C|. The next set of experiments investigate the
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Fig. 21 Effect of τ (CLQ on SF)
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Fig. 22 Comparison with ONLQ in [10] (on SF)
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Fig. 23 Effect of |F | (MinSumLQ on SF)

scalability of our solutions by varying the number of clients,
|C|, from 100,000 to 500,000. Figures 19(a) (19(b)) shows
the space consumption (running time) of our solutions as
functions of |C|. As in the previous experiments, Blossom-
based approaches consume enormous amounts of memory,
while the method that incorporates both FGP and OTF con-
sistently outperform all the other methods in terms of both
space and time. The running time of all solutions increases
with |C|, because a larger |C| leads to (i) more edges in the
transformed network G and (ii) more clients in each attrac-
tion set, both of which complicate the computation of opti-
mal locations. We also conduct the same experiment on UN
dataset. Figure 20 shows the result. As we can see, the data
distribution does not affect the performance of the proposed
methods. Especially, with a uniform spatial distribution of
facilities and clients, our FGP approach still has the best
performance. That is because, the sizes of subgraphs gen-
erated by FGP approach are different, so the upper bounds
of different subgraphs can be various, which indicates that
the FGP approach is still effective when the spatial distribu-
tion of facilities and clients is uniform.

Effect of τ . Figure 21 illustrates the memory consumption
and running time of our solutions when τ changes from 1%

to 100%. Blossom-based approaches require less memory
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Fig. 24 Effect of |C| (MinSumLQ on SF)
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Fig. 25 Effect of |F | (MinMaxLQ on SF)
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Fig. 26 Effect of |C| (MinMaxLQ on SF)

when τ decreases, since (i) a smaller τ leads to fewer edges
in Ec and (ii) Blossom stores only the attraction sets of the
endpoints of the edges in Ec. In contrast, the space over-
heads of OTF-based methods do not change with τ , since
they always compute attraction sets on the fly, regardless of
the value of τ .

On the other hand, the running time of Blossom-based
approaches is not affected by τ . This is because, Blossom
computes attraction sets, by invoking Dijkstra’s algorithm
for each client c ∈ C, and putting c in the attraction set
of every vertex v ∈ V such that d(c, v) ≤ a(c). Observe
that, even if we require only a single attraction set of a ver-
tex v0 ∈ V , Blossom still needs to execute Dijkstra’s al-
gorithm once for each client c; otherwise, it is impossible
to decide whether d(c, v0) ≤ a(c) holds or not. As a con-
sequence, the efficiency of Blossom-based approaches does
not improve with the decrease of τ . In contrast, OTF-based
solutions incur much less computation overhead when τ is
reduced, since they compute attraction sets by invoking OTF
only on the vertices of the edges in Ec. The decrease in τ
renders |Ec| smaller, in which case the OTF-based solutions
require fewer executions of the OTF algorithm, and hence,
their running time decreases.
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Fig. 27 Memory Consumption of AddC(c) (CLQ on SF)

Comparison with method in [10]. Figure 22 compares the
memory consumption and running time of our solution with
the method proposed in [10], which is denoted as ONLQ for
convenience. In order to compare the performance fairly, we
re-implemented ONLQ using C++, and perform all experi-
ments on a Linux machine with the previously mentioned
configurations. Our (the OTF with FGP) method has a less
memory consumption but longer running time compared to
the ONLQ method when we vary |C|. This observation can
also be found when we vary |F |.

MinSum and MinMax Location Queries. The rest of our
experiments evaluate the performance of our solutions for
MinSum location queries (MinSumLQ) and MinMax loca-
tion queries (MinMaxLQ). In general, the experimental re-
sults are mostly similar to those for competitive location
queries. This is not surprising, because our solutions for the
three types of queries follow the same framework, and adopt
the same algorithmic components (e.g., Blossom and OTF).

Figures 23 and 24 show the effects of |F | and |C| on the
performance of our solutions for MinSum location queries.
Again, the method that combines FGP and OTP achieves
the best space and time efficiency in all cases. In addition,
Blossom-based approaches entails excessively high memory
consumption, especially when |F | <1000 or |C| >300,000.

