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Abstract—Participatory sensing has gained more and more
attention in recent years, since it provides a promising approach
which enables large-scale data collection and analysis with a
crowd of public workers. In a participatory sensing system,
the platform recruits workers to participate in multiple sensing
processes. However, sensing processes are usually constrained
by limited budgets, while the demands of workers are highly
heterogenous due to various factors. It is then crucial for workers
to participate in the sensing processes effectively while their
costs are covered by the payments. In this paper, we propose
a general sensing processes participation game framework with
heterogenous workers and sensing processes to address this
issue. We show that it is NP-hard to find a sensing processes
participation solution which maximizes the number of satisfied
workers. Inspired by the finite improvement property of the
game, we design and implement a sensing processes participation
algorithm which is guaranteed to reach a pure Nash equilibrium
in polynomial time, by allowing workers to change their strategy
profiles asynchronously due to satisfaction incentives. We also
demonstrate that the performance of the algorithm is close
to optimal when workers and sensing processes are not very
heterogenous, by bounding the price of anarchy. Simulation
results show that our algorithm is effective and efficient.

Index Terms—Participatory sensing, smartphones, participa-
tion game, congestion game, sensing data.

I. INTRODUCTION

Over the past few years, the usage of smartphones is ex-
panded incredibly all over the world. Significant improvements
on 4G cellular networks and hardware manufacturing make the
smartphone more attractive and accessible. It is estimated that
a total of 1.5 billion smartphones will be shipped worldwide
in 2017, according to the International Data Corporation
(IDC) Worldwide Quarterly Mobile Phone Tracker [1]. The
popularity of smartphones has greatly changed our lifestyles in
many aspects including business, health care, social networks,
environment monitoring, safety, and transportation [2].

Nowadays multiple cheap but powerful sensors (i.e., GPS,
microphone, camera, digital compass, accelerometer and gyro-
scope) have been embedded in the smartphone to enhance user
experience, while the computational performance is boosted by
powerful processors. All of these enhancements have made
smartphone a powerful handheld device for large-scale data
sensing and processing. It is feasible to build participatory
sensing systems to collect environment and social sensing data
with personal smartphones. Previous studies have proposed
numerous systems and applications to utilize the potential of
participatory sensing, including Zee [3] and FreeLoc [4] for
indoor localization, GigaSight [5] for video collection, PMP
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Figure 1. A participatory sensing system.

[6] for privacy protection, a crowd counting solution [7] based
on audio tones, a bus arrival time prediction system [8] and
an autonomous place naming system [9].

We introduce the structure of a participatory sensing system
in Fig. 1. A participatory sensing platform possesses some
continuous sensing processes, each of them focus on the
collection of a kind of sensing data (i.e., traffic flow, air
quality or noise level). A sensing process consists of a series
of tasks, and the task is a specified part of the sensing process
(i.e., observing the traffic flow at a crossroad for 10 minutes,
measuring the noise level of a bus station for 5 minutes). The
platform publicizes the descriptions and requirements of the
sensing processes to a large group of smartphone workers. A
worker who is interested joins one of the sensing processes
and accomplishes one task to contribute the sensing process.
After the collection of the sensing data, the platform computes
and delivers the payment to each worker.

Considering that participating in the sensing process nat-
urally incurs a cost for the worker, it is essential for the
worker to receive a payment, which is usually in the form
of a monetary reward. However, the budgets of the sensing
processes is usually severely constrained, while the quality
of the sensing process depends crucially on the number of
participating workers. Since sensing data collected by different
users may be redundant, the issue of marginal effect arises as
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Figure 2. Illustration of the
marginal effect of the sensing pro-
cess [10].
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the number of participating workers grows larger [10]. The
more workers participating in the same sensing process, the
less value of each submitted task. It naturally implies that
the payment scheme of the sensing process is not a fixed
value, but decreases as the number of workers participating
the same sensing process increases (see Fig. 2 and Fig. 3 for
illustrations).

Moreover, workers may have different goals and costs due
to various factors even when joining the same sensing process.
The factors include the schedule of worker activities, the
energy cost of data sensing, processing and transmission, the
geographical distance travelled for the task, the worker’s skill
level in required fields, even the discomfort of the worker
caused by accomplishing the task [11]. Workers therefore have
satisfaction states when participating in the sensing processes.
If the payment is not sufficient enough to compensate the
resource consumption, the potential privacy breach and its own
interest, a worker will refuse to participate. It is then important
to make sure the participatory sensing system satisfies as many
workers as possible.

Several studies [12] [13] on the incentive mechanism design
have been proposed for participatory sensing systems. Yang et
al. [13] propose a platform-centric model and a user-centric
model for participatory sensing systems, and two incentive
mechanisms for each model. In [12], a reverse auction based
incentive mechanism called RADP is proposed to minimize
the incentive cost. Auction based incentive mechanisms are
conducted by the platform in a centralized manner, and none
of them consider the issues of marginal effect and data
redundancy. Requiring users to report costs to the platform
is also impractical due to the issue of privacy.

In this paper, we propose a general sensing processes par-
ticipation game framework for participatory sensing systems
with heterogenous workers and sensing processes. The idea of
the sensing processes participation game is based on the con-
gestion games [14] in game theory. There are multiple players
and resources in congestion games, where a player selects a
resource to use. The utility of the player is not only related
to the resource it selects, but also the number of the players
who are sharing the same resource. By thinking the players as
smartphone workers, and the resources as sensing processes,
the sensing processes participation game can be modeled as
a congestion game. With the finite improvement property of
the sensing processes participation game, We have designed
and implemented a distributed sensing processes participation

algorithm to find the best response strategy for everyone. The
workers are allowed to compute their best response strategies
and update their strategy profile asynchronously. The system
will eventually reach a pure Nash equilibrium in polynomial
time. We have performed the simulation and results show
that the performance of our sensing processes participation
algorithm is guaranteed in most general cases when workers
have similar costs and goals.

The main contributions of our work are listed as follows.
• We propose a general sensing processes participation

game framework for participatory sensing systems with
heterogenous workers and sensing processes, and the
privacy information of the worker is preserved and pro-
tected. We obtain several significant analytic results of
our game framework.

• We prove that it is NP-hard to find a social optimum
solution of a sensing processes participation game, which
is the motivation of our work.

• We prove that every sensing processes participation game
possesses the finite improvement property, which enables
us to to design a fast sensing processes participation
algorithm. The algorithm allows the workers to self-
organize into a satisfied pure Nash equilibrium easily.
Every worker can find its best response strategy with
the algorithm. We also prove that the performance of the
algorithm is close to the social optimal solution when the
workers are not too heterogenous.

