
1-1

K Nearest Neighbor Queries and KNN-Joins in
Large Relational Databases (Almost) for Free

Bin Yao, Feifei Li, Piyush Kumar

Florida State University

2-1

Introduction

KNN queries and KNN-Joins:
spatial databases, pattern recognition, DNA sequencing.

2-2

Introduction

KNN queries and KNN-Joins:
spatial databases, pattern recognition, DNA sequencing.

Our goal: design relational algorithms for KNN and KNN-Joins.

2-3

Introduction

KNN queries and KNN-Joins:
spatial databases, pattern recognition, DNA sequencing.

Our goal: design relational algorithms for KNN and KNN-Joins.

Augmented with ad-hoc query conditions and optimized by
the query optimizer.

Readily applied on relational databases without updating the
engine.

Do it in SQL!

3-1

Challenge and benefit in designing
relational algorithms

The main challenge:
A query optimizer cannot optimize user-defined functions (UDF).

3-2

Challenge and benefit in designing
relational algorithms

The main challenge:
A query optimizer cannot optimize user-defined functions (UDF).

SELECT TOP k * FROM Address A, Restaurant R
WHERE R.Type=’Italian’ AND R.Wine=’French’
ORDER BY Euclidean (A.X, A.Y, R.X, R.Y)

3-3

Challenge and benefit in designing
relational algorithms

The main challenge:
A query optimizer cannot optimize user-defined functions (UDF).

SELECT TOP k * FROM Address A, Restaurant R
WHERE R.Type=’Italian’ AND R.Wine=’French’
ORDER BY Euclidean (A.X, A.Y, R.X, R.Y)

4-1

Previous work on kNN and kNN-Join

iDistance for high dimensions.

Exact kNN solution:
R-tree for low dimensions

4-2

Previous work on kNN and kNN-Join

iDistance for high dimensions.

Balanced box decomposition tree

Exact kNN solution:
R-tree for low dimensions

LSB-tree

Approximate kNN solution:

Locality sensitive hashing

Medrank

4-3

Previous work on kNN and kNN-Join

iDistance for high dimensions.

Balanced box decomposition tree

the iJoin algorithm

Exact kNN solution:
R-tree for low dimensions

LSB-tree

Approximate kNN solution:

Locality sensitive hashing

Medrank

the Gorder algorithm

kNN-Join solution:

5-1

Problem formulation

Data set P stored in table RP : {pid, Y1, · · · , Yd, A1, · · · , Ah}.
Query set Q stored in table RQ: {qid,X1, · · · , Xd, B1, · · · , Bg}.

5-2

Problem formulation

KNN queries: let A = kNN(q,RP),

(A ⊆ RP) ∧ (|A| = k) ∧ (∀a ∈ A,∀r ∈ RP −A, |a, q| ≤ |r, q|).

Data set P stored in table RP : {pid, Y1, · · · , Yd, A1, · · · , Ah}.
Query set Q stored in table RQ: {qid,X1, · · · , Xd, B1, · · · , Bg}.

5-3

Problem formulation

KNN queries: let A = kNN(q,RP),

(A ⊆ RP) ∧ (|A| = k) ∧ (∀a ∈ A,∀r ∈ RP −A, |a, q| ≤ |r, q|).

KNN-Join:
for ∀s ∈ Q, produce k pairs (s, r), for ∀r ∈ kNN(s, Rp).

Data set P stored in table RP : {pid, Y1, · · · , Yd, A1, · · · , Ah}.
Query set Q stored in table RQ: {qid,X1, · · · , Xd, B1, · · · , Bg}.

5-4

Problem formulation

KNN queries: let A = kNN(q,RP),

(A ⊆ RP) ∧ (|A| = k) ∧ (∀a ∈ A,∀r ∈ RP −A, |a, q| ≤ |r, q|).

KNN-Join:
for ∀s ∈ Q, produce k pairs (s, r), for ∀r ∈ kNN(s, Rp).

Approximate k nearest neighbors:
Suppose q’s kth nn from P is p∗ and r∗ = |q, p∗|,
p be the kth NN of q for some kNN algorithm A and rp = |q, p|,
(p, rp) ∈ Rd × R is (1 + ε)-approximate solution of kNN if
r∗ ≤ rp ≤ (1 + ε)r∗.

Data set P stored in table RP : {pid, Y1, · · · , Yd, A1, · · · , Ah}.
Query set Q stored in table RQ: {qid,X1, · · · , Xd, B1, · · · , Bg}.

6-1

Z-value and Z-order curve

z-value of a point:
For point (2, 6), binary representation is (010, 110), z-value is
011100 = 28.