Figures 25 and 26 plot the memory consumption and
running time of our solutions for MinMax location queries.
The relative performance of each method remains the same
as in Figures 23 and 24. Interestingly, each method incurs a
higher computation time for MinMax location queries than
for the other two types of OL queries. This is caused by the
fact that, our solutions identify local MinMax locations on
any given edge e, by computing the upper envelope of a set
of WAD functions (see Section 4.3). This procedure is more
costly than computing the local competitive (MinSum) lo-
cations on e.

Summary. Our results show that the solutions incorporat-
ing FGP and OTF consistently achieve the best performance
for all three types of OL queries, in term of both space and
time. In particular, they require less than 20MB memory and
200 seconds to answer OL queries in a road network with
174,955 nodes, 223,000 edges, up to 500,000 clients, and
down to 32 facilities (recall that the performance of the so-
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Fig. 28 Update running time: effect of |F | (CLQ on SF)
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Fig. 29 Update running time: effect of |C| (CLQ on SF)

0 1 2 3 4 5

10
−3

10
−2

10
−1

number of clients ×105

ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

 

 

Basic
FGP

 

 

Blossom OTF

out of memory

(a) AddC(c)

0 1 2 3 4 5

10
−3

10
−2

10
−1

number of clients ×105

ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

 

 

Basic
FGP

 

 

Blossom OTF

out of memory

(b) DelC(c)

0 1 2 3 4 5
10

−1

10
0

10
1

number of clients ×105

ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

 

 

Basic
FGP

 

 

Blossom OTF

out of memory

(c) AddF (f)

0 1 2 3 4 5
10

−1

10
0

10
1

number of clients ×105
ru

nn
in

g 
tim

e 
(s

ec
on

ds
)

 

 

Basic
FGP

 

 

Blossom OTF

out of memory

(d) DelF (f)

Fig. 30 Update running time: effect of |C| (CLQ on UN)

lutions improve with the number of facilities). We also rec-
ommend that setting θ = 1h for these solutions, so as to
optimize the overall running time.

10.2 Incremental OLQ Queries Under Updates

We next examine the impacts of updates and the efficiency
of our incremental methods for answering OLQ queries in
an event of update. As shown in default settings, in each
experiment, we continuously add or delete 1000 clients or
50 facilities, and we show the average running time unless
otherwise specified.

Effect of |F |. The first set of experiments focuses on com-
petitive location queries (CLQ). We vary the number of fa-
cilities (|F |) from 32 to 4000. Figure 27(a) shows the mem-
ory consumption of AddC(c) as a function of |F |. Clearly,
Blossom-based methods consume enormous amounts of mem-
ory due to the O(n2) space overhead for maintaining the
attraction sets of all vertices. For OTF-based methods, the
memory consumption is slightly larger than that of the OLQ
computation in the static case due to the maintaining of lo-
cal optimal locations, but still very small. The memory con-

sumption in other three operations have similar trends, so
we omit them for brevity.

Figure 28 shows that the running time of all solutions
decreases with the increase of |F |. The reason is that, when
|F | is larger, a client will have a smaller attractor distance
and a facility will attract a smaller set of clients. This re-
duces the effect range of a client and the computation cost
when the optimal locations on an edge need to be recom-
puted. Furthermore, the running time of an update is much
(at least 2 to 3 orders of magnitude) less than that of the
OLQ computation from Section 10.1. That is because each
update only takes effect on a part of the road network in all
of the proposed incremental update algorithms.

In particular, Figures 28(a) and 28(b) show the running
time of the AddC(c) and DelC(c) operations. Clearly, the
FGP approaches always outperform the Basic approaches,
since with FGP we do not need to maintain local optimal
locations for all edges. Moreover, the method that does in-
corporate FGP and OTF outperforms the other three ap-
proaches.