• We conduct extensive simulations to evaluate the perfor-
mance of the sensing processes participation algorithm.
Results show that our algorithm is effective and efficient.

The rest of the paper is organized as follows. Related works
are discussed in Section II. We introduce the sensing processes
participation game model in Section III, then propose and
study its property in Section IV. The sensing processes partic-
ipation algorithm is proposed in Section V. We will evaluate
the performance of the algorithm in Section VI. Finally the
paper is concluded Section VII.

II. RELATED WORK

Participatory sensing systems and applications are proposed
in many studies to collect sensing data from smartphone
users. Rai et al. [3] propose a participatory sensing system
called Zee to collect site-specific calibration data of radio
frequency fingerprinting for indoor localization. GigaSight is
a scalable Internet system proposed in [5], which is capable
of continuous collecting videos from remote devices.

To estimate the number of mobile devices in an area, [7]
propose a crowd counting solution based on audio tones with
the help of microphones and speaker phones. Zhou et al. [8]
propose a bus arrival time prediction system with multiple
sensing resources, including cell tower signals, movement
statuses and audio recordings. An autonomous place naming
system is proposed in [9] with the crowdsourcing data and the
information extracted from social networks.

There are several research studies on incentive mechanisms
for mobile phone sensing [11], [13], [15], [16], [17]. In [11],



a reverse auction incentive mechanism is proposed for user
participation level determination and payment allocation, while
preserving the specific participation cost of the users.Yang
et al. [13] propose two incentive mechanisms, one based on
Stackelberg game for a platform-centric model and another
based on auction for a user-centric model. The knowledge
of user participation cost is required in the first mechanism,
which is not practical due to the issue of privacy.

Luo et al. [15] propose two incentive schemes to maximize
the fairness and the social welfare of information service
crowdsourcing scenarios, where the user gets the service as
a payment. A reputation mechanism has been proposed in
[16] for improving the performance of pricing schemes in
crowdsourcing applications, while Liu et al. [17] propose an
efficient network management framework to tackle a series of
challenges including motivating the users to participate.

All of the above incentive mechanisms are centralized
approaches toward the issue of incentive. As the number
of users grows larger, the users are becoming more and
more heterogenous, which means the platform has to gather
massive amount of user information to perform the centralized
optimization. Moreover, sensing data collected from workers
have marginal effect, since the participating sensing system
suffers from problems of data redundancy [10]. Therefore
the payment for a smartphone worker shall decrease as the
number of the workers participating the same sensing process
increases. None of the above mechanisms address this issue.

There are several congestion game based algorithms pro-
posed in [18] and [19], in the context of spectrum sharing. Due
to the fact that the channels of the spectrum are uncontrolled,
an unlicensed user is selfish and interested in utilizing its own
transmission bandwidth when the licensed user is dormant.
Southwell et al. [18] propose a spectrum mobility game to
utilize the social welfare of the unused channels, while in
[19], the issue of spectrum reuse that different users can share
the same channel without introducing interference when far
enough is discussed. These approaches are not readily to be
applied in the context of participatory sensing, since they
considered specific properties pertain to the spectrum sharing
problems.

III. SENSING PROCESSES PARTICIPATION GAME

In this section, we formally define the sensing processes
participation game in participatory sensing. We will first
introduce the system model of participatory sensing, then we
propose the sensing processes participation game. We also
propose the key game concepts and a simplified form of
sensing processes participation game for the convenience of
discussion.

A. Preliminaries

We introduce the participatory sensing system shown in
Fig. 1. The system consists of a participatory sensing platform
and many smartphone workers. The whole process of partici-
patory sensing is as follows. The platform first formalizes and
publicizes sensing processes. A sensing process is a series of

tasks aimed at collecting the same kind of sensing data (i.e.
traffic status, air quality and noise level). Each worker joins
and contributes to a sensing process by accomplishing one of
the tasks belonging to the sensing process. Assume there are
a set of N = {1, 2, 3, ..., N} workers are interested in partic-
ipating the sensing processes, where N ≥ 2. Participating the
sensing process naturally incurs a cost for the worker, therefore
a payment is demanded as a compensation for its effort in
accomplishing the task. Each sensing process has a limited
budget B, which is shared by all the workers participating
the same sensing process. Since the issue of data redundancy
and marginal effect arise when the number of players joining
the same sensing process increases [10], the payment of the
worker is not only related to itself, but also the number of
workers participating in the same sensing process. Worker
participation is the most important element for providing an
adequate level of service quality [12]. A worker joins one
sensing process and submit it to the platform. The workers then
conduct the sensing task belonging to the sensing processes
and send the data to the platform. The platform collects the
sensing data and sends the payment to the workers.

We make an important assumption that each worker has
a goal on the payoff. When the payoff of the worker is
higher than its goal, the worker is then satisfied and will not
change to other sensing processes. This is reasonable since
that most of the workers are not insatiably greedy. Former
studies on incentive mechanisms also assume that the worker
valuation of sensing data is finite and can be reached [12],
[13]. On the contrary, when the payoff of the worker is lower
than its goal, the worker would rather refuse to participate.
It is then important to make sure workers are satisfied when
participating in the sensing processes. The inspiration of our
work comes from [20] and [21]. In [20], the authors propose
a game where players are willing to satisfy their demands,
and the goal of the game is to find the satisfaction equilibria
where all the players are satisfied. [21] extends the idea of
satisfaction players in Qos satisfaction games in the context
of spectrum sharing.

The focus of this paper is to present the sensing processes
participation game framework to model the satisfaction state
of the workers, which we call a sensing process participation
problem. Other issues such as design and implementation of
a participating system, privacy [22], [23], energy saving [17]
and application development [24] are out of the scope of this
paper. Our sensing processes participation game is capable of
catching different details of participating systems, which will
be discussed in Subsection III-B.

B. Game Model

A sensing processes participation game is defined by a
tuple

(
N , T , (Sn)n∈N , (P t

n)n∈N ,t∈T , (G
t
n)n∈N ,t∈T

)
where:

• N = {1, 2, 3, ..., N} is the set of participatory workers,
also referred as players.

• T = {1, 2, 3, ..., T} is the set of available sensing
processes. A worker can only join one sensing process



at a time. Since workers are allowed to be dormant,
we introduce element 0 as a virtual sensing process. The
payoff of a worker who joins the sensing process 0 (i.e.,
not participating in any sensing processes) is always 0.
When the sensing processes cannot satisfy a worker due
to limited budget, it is beneficial for the worker to be
dormant by joining the sensing process 0. The strategy
set of sensing processes with virtual sensing process 0
therefore is T̃ = {0, 1, 2, 3, ..., T}.