6-2

Z-value and Z-order curve

z-value of a point:
For point (2, 6), binary representation is (010, 110), z-value is
011100 = 28.

A well-known approach:

6-3

Z-value and Z-order curve

z-value of a point:
For point (2, 6), binary representation is (010, 110), z-value is
011100 = 28.

A well-known approach:

Map points in a multi-dimensional space into one dimension
by using z-values.

6-4

Z-value and Z-order curve

z-value of a point:
For point (2, 6), binary representation is (010, 110), z-value is
011100 = 28.

A well-known approach:

Map points in a multi-dimensional space into one dimension
by using z-values.

Translate the kNN search into one dimensional range search
on the z-values.

7-1

Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

7-2

Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

q

7-3

Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

q

7-4

Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

q

7-5

Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

Our idea: produce α randomly shifted copies of the input data
set (P 0, . . . , Pα) and repeat the one dimensional range search
(γ = O(k) points up and down next to the q) for each copy.

7-6

Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

q

7-7

Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

q

−→v

7-8

Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

−→v
q

7-9

Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

−→v
q

γ = 2

7-10

Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

Our idea: produce α randomly shifted copies of the input data
set (P 0, . . . , Pα) and repeat the one dimensional range search
(γ = O(k) points up and down next to the q) for each copy.

Retrieve the kNN from the unioned candidates of the α copies.

7-11

Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

Our idea: produce α randomly shifted copies of the input data
set (P 0, . . . , Pα) and repeat the one dimensional range search
(γ = O(k) points up and down next to the q) for each copy.

Retrieve the kNN from the unioned candidates of the α copies.

Theorem 1:
Using α = O(1) and γ = O(k), zχ-kNN guarantees
an expected constant factor approximate kNN result with
O(logf

N
B + k/B) number of page accesses (clustered index

on z-values).

8-1

Approximation algorithm

Candidates C = ∅;
For i = 0, . . . , α {

Find zip as the successor of zq+vi in P i;

Let Ci be γ points up and down next to zip in P i;

For each point p in Ci, let p = p− vi;
C = C

⋃
Ci;

}
Let Aχ = kNN(q, C) and output Aχ.

zχ-kNN (point q, point sets {P 0, . . . , Pα})

8-2

Approximation algorithm

Candidates C = ∅;
For i = 0, . . . , α {

Find zip as the successor of zq+vi in P i;

Let Ci be γ points up and down next to zip in P i;

For each point p in Ci, let p = p− vi;
C = C

⋃
Ci;

}
Let Aχ = kNN(q, C) and output Aχ.

zχ-kNN (point q, point sets {P 0, . . . , Pα})

8-3

Approximation algorithm

Candidates C = ∅;
For i = 0, . . . , α {

Find zip as the successor of zq+vi in P i;

Let Ci be γ points up and down next to zip in P i;

For each point p in Ci, let p = p− vi;
C = C

⋃
Ci;

}
Let Aχ = kNN(q, C) and output Aχ.

zχ-kNN (point q, point sets {P 0, . . . , Pα})

8-4

Approximation algorithm

Candidates C = ∅;
For i = 0, . . . , α {

Find zip as the successor of zq+vi in P i;

Let Ci be γ points up and down next to zip in P i;

For each point p in Ci, let p = p− vi;
C = C

⋃
Ci;

}
Let Aχ = kNN(q, C) and output Aχ.

zχ-kNN (point q, point sets {P 0, . . . , Pα})

8-5

Approximation algorithm

Candidates C = ∅;
For i = 0, . . . , α {

Find zip as the successor of zq+vi in P i;

Let Ci be γ points up and down next to zip in P i;

For each point p in Ci, let p = p− vi;
C = C

⋃
Ci;

}
Let Aχ = kNN(q, C) and output Aχ.

zχ-kNN (point q, point sets {P 0, . . . , Pα})

9-1

SQL statement for approximation algorithm

SELECT TOP k * FROM
(SELECT TOP γ + 1 * FROM RP ,

(SELECT TOP 1 zval FROM RP
WHERE RP .zval ≥ q.zval
ORDER BY RP .zval ASC) AS T

WHERE RP .zval≥T.zval
ORDER BY RP .zval ASC

UNION
SELECT TOP γ * FROM RP
WHERE RP .zval < T.zval
ORDER BY RP .zval DESC) AS C

ORDER BY Euclidean(q.X1,q.X2,C.Y1,C.Y2)

9-2

SQL statement for approximation algorithm

SELECT TOP k * FROM
(SELECT TOP γ + 1 * FROM RP ,

(SELECT TOP 1 zval FROM RP
WHERE RP .zval ≥ q.zval
ORDER BY RP .zval ASC) AS T

WHERE RP .zval≥T.zval
ORDER BY RP .zval ASC

UNION
SELECT TOP γ * FROM RP
WHERE RP .zval < T.zval
ORDER BY RP .zval DESC) AS C