Figures 28(c) and 28(d) show the running time for the
AddF (f) and DelF (f) operations. In this case, the FGP
approaches are quite similar to the Basic approaches. That is
because adding or deleting a facility will cause the changes
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Fig. 31 Update running time: growth of updates (CLQ on SF)
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Fig. 32 Comparison with CMRNQ in [11] (on SF)
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Fig. 35 Update running time: effect of |F | (MinSumLQ on SF)
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Fig. 33 Memory Consumption of AddC(c) (MinSumLQ on SF)
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Fig. 34 Memory Consumption of AddC(c) (MinMaxLQ on SF)

of attractor distances for many clients, which may lead to the
change of the upper bounds for many subgraphs. As a result,
the amount of edges that need to be maintained will be large
and there is a relatively high chance that at least one previ-

ously uncomputed subgraph will be fully computed during
the update operation, which may cause a high computation
overhead. The OTF-based methods slightly outperform the
Blossom-based methods in AddF (f), but are much slower
than Blossom-based methods in DelF (f). That is because,
in OTF-based methods, we need to maintain the distance
from each vertex to its nearest facility (see Section 5) and
when deleting a facility f , we must find the new nearest fa-
cility for each of the vertices that previously take f as its
nearest facility, which takes O(n log n) time and is a signif-
icant computation overhead for updates.

Effect of |C|. Next, we vary the number of clients (|C|)
from 100,000 to 500,000. Figure 27(b) shows the memory
consumption of AddC(c) as a function of |C|. Same as the
discussion for the effect of |F |, the memory consumption is
also similar to that in the static OLQ computation. Similar
trends were also observed for the memory consumption of
other three types of updates, which are omitted for brevity.

Figure 29 shows the running time as a function of |C|.
The running time of all solutions increases as |C| goes up.
That is because, when |C| is large, |E| is also large and there
are more clients in each attraction set, which will increase
the computation complexity. Nevertheless, all incremental
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Fig. 36 Update running time: effect of |C| (MinSumLQ on SF)
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Fig. 37 Update running time: effect of |F | (MinMaxLQ on SF)
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Fig. 38 Update running time: effect of |C| (MinMaxLQ on SF)

methods under different update operations are much more
efficient when compared to computing OLQs from scratch
using the static OLQ methods from Section 10.1.

Figure 30 shows the effect of |C| on UN dataset. As we
can see, the trends are similar to those in Figure 29. These
figures shows that the proposed methods are insensitive to
the distribution of facilities and clients. The same conclusion
is observed for other variants of OLQ.

Effect of growth of updates. Next we investigate the sta-
bility of our solution when updates grows over time. Figure
31 shows the running time of each update operation in a
series of continuous updates (1000 clients updates and 50

facilities updates). In Figures 31(a) and 31(b), we show the
average running time of every continuous 100 clients up-
dates. In Figures 31(c) and 31(d), we show the average run-
ning time of every continuous 5 facilities updates. It can be
seen that the running time for all four update operations is
stable with the growth of number of updates. For basic ap-
proach, it is because we maintain local optimal locations for
all edges and the time of updates will not affect anything
in the framework. For FGP approach, since we develop a
method to avoid the number of subgraphs that need to be
maintained to become larger and larger with more updates,

as discussed in the last paragraph in Section 8, the updating
time is still stable.

Comparison with method in [11]. Figure 32 compares the
memory consumption and running time of the OTF-FGP
method with the method proposed in [11], which is denoted
as CMRNQ for convenience. The OTF-FGP method has a
less memory consumption but longer running time compared
to the CMRNQ method when we vary |C|. We omit the fig-
ures for varying |F | as they have the similar trends.

MinSum and MinMax Location Queries. The rest of our
experiments evaluates the performance of proposed incre-
mental solutions on updates for MinSumLQ and MinMaxLQ
queries. These results are shown in Figures 33- 38, and they
generally report similar trends as that in the CLQ problem
discussed above.

In particular, Figures 33 and 34 show that our best incre-
mental update methods (i.e., the ones that incorporate both
FGP and OTF) for MinSumLQ and MinMaxLQ enjoy small
memory footprints for the AddC(c) operation. The mem-
ory consumption of these methods for other three types of
update operations is similar, and were omitted for brevity.



22 Bin Yao et al.

32 64 250 1000 4000
10

0

10
1

10
2

10
3

10
4

number of facilities

ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

 

 

Basic
FGP

 

 

Blossom OTF

out of memory

(a) Effect of |F |

0 1 2 3 4 5
10

0

10
1

10
2

10
3

number of clients ×105
ru

nn
in

g 
tim

e 
(s

ec
on

ds
)

 

 

Basic
FGP

 

 

Blossom OTF

out of memory

(b) Effect of |C|

Fig. 39 COLQ Running time: effect of |F | and |C| (CLQ on SF)
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Fig. 40 COLQ Running time: effect of agility (CLQ on SF)

Figures 35 and 36 investigate the effect of |F | and |C| on
the running time under different types of update operations
for the MinSumLQ queries, respectively. In general, larger
|F | leads to smaller update cost and larger |C| on the other
hand introduces higher update cost, for similar reasons as
we have explored for the CLQ queries. Nevertheless, com-
pared to the running time of the corresponding static OLQ
methods from Sections 10.1, our incremental update meth-
ods are much more efficient (faster by at least 3-4 orders of
magnitude).