• S = {s1, s2, s3, ..., sN} ∈ T̃ N is the strategy profile of
the sensing processes participation game. The strategy
of a worker n is sn ∈ T̃ N . We use the strategy profile S
to represent the state of the whole system.

• P t
n (I

t(S)) is a non-negative and non-increasing function
which characterizes the payoff of a worker n with the
strategy of joining a sensing process t. Specifically, we
have P t

n (I
t(S)) = Rt

n (I
t(S)) − Ct

n, with an integer
It(S) = | {n ∈ N : sn = t} | as the congestion level of
the sensing process t (i.e., the number of workers who
join the sensing process t). The congestion level of virtual
sensing process 0 is always 0, since no dormant worker
will affect the others’ utility. We present the details of
the parameters in P t

n (.) as follows.

– Rt
n (I

t(S)) is non-negative and non-increasing func-
tion which characterizes the payment of a player. For
a worker n joining a sensing process t, the payment
Rt

n is determined, given the congestion level It(S).
In general, as the number of workers It(S) par-
ticipating the same sensing process t increases, the
payment to each worker Rt

n (I
t(S)) decreases. We

leave the specific definition of function Rt
n (I

t(S))
to the platform to cover most of the details of
the sensing processes participation. For example, a
sensing process wants to simply share its budget
Bt to all the participating workers , then we have
Rt

n (I
t(S)) = Bt

It(S) .
– Ct

n is the cost of a worker n for participating a
sensing process t. We allow workers to specify their
own cost functions, i.e., different workers may have
the different Ct

n even on the same sensing process
t. In this way, we are able to model the cost of
the worker due to participating sensing processes.
Important factors that affect the cost include the
schedule of participatory sensing, the energy cost
of the sensing process, the geographical distance
travelled, even the discomfort of the worker caused
by accomplishing the task. Workers can feel free to
take all of the factors into consideration and have
their own ideal costs for each sensing process.

• Gt
n ≥ 0 is the goal of the payoff of the worker n.

Workers may have different preferences for the same
sensing process due to different reasons such as the
interest level of the sensing process and the worker’s skill
level in required fields. It is reasonable to allow different
workers to have different goals of payoff even for the

same sensing process. We will further use Gt
n to verify

whether the worker n is satisfied when participating.
We define the utility Un (S) of a worker n in strategy profile

S is

Un (S) =


1, if sn ̸= 0 and P t

n

(
It(S)

)
≥ Gt

n,

0, if sn = 0,

−1, if sn ̸= 0 and P t
n

(
It(S)

)
< Gt

n.

(1)

Accordingly, the satisfaction state of the worker is divided into
three categories.

• A satisfied worker is a worker who joins a sensing
process sn ̸= 0 and receives the payment Rt

n (I
t(S)),

which is not smaller than the worker goal Gn. The
satisfied worker will not change its strategy, and the utility
of the worker is 1.

• A dormant worker is a worker who is not participating
in any sensing processes. Since the worker will not
receive any payment and spend any cost, the payoff of
a dormant worker is always 0. Being dormant is not a
good strategy when more than one sensing process which
will make the worker satisfied is available, but definitely
better than unsatisfied. The utility of a dormant worker
is therefore 0.

• An unsatisfied worker is a worker who joins a sens-
ing sensing process sn ̸= 0 but receives the payment
Rt

n (I
t(S)), which is smaller than the worker goal Gn.

The worker is not satisfied and will refuse to participate
in the sensing process, and the utility of the worker is -1.

It is clear that an unsatisfied worker can join the proper sens-
ing process to be dormant or satisfied, and therefore increases
its utility. We assume that all the workers are rational, that is,
all the workers want to increase its utility when possible. It
is suggested that if we allow workers to change their strategy
freely with enough time, The final strategy profile will not
contain any unsatisfied workers, which satisfies the property
of individual rationality. We also say a sensing process t
is satisfying if given the strategy profile of other workers,
changing a worker n’s strategy to t will make the worker
satisfied.

C. Key Game Concepts

We introduce the key game concepts of sensing processes
participation game as follows.

Definition 1 (Social Welfare). The social welfare∑N
n=1 Un (S) of a strategy profile S is the sum of all

the players’ utilities.

Definition 2 (Social Optimum). A strategy profile S is Social
Optimum when it maximizes the social welfare.

Definition 3 (Better Response Update). The event where a
player changes its strategy from p to q is a better response
update if and only if Un (q, S−n) > Un (p, S−n), where
the argument of the function is written as S = (sn, S−n)
with S−n = (s1, s2, s3, ..., sn−1, sn+1, ..., sN ) representing
the strategy profile of all the players except player n.



Definition 4 (Pure Nash Equilibrium). A strategy profile S is
a Pure Nash Equilibrium if no players under S can perform
a better response update, i.e., Un (sn, S−n) > Un (q, S−n) for
any q ∈ T̃ and n ∈ N .

Definition 5 (Finite Improvement Property). A game has
the Finite Improvement Property if any asynchronous better
response update process (i.e., no more than one player is
allowed to perform better response update at any given time)
terminates at a pure Nash equilibrium within a finite number
of updates.

D. Transformation to an Equivalent Number of Workers
Threshold Form

Considering both the goal and the cost is specified by work-
ers, we introduce an equivalent form of the sensing processes
participation game for the convenience of discussion. The key
idea of transformation is to relate the payment of a worker to
its satisfaction level, therefore reduce the size of parameters.

In the sensing processes participation game model, the goal
Gt

n and cost Ct
n of a worker n are determined, given its strat-

egy profile of the sensing process t. We could use the demand
Dt

n = Gt
n + Ct

n of the worker n participating in sensing
process t and the payment Rt

n (I
t(S)) to determine whether

the worker is satisfied. Since the payment function Rt
n (I

t(S))
is non-negative and non-increasing with the congestion level
It(S), there must exist a critical congestion threshold value
V t
n corresponding to the demand Dt

n, that is, if and only if
It(S) > V t

n , there exists Rt
n (I

t(S)) > Dt
n. We formally

define the threshold V t
n of a sensing process t with respect to

a worker n to be an integer as follows, given the pair(P t
n, G

t
n).

• if Rt
n (I

t(S)) > Dt
n for each It ∈ N , then V t

n = 0
(i.e., even the player is the only player participating in
the sensing process, it will not be satisfied).

• if Rt
n (I

t(S)) < Dt
n for each It ∈ N , then V t

n = N + 1
(i.e., the player is always satisfied even all the players are
participating the same sensing process).

• Otherwise V t
n is equal to the maximum integer It ∈ N

such that Rt
n (I

t(S)) > Dt
n.

