
A PTAS to Minimize Mobile Sensor Movement for
Target Coverage Problem
Zhiyin Chen, Xiaofeng Gao§, Fan Wu and Guihai Chen
Shanghai Key Laboratory of Scalable Computing and Systems

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
Email: chenzhiyin@sjtu.edu.cn, gao-xf@cs.sjtu.edu.cn, fwu@cs.sjtu.edu.cn, gchen@cs.sjtu.edu.cn

Abstract—Energy consumption is a fundamental and critical
issue in wireless sensor networks. Mobile sensors consume much
more energy during the movement than that during the commu-
nication or sensing process. Thus how to schedule mobile sensors
and minimize their moving distance has great significance to
researchers. In this paper, we study the target coverage problem
in mobile sensor networks. Our goal is to minimize the moving
distance of sensors to cover all targets in the surveillance region.
Here initially all the sensors are located at k base stations. Thus
we define this problem as k-Sink Minimum Movement Target
Coverage. To solve this problem, we propose a PTAS, named
Energy Effective Movement Algorithm (EEMA). We can divide
EEMA into two phases. In the first phase, we partition the
surveillance region into some subareas. In the second phase, we
select subareas and schedule sensors to the selected subareas. We
also prove that the approximation ratio of EEMA is 1 + ε and
the time complexity is nO(1/ε2). Finally, we conduct experiments
to validate the efficiency and effectiveness of EEMA.

I. INTRODUCTION

Wireless sensor networks have been widely applied in
different fields, such as military applications, environmental
applications and industrial applications [1]. Since the battery
energy of sensors is usually limited and has a great impact
on the lifetime of wireless sensor networks, one of the most
fundamental and critical issue in wireless sensor networks is
how to develop an energy efficient sensor schedule to satisfy
some coverage requirements.

Many previous works save energy by scheduling the sensor
state. When a sensor is idle, it will turn to sleep mode. It
will be active again if needed. However, with the development
of micro-electro-mechanical technologies, mobile sensors be-
come more and more popular. A mobile sensor could detect
the surveillance region periodically when moving along a pre-
defined trajectory, which greatly reduces the number of sensors
needed to monitor a region of interest and thus becomes
an economical method for coverage requirements. Since for
each sensor, the energy consumption during the movement
is much more higher than that during the communication and

This work has been supported in part by the China 973 project
(2012CB316200), National Natural Science Foundation of China (Grant
number 61202024, 61472252, 61133006, 61272443, 61422208), the Opening
Project of Key Lab of Information Network Security of Ministry of Public
Security (The Third Research Institute of Ministry of Public Security)
Grant number C15602, and the Opening Project of Baidu (Grant number
181515P005267).

§X.Gao is the corresponding author.

Fig. 1. Illustration of subareas

sensing process, we need to develop efficient sensor scheduling
strategies to save energy and extend network lifetime.

Several previous works studied the movement scheduling
problem in mobile sensor networks. Ammari et al. [2] pro-
posed a heuristic algorithm for k-coverage. By selecting and
placing sensors appropriately, they tried to minimize sensor
movement length and thus save energy. Wang et. al. [3] also
studied this problem when k is not fixed. Liu et al. [4] and He
et.al. [5] studied the movement scheduling problem for barrier
coverage. Some other works [6], [7] discussed this problem
in hybrid networks, which have both mobile sensors and
static sensors. However, few literatures studied the problem
for target coverage problem. Zorbas et al. [8] tried to prolong
the network lifetime under probabilistic coverage model. Mini
et al. [9] proved that this problem is NP-hard. Most of them
only developed heuristic algorithms, without any performance
guarantee and theoretical analysis.

In this paper, we try to minimize sensor movement for target
coverage problem. Our goal is to minimize the moving dis-
tance of sensors to cover all targets in the surveillance region.
Here initially all the sensors are located at k base stations and
have the same sensing range. Thus we define this problem
as k-Sink Minimum Movement Target Coverage (k-MMTC).
We propose a polynomial-time approximation scheme (PTAS),
named EEMA, to solve k-MMTC. Its approximation ratio is
1 + ε where ε is a value that we set in EEMA.

EEMA can be divided into two phases. In the first phase,
we partition the surveillance region into several subareas
according to the detection cycle of targets. As shown in Fig. 1,
ti is a target and r is the sensing range of mobile sensors.