Similar experiments were carried out in Figures 37 and
38, to investigate the effect of |F | and |C| on the running
time under different types of update operations for the Min-
SumLQ queries, respectively. And not surprisingly, we have
observed similar trends, where the incremental update meth-
ods’ running time are at least 3-4 orders of magnitude smaller
compared to that in the naive approach (if we were to run the
static OLQ computations from scratch after every update us-
ing the static methods from Section 10.1).

Summary. Our results show that the incremental update meth-
ods are highly effective, efficient, and scalable. In particular,
solutions incorporating both FGP and OTF achieve the best
performance for all three types of OL queries on all update
operations. Last but not least, our framework for handling
updates can incrementally answer and monitor OL queries
in a much faster fashion than the baseline approach of re-
computing the OLs from scratch after each update using the
static methods from Section 10.1.

10.3 Continuous Optimal Location Queries

In this section, we investigate the performance of adapting
our update algorithms to answer the continuous optimal lo-
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Fig. 41 COLQ Running time: effect of moving distance (CLQ on SF)

cation queries (COLQ). We set up the sequence of opera-
tions in a continuous optimal location query as follows.

In-between any two optimal location queries, a percent-
age fF (fC) of the facilities (clients) will change their loca-
tions, where fF (fC) is called the facility (client) agility. For
any facility or client that is selected to issue an update, its
new location is given as follows. This facility or client will
perform a random walk on the road network with a fixed
distance dF (dC) to determine its new location.

That said, here we only showed the results of the CLQ
variant (competitive location query). The results for the other
two types of optimal location queries, MinSumLQ and Min-
MaxLQ, have exhibited similar trends. Hence, we omitted
them for brevity.

In the following experiments, the default values of |F |
and |C| is the same as that in the previous experiments,
i.e. 1, 000 and 300, 000 respectively. The fF (fC) is set to
1% (0.1%) by default, , which means that 10 facilities and
300 clients will issue updates between two OLQs. The de-
fault value of dF (dC) is set to the average edge length. We
measured the average running time of answering every OLQ
query from a continuous OLQ.

Figure 39(a) examines the effect of the |F |. With the in-
creasing number of facilities, the running time for the COLQ
has decreased. When |F | = 4, 000, the COLQ can be an-
swered in several seconds using the blossom based methods
under the default setup. In this case, more facilities imply
that the attraction distance of each client will be reduced,
leading to faster dynamic update time. On the other hand,
the running time has increased with more clients, as shown
in Figure 39(b). Note that, the update time for each client is
almost constant. The reason for the increase of query time
in Figure 39(b) is because that we set the client agility to a
percentage of |C|, i.e. there are more clients moving when
|C| becomes larger.

Figure 40(a) shows that the running time of COLQ in-
creases linearly to the facility agility. But the running time
only increases slightly when we increase the client agility as
shown in Figure 40(b). This is because that the running time
of the facility update operations is the dominating factor, al-
though there are more client updates in each experiment.

Finally, we vary the moving distance of the facilities and
clients. As we can see in Figure 41, the running time is not
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affected by either dF or dC . This is because that our method
answers COLQ for each facility (client) by a deletion and
an insertion, which are insensitive to the moving distance of
the facility (client).

11 Conclusion

This work presents a comprehensive study on optimal loca-
tion queries in large, disk-resident road network databases,
closing the gap between previous studies and practical appli-
cations in road networks. Our study covers three important
types of optimal location queries, and introduces a unified
framework that addresses all three query types efficiently.
We have also extended our framework to handle updates ef-
ficiently in an incremental fashion. Extensive experiments
on real datasets demonstrate the scalability of our solution
in terms of running time and space consumption. An inter-
esting direction for future work includes the optimal location
queries for moving objects in road networks.
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