The definition of V t
n guarantees that

Rt
n

(
It(S)

)
> Dt

n ⇔ It(S) < V t
n. (2)

We then formally present a sensing processes participation
game g =

(
N , T , (Sn)n∈N , (P t

n)n∈N ,t∈T , (G
t
n)n∈N ,t∈T

)
in the number of workers threshold form g′ =(
N , T , (Sn)n∈N , (V t

n)n∈N ,t∈T

)
. The utility of a worker n

is accordingly changed to

Un (S) =


1, if sn and It(S) < V t

n,

0, if sn = 0,

−1, if sn ̸= 0 and It(S) > V t
n.

(3)

Since the transformation guarantees that the utility Un (S)
of player n in g is the same as that of player n in g′ for any
strategy profile S and player n, the original game g is thus

equivalent to the game g′. We will use the number of workers
threshold form to analyze the sensing processes participation
game for the rest of the paper.

IV. THE PROPERTY OF THE SENSING PROCESSES
PARTICIPATION GAME

In this section, we present the properties of the sensing
processes participation game, including the computational
complexity of finding the social optimum, the existence of
pure Nash equilibrium and the finite improvement property.

A. Computational Complexity of Finding the Social Optimum

Considering that the workers and sensing processes are
heterogenous with different goals, costs and budgets, finding
the social optimum of a sensing processes participation game
is challenging. We show the computational complexity of
finding the social optimum in Theorem 1.

Theorem 1. The problem of finding a social optimum of a
sensing processes participation game is NP-hard.

Proof: For the convenience of discussion, we call the
problem of finding a social optimum of a sensing processes
participation game as the sensing processes participation prob-
lem. We first introduce the 3-dimensional matching decision
problem.

Definition 6 (3-dimensional matching). LET X ,Y , and Z be
three disjoint sets, and let T be a subset of X ×Y ×Z . That
is, T ⊆ {(x, y, z) : x ∈ X , y ∈ Y, z ∈ Z}. If M ⊆ T , and
for distinct triples (x1, y1, z1) ∈ M and (x2, y2, z2) ∈ M,
we have x1 ̸= x2, y1 ̸= y2 and z1 ̸= z2, then M is a 3-
dimensional matching.

We refer to an element (x, y, z) ∈ T as an edge. The 3-
dimensional matching decision problem is as follows. Suppose
that the set sizes satisfy |X | = |Y| = |Z| = I . Given
an input T and |T | ≥ I , decide whether there exists a
3-dimensional matching M ⊆ T with the maximum size
|M| = I . The 3-dimensional matching decision problem is a
well-known NP-complete problem in Karp’s 21 NP-complete
problems [25]. We then prove that the sensing processes
participation problem is NP-hard, by showing that if an oracle
can solve the sensing processes participation problem, then
the 3-dimensional matching decision problem can be solved
in polynomial time.

Given an instance of 3-dimensional matching
((X ,Y,Z) , T ) with |X | = |Y| = |Z| = I and |T | = J ≥ I ,
we can construct an instance of sensing processes participation
problem as follows. Let set θ = X ∪ Y ∪ Z. Each element
n ∈ θ is regarded as worker n. We introduce the additional
worker set ϑ to contain the J − I workers, and the total
number of the workers in θ and ϑ is 3I + J − I = 2I + J .
An edge (x, y, z) is a sensing process, and the set of sensing
process is T , with the number of sensing process J . We
therefore define the congestion thresholds V t

n of a worker n
and a sensing process t as follows. For a worker n in set
θ participating in the sensing process t = (x, y, z), if n is



an element of the edge t in T (i.e., one of the following is
true: t = x, t = y or t = z), we set V t

n = 3. Otherwise
we set V t

n = 1. For a worker n in the set ϑ participating in
the sensing process t = (x, y, z), we set V t

n = 1. It is clear
that 3 workers can participate in the same sensing process
simultaneously and they are all satisfied, if and only if they
form an edge in T . Since a worker can only join one sensing
process, given a sensing processes participation solution based
on a set of sensing processes, each of which has 3 satisfied
workers, which corresponds to a 3-dimensional matching in
T . In this case, we have the global optimal solution with
2I + J workers and J sensing processes, if and only if there
exists a 3-dimensional matching M ⊆ T with the maximum
size |M| = I . The strategy profile of the solution is that I
sensing processes are having 3 satisfied workers and J − I
sensing processes are having 1 satisfied worker.

If we have an oracle to find the global optimal solution
of a sensing processes participation problem with 2I + J
workers and J sensing processes, we can decide that whether
there exists a 3-dimensional matching M ⊆ T with the
maximum size |M| = I in a polynomial time O (1). It
implies that the 3-dimensional matching decision problem is
polynomially reducible to the sensing processes participation
problem, therefore the sensing processes participation problem
is NP-hard.

The proof of Theorem 1 is based upon showing that the 3-
dimensional matching decision problem (which is well known
to be NP-complete [25]) can be reduced to the problem of
finding a social optimum of a sensing processes participation
game with V t

n ∈ {1, 3} for any worker n and sensing process
t. Theorem 1 is the motivation for our study, since it suggests
that solving the sensing processes participation problem is
fundamentally difficult. Exploring solutions with a game based
approach is therefore reasonable and makes sense, with the
inspiration of congestion game based models proposed in [18]
[19].

B. Characterization of Pure Nash Equilibria
Since we allow workers to update their strategy profiles

based on satisfaction incentives, it is important to understand
that whether the final strategy profile is a pure Nash equi-
librium. It is obvious that no worker is unsatisfied when the
strategy profile is a pure Nash equilibrium. To make this clear,
consider a strategy profile S where a worker is satisfied or
dormant. The worker can always change its strategy profile
to the virtual sensing process (i.e., choose to be dormant)
to improve its utility. We show that every sensing processes
participation game has the finite improvement property in
Theorem 2, which naturally leads to the existence of pure
Nash equilibrium.

Theorem 2. Every N-player sensing processes participation
game has the finite improvement property. Any asynchronous
(i.e., only one better response update at a time) better response
update process with no more than 3N2 + 4N steps is guar-
anteed to reach a pure Nash equilibrium, regardless of the

initial strategy profile of the game. If for any worker n in the
game, the initial strategy profile sn = 0, then a pure Nash
equilibrium is guaranteed to be reached in 2N2 + 2N steps.

Proof: We define the function Φ which maps
each strategy profile S to a real integer. We have
Φ(S)=2

∑
n∈N :Sn ̸=0 V

Sn
n −

∑
n∈N :Sn ̸=0 I

Sn (S), where
V Sn
n is the critical threshold of player n when it joins the

sensing process Sn, and ISn (S) is the congestion level of
the sensing process Sn.