ORDER BY Euclidean(q.X1,q.X2,C.Y1,C.Y2)

9-3

SQL statement for approximation algorithm

SELECT TOP k * FROM
(SELECT TOP γ + 1 * FROM RP ,

(SELECT TOP 1 zval FROM RP
WHERE RP .zval ≥ q.zval
ORDER BY RP .zval ASC) AS T

WHERE RP .zval≥T.zval
ORDER BY RP .zval ASC

UNION
SELECT TOP γ * FROM RP
WHERE RP .zval < T.zval
ORDER BY RP .zval DESC) AS C

ORDER BY Euclidean(q.X1,q.X2,C.Y1,C.Y2)

9-4

SQL statement for approximation algorithm

SELECT TOP k * FROM
(SELECT TOP γ + 1 * FROM RP ,

(SELECT TOP 1 zval FROM RP
WHERE RP .zval ≥ q.zval
ORDER BY RP .zval ASC) AS T

WHERE RP .zval≥T.zval
ORDER BY RP .zval ASC

UNION
SELECT TOP γ * FROM RP
WHERE RP .zval < T.zval
ORDER BY RP .zval DESC) AS C

ORDER BY Euclidean(q.X1,q.X2,C.Y1,C.Y2)

10-1

Exact KNN retrieval: naive solution

The exact kNN points are enclosed by the approximate kth
nearest neighbor ball.

10-2

Exact KNN retrieval: naive solution

SELECT TOP k * FROM RP
WHERE Euclidean(q.X1,q.X2,RP .Y1,RP .Y2)≤ rad(p,Aχ)
ORDER BY Euclidean(q.X1,q.X2,RP .Y1,RP .Y2)

The exact kNN points are enclosed by the approximate kth
nearest neighbor ball.

10-3

Exact KNN retrieval: naive solution

SELECT TOP k * FROM RP
WHERE Euclidean(q.X1,q.X2,RP .Y1,RP .Y2)≤ rad(p,Aχ)
ORDER BY Euclidean(q.X1,q.X2,RP .Y1,RP .Y2)

The exact kNN points are enclosed by the approximate kth
nearest neighbor ball.

Can we do better?

11-1

Exact KNN retrieval

M
k = 3

11-2

Exact KNN retrieval

M
k = 3

approximate kth nn ball

11-3

Exact KNN retrieval

M
k = 3

approximate kth nn ball

exact kth nn ball

11-4

Exact KNN retrieval

M
k = 3

approximate kth nn ball

exact kth nn ball
approximate
kth nn box

11-5

Exact KNN retrieval

Lemma 4: For a rectangular box M and its lower-left and upper-
right corner points δ`, δh, ∀p ∈M , zp ∈ [z`, zh], where zp stands
for the z-value of a point p and z`, zh correspond to the z-values
of δ` and δh respectively.

M
k = 3

approximate kth nn ball

exact kth nn ball
approximate
kth nn box

11-6

Exact KNN retrieval

Corollary 1: Let z` and zh be the z-values of δ` and δh
points of M(Aχ). For all p ∈ A, zp ∈ [z`, zh].

M
k = 3

approximate kth nn ball

exact kth nn ball
approximate
kth nn box

11-7

Exact KNN retrieval

Corollary 1: Let z` and zh be the z-values of δ` and δh
points of M(Aχ). For all p ∈ A, zp ∈ [z`, zh].

M
k = 3

approximate kth nn ball

exact kth nn ball
approximate
kth nn box

12-1

Exact KNN retrieval

Let γ` and γh denote the left and right γ-th points close to
the query point, if zγ`

≤ z` and zγh
≥ zh in at least one of

the α tables, Aχ = A

12-2

Exact KNN retrieval

Let γ` and γh denote the left and right γ-th points close to
the query point, if zγ`

≤ z` and zγh
≥ zh in at least one of

the α tables, Aχ = A

13-1

Exact KNN retrieval

If not, we can find A by doing a range query with [zj` , z
j
h] on any

of the α tables. Ideally, we use the table with smallest [zj` , z
j
h].

13-2

Exact KNN retrieval

If not, we can find A by doing a range query with [zj` , z
j
h] on any

of the α tables. Ideally, we use the table with smallest [zj` , z
j
h].

13-3

Exact KNN retrieval

If not, we can find A by doing a range query with [zj` , z
j
h] on any

of the α tables. Ideally, we use the table with smallest [zj` , z
j
h].