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE

The detection cycle of ti means if a sensor locates inside
this cycle, then ti can be successfully detected. The detection
cycles for each target divide the surveillance region into many
subareas, one of which is shown as the shadow area Fig. 1. To
partition the objective region successfully, firstly we calculate
the intersection points of different detection cycles and get a
graph. Secondly we find all paths in the generated graph based
on depth-first search (DFS). Finally, we can get all subareas.
In the second phase, we calculate the weight of each subarea.
The weight represents the minimum distance when a sensor
move from a station to the subarea. Then we just need to select
enough subareas with minimum weight to cover the target set.

To summarize, our contributions in this paper are as follows:
1) We define the problem k-sink minimum movement target

coverage (k-MMTC) in mobile sensor networks and
propose a novel polynomial-time approximation scheme
EEMA.

2) We analyze the performance of EEMA and prove it
approximation ratio of 1 + ε. We also prove that the
time complexity of EEMA is nO(1/ε2) where n is the
number of targets and ε is a predefined parameter.

3) We compare EEMA with the optimal solution and
the algorithm in [9] to validate its effectiveness and
efficiency.

In all, we are the first to design a PTAS for k-sink minimum
movement target coverage in mobile sensor networks.

The rest of this paper is organized as follows: Section II
discusses the related works. Section III describes the prelim-
inary, basic model, problem assumption, problem statement
and some definitions. In Section IV, we present the detailed
design of EEMA. Furthermore we demonstrate the complexity
and approximation ratio of EEMA. In Section V, we compare
EEMA with other solutions and evaluate the performance of
EEMA. Section VI summaries our work and states the future
research direction.

II. RELATED WORKS

In majority scenarios, to achieve a best coverage in wireless
sensor network is NP-hard. Thus we can hardly find the
optimal solution for coverage problem in polynomial time.
Thus, previous works usually designed heuristic algorithms or
approximations to solve coverage problem.

Compared with approximation algorithms, heuristic algo-
rithms are more popular in previous works. [10], [11] adopted
simulated annealing algorithms. [10] applied simulated an-
nealing to design periodical mobile coverage schedules. The
scheduling objective is to distribute the coverage time of a
mobile sensor in proportion according to the importance levels
of targets when mobile sensors move around the targets. [11]
also utilized simulated annealing for a coverage restoration
scheme, which can find the best neighboring sensor to replace
the failed sensor and extend the network lifetime. [12]–[16]
adopted genetic algorithms. For area coverage maximization
and energy conservation, [12] determined the speed and di-
rection of each mobile node based on genetic algorithm. [13]
proposed a new network coverage and optimization control

strategy to solve 3D coverage problem in wireless sensor
networks. With mobile sensors, [14] proposed a coverage
holes healing algorithm. [15] proposed a sensors deployment
strategy. The strategy can meet desired coverage requirement
and maintain connectivity. [16] proposed an exact approach
to maximize the network lifetime under a coverage ratio
constraint and maximize the coverage ratio under a lifetime
constraint. [16] also considered the bandwidth constraint.

Particle swarm optimization, which is applied in [17]–[19],
is also a popular method. [17] combined particle swarm opti-
mization with virtual force algorithm and proposed a dynamic
sensor deployment algorithm. [18] applied particle swarm
optimization to increase the coverage ratio. [19] proposed an
adaptive approach based on particle swarm optimization which
could achieve a good coverage solution with enhanced time
efficiency. [20], [21] applied learning automata for coverage
problem. In [20], a scheduling algorithm based on learning
automata can schedule the sensors to detect the moving targets.
[21] proposed three scheduling algorithm based on learning
automata and organized sensors into several cover sets to
extend the lifetime of wireless sensor networks. Artificial bee
colony algorithm and artificial fish-swarm algorithm are also
used for the coverage problem in wireless sensor network,
such as [9], [22], [23].

However, unlike approximation algorithms, heuristic algo-
rithms cannot give any performance guarantee. Sometimes,
heuristic algorithms may have a bad performance and de-
termining the parameters of heuristic algorithms is usually
difficult. Some papers designed approximation algorithms for
coverage problem in wireless sensor networks. For target
coverage problem, the best approximation ratio is 4 + ξ [24].
[25] proposed an approximation algorithm for area coverage
problem. Their algorithm could maximize the spatial-temporal
coverage by scheduling the sensors activity. Its approxima-
tion ratio is 0.5. [26] studied k-coverage problem and pro-
posed a 3-approximation algorithm. [27] designed an O(ρ)-
approximation algorithm, where ρ is the density of sensors.