Suppose that player n′ performs a better response update
by changing its strategy from p ∈ T̃ = {0, 1, 2, 3, ..., T}
to q ∈ T̃ = {0, 1, 2, 3, ..., T}, therefore the strat-
egy profile is changed from Sp = S (p, S−n′) =
(s1, s2, s3, ..., sn′−1, p, sn′+1, ..., sN ) to Sq = S (q, S−n′) =
(s1, s2, s3, ..., sn′−1, q, sn′+1, ..., sN ).

For the next three possible cases, we will show that
Φ(Sq) > Φ(Sp) + 1:

1) p ̸= 0, q = 0 (i.e., the player becomes dormant).
2) p = 0, q ̸= 0 (i.e., the player changes its strategy from

dormant to satisfying sensing processes).
3) p ̸= 0, q ̸= 0 (i.e., the player changes its strategy from

one sensing process to another).
In case 1), where p ̸= 0, q = 0, we have Φ(Sq) =

Φ (Sp)−2V p
n′−(−2Ip (Sp) + 1). The update where the player

n′ change its strategy profile from sensing process p to 0
decreases the sum of thresholds by 2V p

n′ , and decreases the
sum of congestion levels by 2Ip (Sp)− 1. It is clear that
the congestion level of player n′ is decreased from Ip (Sp)
to 0, and there are Ip (Sp) − 1 other players are participat-
ing the same sensing process p. Each player experiences a
decrement of 1 and the sum of congestion levels of these
players decreases by Ip (Sp)− 1. Since the case is a better
response update, we have Un′ (Sp) = −1 and Un′ (Sq) = 0.
It follows that V p

n′ < Ip (Sp). Since both V p
n′ and Ip (Sp)

are integers, it implies that V p
n′ ≤ Ip (Sp)− 1. It follows that

Φ(Sq)− Φ(Sp) = 2Ip (Sp)− 2V p
n′ − 1 ≥ 1.

In case 2), where p = 0, q ̸= 0, we have Φ(Sq) =
Φ (Sp) + 2V q

n′ − (2Iq (Sp) + 1). The update where the player
n′ changes from sensing process 0 to q increases the sum
of thresholds by 2V q

n′ , and increases the sum of congestion
levels by 2Iq (Sp) + 1. It is clear that the congestion level
of player n′ is increased from 0 to Iq (Sp) + 1, since there
are Iq (Sp) other players are participating in the same sensing
process q. Each player experiences an increment of 1 and the
sum of congestion levels of these players increases by Iq (Sp).
Also, since the case is a better response update, we have
Un′ (Sp) = 0 and Un′ (Sq) = 1. It follows that V q

n′ > Iq (Sp).
It follows that Φ (Sq)− Φ(Sp) = 2V q

n′ − 2Iq (Sp)− 1 ≥ 1.
In case 3), where p ̸= 0, q ̸= 0, we have Un′ (Sp) = −1 and

Un′ (Sq) = 1. This case of the better response update is the
combination of the above two cases of better update responses
in a certain order, the first case (i.e., the player changes its
strategy from sensing process p to 0), followed by the second
case (i.e., the player changes its strategy from sensing process
0 to q). Performing the above two cases in the order is equal



to the case that the player changes its strategy from sensing
process p to q, and in each case the value of Φ is increased
by 1. It follows that Φ(Sq)− Φ(Sp) > 2 > 1.

Without loss of generality, we can suppose that −1 < V t
n <

N + 1, ∀n ∈ N , ∀t ∈ T , since thresholds greater than N +
1 induces the same kind of behavior as thresholds equal to
N +1 (i.e., the players possessing the thresholds can never be
satisfied) and thresholds less than −1 induces the same kind of
behavior as thresholds equal to −1 (i.e., the players possessing
the thresholds are always satisfied). For any strategy profile
S, we have −N <

∑
n∈N :Sn ̸=0 V

Sn
n < N (N + 1). Also,

we have 0 < Itn < N,∀n ∈ N , ∀t ∈ T , it follows that
0 <

∑
n∈N :Sn ̸=0 I

Sn (S) < N2. From these inequalities, we
have −

(
N2 + 2N

)
< Φ(S) < 2N2 + 2N .

When the participatory system starts to evolve into a better
state (i.e., allowing workers to update their strategies), the
value of Φ (S) can not be less than −

(
N2 + 2N

)
. With every

better response update, the value of Φ(S) increases by 1.
Suppose that we have performed k better response updates
from strategy profile Sp, and the current strategy profile is Sq .
We must have k −

(
N2 + 2N

)
< Φ(Sq) = Φ (Sp) + k <

2N2 + 2N . It follows that k ≤ 3N2 + 4N . Especially, when
the system starts from the strategy profile that all the players
are dormant, the value of Φ(S) is 0, it follows similarly that
k ≤ 2N2 + 2N .

We have shown that when we start the sensing processes
participation process and allow players to update their strate-
gies, the number of the better update process is no more than
3N2+4N . This implies that the system must reach a strategy
profile r from which no better update response is available.
Such strategy profile r must be a pure Nash equilibrium by
definition.

Theorem 2 is important since that it implies that allowing
workers to update their strategy profiles will finally reach a
stable state effectively. The feature of the finite improvement
property enables us to design a fast sensing processes partic-
ipation algorithm in Section V. Note that although Theorem
2 implies that pure Equilibrium exists and can be found in
polynomial time, there are conditions where multiple pure
Nash equilibria exist. Under these conditions, it is not guar-
anteed that the most beneficial pure Nash equilibrium will be
reached. For a sensing processes participation game, reaching
the state of certain pure Nash equilibrium is difficult since
players perform better response updates randomly.

C. Price of Anarchy

Although Theorem 1 shows that finding a social optimum
of a sensing processes participation game is difficult, finding
a pure Nash equilibrium of the game is proved to be relatively
easy, shown by Theorem 2. It naturally raises the question that
how the social welfare of pure Nash equilibrium compare to
that of a social optimum.

We discuss this issue with the concept of the price of
anarchy [26]. The definition of the price of anarchy in sensing
processes participation game is

PoA=
max

{∑N
n=1 Un (S) : S ∈ T̃ N

}
min

{∑N
n=1 Un (S) : S ∈ SNE

} , (4)

where SNE is the set of all the pure Nash equilibria, T̃ N is
the set of all the strategy profile of our game. The value of
the price of anarchy is the maximum of the social welfare of
all the strategy profiles, divided by the minimum welfare of a
pure Nash equilibrium.