13-4

Exact KNN retrieval

If not, we can find A by doing a range query with [zj` , z
j
h] on any

of the α tables. Ideally, we use the table with smallest [zj` , z
j
h].

13-5

Exact KNN retrieval

If not, we can find A by doing a range query with [zj` , z
j
h] on any

of the α tables. Ideally, we use the table with smallest [zj` , z
j
h].

14-1

KNN-join, higher dimensions and updates

Our approach can easily and efficiently support join queries.

14-2

KNN-join, higher dimensions and updates

Deal with data in any dimension: without changing the frame-
work; for large dimensionality (say d > 20), using LSH-based
method.

Our approach can easily and efficiently support join queries.

14-3

KNN-join, higher dimensions and updates

Deal with data in any dimension: without changing the frame-
work; for large dimensionality (say d > 20), using LSH-based
method.

Updates: for deletion, delete record r based on its pid from
all talbes R0, . . . ,Rα; for insertion, calculate the z-values of
the point for all randomly shifted versions, insert them into
corresponding tables.

Our approach can easily and efficiently support join queries.

15-1

Experiment Setup

All algorithms are implemented in Microsoft SQL Server 2005.
Experiments are conducted on an Intel Xeon CPU @ 2.33GHz.
The memory of the SQL Server is set to 1.5GB.

15-2

Experiment Setup

All algorithms are implemented in Microsoft SQL Server 2005.
Experiments are conducted on an Intel Xeon CPU @ 2.33GHz.
The memory of the SQL Server is set to 1.5GB.

Real data sets: points representing the road-networks for states
in USA

15-3

Experiment Setup

All algorithms are implemented in Microsoft SQL Server 2005.
Experiments are conducted on an Intel Xeon CPU @ 2.33GHz.
The memory of the SQL Server is set to 1.5GB.

Real data sets: points representing the road-networks for states
in USA

Two synthetic data sets: uniform points and random clustered
points.

15-4

Experiment Setup

All algorithms are implemented in Microsoft SQL Server 2005.
Experiments are conducted on an Intel Xeon CPU @ 2.33GHz.
The memory of the SQL Server is set to 1.5GB.

Real data sets: points representing the road-networks for states
in USA

Two synthetic data sets: uniform points and random clustered
points.

Compare against the Medrank and iDistance algorithms (im-
plemented by SQL statement and store precedure).

16-1

Experiment Setup

The default experimental parameters are summarized below

Symbol Definition Default Value
k number of neighbors 10
N size of points set 1,000,000
α randomly shifted copies 2
γ number of points up and down 2k
d dimensionality 2

17-1

Results for the kNN query: approximation quality

18-1

Results for the kNN query: approximation quality

18-2

Results for the kNN query: approximation quality

18-3

Results for the kNN query: approximation quality

19-1

Results for the kNN query: running time

19-2

Results for the kNN query: running time

UN

19-3

Results for the kNN query: running time

California

19-4

Results for the kNN query: running time

UN

19-5

Results for the kNN query: running time

California

19-6

Results for the kNN query: running time

20-1

Conclusions

Presented a constant approximation for the kNN query, with loga-
rithmic page accesses in any fixed dimension and extended it to the
exact solution, both using just O(1) random shifts.

20-2

Conclusions

Presented a constant approximation for the kNN query, with loga-
rithmic page accesses in any fixed dimension and extended it to the
exact solution, both using just O(1) random shifts.

All the algorithms can be implemented by SQL operators in rela-
tional databases.

20-3

Conclusions

Presented a constant approximation for the kNN query, with loga-
rithmic page accesses in any fixed dimension and extended it to the
exact solution, both using just O(1) random shifts.

Our approach naturally supports kNN-Joins.

All the algorithms can be implemented by SQL operators in rela-
tional databases.

20-4

Conclusions

Presented a constant approximation for the kNN query, with loga-
rithmic page accesses in any fixed dimension and extended it to the
exact solution, both using just O(1) random shifts.

Our approach naturally supports kNN-Joins.

No changes are required for different dimensions, and the up-
date is trivial.

All the algorithms can be implemented by SQL operators in rela-
tional databases.

20-5

Conclusions

Presented a constant approximation for the kNN query, with loga-
rithmic page accesses in any fixed dimension and extended it to the
exact solution, both using just O(1) random shifts.

Our approach naturally supports kNN-Joins.

No changes are required for different dimensions, and the up-
date is trivial.

Study other related, interesting queries in this framework, e.g.,
the reverse nearest neighbor queries.

Examine the relational algorithms to the data space other than
the Lp-norms, such as the road networks.

Future research:

All the algorithms can be implemented by SQL operators in rela-
tional databases.

21-1

The End

THANK Y OU

Q and A