Theorem 3. Consider a N-player sensing processes partic-
ipation game

(
N , T , (Sn)n∈N , (V t

n)n∈N ,t∈T

)
. Assume that

V t
n ≥ 1 for each player n and each sensing process t. The

price of anarchy of the game satisfies

PoA ≤ min

{
N,

max {V t
n : n ∈ N , t ∈ T }

min {V t
n : n ∈ N , t ∈ T }

}
. (5)

Proof: We introduce a lemma first before proving the
result of the price of anarchy. Let W (S) denote the number
of satisfied workers in a strategy profile S.

Lemma 1. Suppose that Sp is a pure Nash equilibrium of
the sensing processes participation game, and Sq is a social
optimum of the sensing processes participation game. The
following statements are true:

1) There are no unsatisfied workers in Sp.
2) We have

∑N
n=1 Un (Sp) =W (Sp) =

∑T
t=1 I

t (Sp).
3) There are no unsatisfied workers in Sq .
4) We have

∑N
n=1 Un (Sq) =W (Sq) =

∑T
t=1 I

t (Sq).

Proof: Sp is a pure Nash equilibrium if and only if no
one can perform a better response update in Sp, implied in
Subsection III-C. Assume that there is a worker who is unsat-
isfied in Sp, the worker can improve its utility by performing
a better response update. This contradicts the assumption that
Sp is a pure Nash equilibrium. This proves Statement 1).

Statement 2) implies that for any worker n under Sp, we
have Un (Sp) ∈ {0, 1}. A worker is satisfied if and only
if Un (Sp) = 1. This implies that the number of satisfied
worker W (Sp) equals the social welfare

∑N
n=1 Un (Sp) = of

the strategy profile Sp. Moreover, every non-dormant worker
is satisfied in Sp, and

∑T
t=1 I

t (Sp) is the number of all
the non-dormant workers in Sp, we must have W (Sp) =∑T

t=1 I
t (Sp). This proves Statement 2).

To prove Statement 3), note that by making a worker to
change its strategy from unsatisfied to dormant, the social
welfare of a strategy profile with an unsatisfied worker can
be increased. The strategy profile therefore is not a social
optimum.

The proof of Statement 4) is similar to the proof of
Statement 2), and is hence omitted.

Then we use Lemma 1 to prove Theorem 3.
Let Sp be a pure Nash equilibrium of the sensing processes

participation game which minimizes the social welfare among
all the pure Nash equilibria (note that the existence of a pure
Nash equilibrium is guaranteed by Theorem 2), and Sq is a



social optimum of the sensing processes participation game.
It is clear that all the four statements in Lemma hold in this
scenario. With Equation 4, Statement 2) and Statement 4) of
Lemma 1, the definition of the price of anarchy is

PoA=

∑N
n=1 Un (Sq)∑N
n=1 Un (Sp)

=
W (Sq)

W (Sp)
. (6)

We will then prove Statement (7)-(10) one by one.

W (Sq) ∈ {1, 2, ..., N} . (7)

W (Sq) ≤ T max
{
V t
n : n ∈ N , t ∈ T

}
. (8)

W (Sp) ∈ {1, 2, ..., N} . (9)

If W (Sp) < N, then W (Sp) ≥ T min
{
V t
n : n ∈ N , t ∈ T

}
.

(10)
We first consider the strategy profile Sz where the worker

n = 1 joins the sensing process t = 1, and all the other
workers are dormant. Note that according to the assumption
V t
n ≥ 1 for any worker n and any sensing process t, we have

I1 (Sz) ≤ V 1
1 , then the worker n = 1 must be satisfied. The

social welfare of Sz is then
∑N

n=1 Un (Sz) = 1. Since Sq is
the social optimum, its social welfare must not be less than
that of Sz , then we have

∑N
n=1 Un (Sq) ≥

∑N
n=1 Un (Sz) =

1. Combing the result here with the Statement 3) of Lemma
1 implies that W (Sq) ≥ 1. It is clear that W (Sq) is not
bigger than the number of workers N , hence we have proved
Statement (7).

Let t′ ∈ {1, 2, ..., T} denote the sensing process that have
the most participating workers in Sq , and we have It

′
(Sq) =

max {It (Sq) : t ∈ T }. Statement 4) of Lemma 1 implies that

W (Sq) =
∑T

t=1
It (Sq) ≤

∑T

t=1
It

′
(Sq) = TIt

′
(Sq) .

(11)
Since Statement (7) gives W (Sq) ≥ 1, and combining this

with Inequality (11) gives TIt
′
(Sq) ≥ 1. By the definition of

It
′
(Sq) we also have 1 ≤ It

′
(Sq), since It

′
(Sq) is an integer.

It follows that there must be some worker n′ participating in
the sensing process t′ under Sq . Statement (1) of Lemma 1
gives that n′ is satisfied when participating the sensing process
t′ under Sq . We must have

It
′
(Sq) ≤ V t′

n′ ≤ max
{
V t
n : n ∈ N , t ∈ T

}
. (12)

By combining Inequality (11) and (12), we have W (Sq) ≤
TIt

′
(Sq) ≤ T max {V t

n : n ∈ N , t ∈ T }. Hence we have
proved Statement (8).

We then prove that W (Sp) ≥ 1 by contradiction. If
W (Sp) ≥ 1 were false, Since W (Sp) is an integer, we
would have W (Sq) ≥ 0, which means there are no worker
participating in any sensing processes. However, the worker
n = 1 could do a better response update by participating in

the sensing process t = 1, Since V t
n ≥ 1. This contradicts our

assumption that Sp is a pure Nash equilibrium, hence we must
have W (Sp) ≥ 1. It is also clear that W (Sp) is not greater
than N , hence we have proved Statement (9).

We suppose that W (Sp) < N to prove Statement (10). It
is clear that there are some workers which are not satisfied
under Sp. Since Statement 1) of Lemma 1 implies that every
worker which is not satisfied under Sp is dormant, it follows
that there must be some worker n∗ that is dormant in Sp. Since
Sp is a pure Nash equilibrium, the player n∗ cannot perform
a better response by changing its strategy to sensing process
t. For each sensing process t ∈ {1, 2, ..., T}, we must have

It (Sp) ≥ V t
n∗ ≥ min

{
V t
n : n ∈ N , t ∈ T

}
. (13)

Combining Statement 4) of Lemma 2 with
Inequality (13), we have W (Sp) =

∑T
t=1 I

t (Sq) ≥∑T
t=1 min {V t

n : n ∈ N , t ∈ T } = Tmin {V t
n : n ∈ N , t ∈ T },

hence Statement (10) is proved.
Now we can prove Theorem 3. Statement (6) gives that

PoA=
W (Sq)
W (Sp)

. With Statement (7) gives W (Sq) ≤ N and
Statement (9) gives W (Sp) ≥ 1, we have

PoA ≤ N. (14)

We then consider two cases of PoA. In the first case,
Suppose that W (Sq) = W (Sp), and we have PoA = 1.

Since 1 ≤ max{V t
n:n∈N ,t∈T }

min{V t
n:n∈N ,t∈T } , Theorem 3 holds in this case.

In the second case, where W (Sq) ̸= W (Sp), we must
have W (Sq) ≥ W (Sp) since Sq is a social optimum.
Combining this with Statement (7) and Statement (9), we
have W (Sp) < N . It follows from Statement (10) that
we must have W (Sp) ≥ Tmin {V t

n : n ∈ N , t ∈ T }. Since
PoA=

W (Sq)
W (Sp)

, we have

W (Sq)

PoA
≥ Tmin

{
V t
n : n ∈ N , t ∈ T

}
. (15)

Combining this with Inequality (8), we have

PoA ≤ Tmax {V t
n : n ∈ N , t ∈ T }

Tmin {V t
n : n ∈ N , t ∈ T }

. (16)

We cancel the T s from Inequality (16) and combine it
with the Inequality (14), therefore we have Inequality (5) in
Theorem 3.

We make the assumption in Theorem 3 that when the player
is the only player of the participating sensing process, it cannot
be unsatisfied, therefore the PoA makes sense by avoiding
“Division by Zero”. Theorem 3 implies that the performance
of all the Nash equilibrium is close to the global optimal,
when the maximum threshold of a worker n to a sensing
process t is close to the minimum of that. It means that the
NP-hard problem of finding a social optimal (Theorem 1)
can be approximated by any better response updates process
(Theorem 2), when the demands of the workers are not too
diverse.



V. SENSING PROCESSES PARTICIPATION ALGORITHM

A. Overview

In this section, we propose a fast sensing processes par-
ticipation (SPP) algorithm to find a pure Nash equilibrium
of sensing processes participation games, where no worker
receives less payment than its goal. The basic idea of the
algorithm is to exploit the finite improve property and allow
the workers to update their strategies asynchronously (i.e., one
by one at a time). As described in Subsection III-B, we allow
workers to be dormant by joining the added virtual sensing
process 0. The utility of a dormant worker is always 0.

B. Design of sensing processes participation Algorithm

We describe the process of sensing processes participation
algorithm in the following two phases.

1) Phase 1: Sensing Process Announcement. the platform
announces the set of sensing processes T and the
associated payment functions (Rt

n (I
t(S)))t∈T . All the

N workers who are willing to participate register at the
platform, and the initial strategy profile of worker sn is
generated as 0 (i.e., dormant).

2) Phase 2: Strategy Update Process. the strategy update
process is based on the principle of better response
updates. This phase consists of three steps.

• Step 1: Select the Update Worker. the platform
publicizes all the number of workers participating
the same sensing processes (Rt

n (I
t(S)))t∈T . Then

it randomly selects a worker n′, which is allowed
to update its strategy profile.

• Step 2: Best Response Generation. the select-
ed worker n′ computes its set of best response
Bn′ (S)(i.e., changing the present strategy sn to
the elements of the better response set is a better
response update). The definition of Bn′ (S) is

Bn′ (S) =

{
t∗ : t∗ = argmax

t∈T̃
Un′ (sn′ , S−n′)

and Un′ (t∗, S−n′) > Un′ (S)

}
If Bn′ (S) ̸= ∅, the worker n′ will randomly join a
satisfying sensing process t∗ ∈ Bn′ (S) and submit
its update to the platform. Else the worker reports
that the update is not available.

• Step 3: Update the Strategy Profile. If the plat-
form receives the update from worker n′, it updates
the strategy profile S and the congestion levels
(It(S))t∈T . If the update is not available, then go
back to step 1.

The privacy of the data specified by the worker such as
goal Gt

n and cost Ct
n is preserved, Since all the data the

worker submits to the platform is its strategy sn. The algorithm
will reach a pure Nash equilibrium in less than 2N2 + 2N
steps (Theorem 2). The algorithm is implemented as a sensing
processes participation solution in Algorithm 1.

Algorithm 1: Sensing processes participation algorithm
Input The set of workers N ,

The set of sensing processes T ,
The payoff functions

(
Rt

n

(
It(S)

))
t∈T .

Initialization: For each worker n, the initial strategy profile
sn = 0.

Output The strategy profile S.
1: while for any worker n and the strategy profile S, Bn (S) ̸= ∅

do
2: The platform publicizes the congestion levels

(
It(S)

)
t∈T )

to all the workers.
3: The platform randomly selects a worker n′.
4: The worker computes its set of best response Bn′ (S).
5: if Bn′ (S) ̸= ∅ the worker then
6: randomly joins a sensing process t∗ ∈ Bn′ (S).
7: reports the update t∗ to the platform.
8: else
9: reports the update is not available and ask the platform to

randomly select a worker again.
10: end if
11: The platform receives the update t∗ and
12: updates the strategy profile S and the congestion

levels
(
It(S)

)
t∈T .

13: end while
14: return The strategy profile S

VI. SIMULATIONS

We evaluate the performance of the sensing processes
participation algorithm with two simulations. To compare with
the sensing processes participation algorithm, we have also
implemented a centralized baseline which simply assumes that
the demands of all the workers are equal. The platform then
initializes the strategy profile of each worker according to
the proportional distribution of the budget of a single sensing
process in the sum of all the budgets. Each worker checks if
the expected payment is higher than its own demand. If not,
then the worker is unsatisfied and will not participate in the
sensing progress.

We check the dynamics of worker payments and the perfor-
mance loss of the algorithm compared to the social optimum
in the first simulation. In the second simulation, we consider
the performance metrics including the social welfare and the
running time. The impact parameters include the number of
workers, the number of tasks and the range of worker demands.

A. Simulation Setup

We first implement a simulation of participatory sensing
system with N = 100 workers and T = 9 sensing processes.
The worker can be dormant by joining the virtual sensing
process t = 0, and the payoff of the worker is always 0. The
payment function Rt

n (I
t(S)) of a worker n participating in

sensing process t is given as Rt
n (I

t(S)) = Bt

It(S) . We assume
that workers only have two types of demands, a low demand
D = 4 and a high demand D = 9, regardless of the sensing
process joined. The sensing process t has the budget Bt = 50t,
while the virtual sensing process t = 0 has the budget B0 = 0.
The fraction of the workers with a high demand is varied from
0% to 100%.

In the second simulation, we consider a participatory sens-
ing system containing N workers and T sensing processes
with the budgets Bt. The number of the workers is varied
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Figure 4. Dynamics of the worker
payment with N = 100 workers and
T = 9 sensing processes.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
40

50

60

70

80

90

100

Fraction of workers with demand D = 9

N
u
m
b
e
r
o
f
sa
ti
sfi
e
d
w
o
rk
e
rs

 

 

Social optimum and Nash equilibrium
Social optimum
Nash equilibrium

Figure 5. Numbers of satisfied
workers at Nash equilibria and social
optima with N = 100 workers and
and T = 9 sensing processes.
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Figure 6. Impact of the number of
workers N on social welfare U (S)
while T = 24 and Dmax = 20.
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Figure 7. Impact of the number
of sensing processes T on social
welfare U (S) while N = 2500 and
Dmax = 20.
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Figure 8. Impact of the range
of demand Dmax on social welfare
U (S) while N = 2500 and T =
24.
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Figure 9. Impact of the number
of workers N on convergence steps
while Dmax = 20.
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Figure 10. Impact the of number of
sensing processes T on convergence
steps while Dmax = 20.
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Figure 11. Impact the of range of
demand Dmax on on convergence
steps while T = 24.

from 1000 to 5500, and the number of the sensing processes
T is varied from 9 to 49. The virtual sensing process t = 0
and the payoff function Rt

n (I
t(S)) of a worker n participating

in sensing process t is the same as that in the first simulation.
We assume that the demand of each worker Dt

n (i.e., the sum
of the goal and the cost of the worker) is uniformly distributed
over [1,Dmax] with Dmax varied from 4 to 40. The budget
of the sensing process t is Bt = 40t. Each measurement is
averaged over 50 instances.

B. Dynamic Convergence Status and Price of Anarchy

The dynamic payments of the participating workers.
We first evaluate the finite improvement property in the
better response update process. Fig. 4 shows the dynamics of
N = 100 workers’ payments with T = 9 sensing processes,
which demonstrates that the system will eventually reach a
pure Nash equilibrium with the sensing processes participation
algorithm. Note that there are multiple workers painted with
the same color in Fig. 4.

The price of anarchy. The issue of the price of anarchy
has been discussed in Subsection IV-C. Now we use the social
optimum as a benchmark to evaluate the performance of our
algorithm. We vary the fraction of workers with a demand of
D = 9 from 0% to 100%. As the fraction of high demand
workers becomes larger, the system is more congested and
less workers can be satisfied. The results of the performance of
our algorithm and social optima are shown in Fig. 5. Note that
there are multiple pure Nash equilibria exist in one scenario of
the sensing processes participation game, while the algorithm
randomly selects one. Our algorithm achieves at least 82.9%
and 67.2% performance of the social optima, when the best
and the worst pure Nash equilibrium is reached. What’s more,
when the demands of the workers are heterogenous (i.e., the

fraction of workers with D = 9 is 0% or 100%), The social
welfare of our algorithm is exactly the same compared to
the social optima. It implies that our algorithm is especially
effective when the workers are highly heterogenous.

C. The Social Welfare of SPP Algorithm

We study the social welfare achieved by our algorithm
compared to that by the baseline, shown in Fig. 6, Fig. 7 and
Fig. 8.

We find that our algorithm performs well as the number of
workers grows in Fig. 6. When there are N = 5500 workers,
76% of the workers are satisfied with the sensing processes
participation algorithm while there are only 10.2% of the
workers satisfied with the baseline. The proportion of satisfied
workers decreases as the number of workers increases.

The sensing processes participation algorithm utilizes the
sensing processes effectively when the number of sensing pro-
cesses is severely constrained, shown in Fig. 7. The congestion
level of the system decreases when the number of sensing
processes increases, reducing the difficulty of finding a satis-
fying sensing process. It is clear that the performance of the
baseline approximates that of our algorithm only when there
are sufficient sensing processes available. This is uncommon
in participatory sensing systems.

When the range of worker demands increases, finding a
satisfying sensing process is growing to be difficult. However,
the fraction of satisfied workers of the pure Nash equilibria by
our algorithm is at least 90%, while the performance of the
baseline is greatly affected as the range of demand increases.
Workers who have relatively high demands are naturally less
competitive than those with small demands, and the algorithm
forces them to join a satisfying sensing process with less
payment.



D. The Number of Convergence Steps of SPP Algorithm

We then investigate the computational efficiency of the
algorithm. Since our algorithm is based on the better response
update process, we will use the number of convergence steps
to represent the running time of our algorithm.

The impact of the number of workers on the number of
the convergence steps with T = 10, 25, 40 sensing processes
is shown in Fig. 9. Our algorithm scales well as the number
of workers grows, which is important for an NP-hard sensing
processes participation problem.

The impact of the number of sensing processes can be di-
vided in two cases. Increasing the number of sensing processes
will also increase the number of satisfied workers when there
are only few sensing processes available to numerous workers.
In this case, the number of the convergence steps is increased.
In another case, when the number of workers is close to
social optimal, The worker’s search space of better response
updates is enlarged, which eventually reduces the number of
convergence steps. Fig. 10 shows our expected result with
N = 1000, 2500, 4000 workers.

At last, we study the impact of the range of worker demands
on the convergence time. Fig. 11 shows the result with N =
1000, 2500, 4000 workers. More better response updates are
needed when the range of demand increases, since workers
with high demands need to update themselves more frequently
to find a satisfying sensing process. However, the number of
better response updates is slightly reduced when the range of
worker demands is at a certain level. It is suggested that the
number of workers with high demands on sensing processes is
increased, and they will hardly have a chance to update their
better responses.

VII. CONCLUSION

This paper presents a sensing processes participation game
model for the sensing processes participation problem in
participatory sensing, motivated by the observation that finding
a global optimal solution of the problem is NP-hard. Our
game model is based on congestion games in game theory.
The properties of the sensing processes participation game
including the convergence dynamics and the price of anarchy
are studied, which enables us to design a fast sensing processes
participation algorithm to find a pure Nash equilibrium in poly-
nomial time. When the demands of all the workers are not too
diverse, the social welfare of Nash equilibrium approximates
the social optimum. We have conducted simulations to show
the efficiency of our algorithm.

The future work can be carried along the following direc-
tions. First, since the price of anarchy implies that the social
welfare of a pure Nash equilibrium can be close to the social
optimum, it is necessary to explore the cases that workers or
sensing processes are homogenous. Second, we shall examine
the conditions that multiple workers are allowed to update their
strategy profiles at the same time, to reduce the convergence
time of the sensing processes participation algorithm.
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