Some works designed approximation algorithms for varia-
tions of coverage problems. [28], [29] studied sweep coverage
problem and proposed a 2-approximation. [30] studied camera
coverage problem and gave a 2-approximation to minimize the
number of cameras and maintain the connectivity of network.
Though approximation has performance guarantee, it is usually
difficult to design constant-factor approximation and analyze
the approximation ratio. Thus some coverage problems still
have no good approximation.

Nowadays, with the development of micro-electro-
mechanical technologies, coverage problems with mobile
sensors become more and more important. [31] gave a survey
of movement strategies, including healing coverage hole,
optimizing area coverage, and improving event coverage. [32]
focused on minimizing movement of mobile sensors for target
coverage, which was called MMTC. They reduced set cover
to a special case of MMTC, and proved its NP-completeness.
However, the best approximation ratio for set cover problem
is lnn. In this paper, we generalize the special case of MMTC

and propose a new problem, k-sink minimum movement
target coverage (k-MMTC) problem. Then we design a PTAS
to solve the new problem for target coverage. It is the best
approximation design for these series of coverage problems.

III. PRELIMINARY AND PROBLEM STATEMENT

In this section, we give the network model and formulate
the problem that we study in this paper. Then we prove the
NP-hardness of our problem for which we can hardly develop
a polynomial time optimal algorithm for the problem.

A. Network model

We study the problem in homogeneous network. We model
the network as G = (T, P, S, r).
T represents the targets set which we need to cover. Assume

that there are n targets T =
{
t1, t2, · · · , tn

}
in the surveil-

lance region. The surveillance region is flat and has no obstacle
against sensor movement. The targets distribute uniformly and
randomly in the surveillance region. Each target is static with
a known location. In some papers, the target is also refer to
as Point of Interest (POI).
P represents the stations set where the mobile sensors

locate. Assume that there are k stations P =
{
p1, p2, · · · , pk

}
around the surveillance region. All mobile sensors must start
from a sink station in P . At the beginning, enough mobile
sensors are static at the sink stations. From each sink station,
we can send arbitrary number of mobile sensors to cover the
targets in T .
S represents the mobile sensors set. Assume we use m

sensors, S =
{
s1, s2, · · · , sm

}
, to cover all of targets in

T . All sensors can move continuously in any direction, stop
anywhere, and have the same sensing range.
r represents the sensing range of mobile sensors in S. Disk

model is adopted for coverage. Namely, the target ti is covered
by the sensor sj , if the distance between ti and sj is less than
r. In addition, the distance between different targets may be
less than r.

B. Problem Definition

As now well known, limited energy in sensors is a fun-
damental issue in wireless network and energy consumption
for sensor movement is much more than that for sensing
and communication. Thus we define the problem to minimize
movement distance. Before we propose the problem, we give
some definitions.

Definition 1. (Movement Distance): When we schedule a
mobile sensor si to cover a target tj , si will move from a
station pk to somewhere near tj . The movement distance of
si, denoted as d(si), equal to the linear distance between pk
and the destination.

In order to minimize the sensor movement and reduce
energy consumption, we define k-Sink Minimum Movement
Target Coverage (k-MMTC) problem as follows:

Definition 2. (k-Sink Minimum Movement Target Coverage
Problem): We have k sink stations to send mobile sensors

and cover all targets in T . k-MMTC is to schedule the
sensor movement and minimize the sum of movement distance,
denoted as dsum. dsum =

∑m
i=1 d(si).

The previous work in [32] has proved that 1-MMTC
problem can be reduced to set cover problem which is NP-
complete. Thus k-MMTC problem is also NP-complete. In
this paper, we design a PTAS for the k-MMTC problem.

IV. ENERGY EFFECTIVE MOVEMENT ALGORITHM

In this section, we proposed a PTAS, named as Energy
Effective Movement Algorithm (EEMA), to solve the k-
MMTC problem.

A. Overview

We divide EEMA into two phases. In the first phase, we
propose a novel method to divide the surveillance region
into some subareas according to the locations of targets. The
sensors in the same subarea can cover the same targets set. In
the second phase, we schedule the mobile sensors and move
the sensors to cover all targets. Finally, we also analyze the
time complexity and the approximation ratio of EEMA.

B. The First Phase

Before we introduce the detail of EEMA in the first phase,
we give some definitions.

Definition 3. (Detection-cycle): We can get a cycle, denoted
as �ti, from a target ti. ti is the center of �ti. The sensing
range, r, is the radius of �ti. We define �ti as the detection-
cycle of ti.

Apparently, a sensor sj can detect ti as long as sj in �ti.

Definition 4. (Key-point): When two targets, ti and tj , are
close enough, �ti and �tj may intersect. The intersection
points on �ti are called as the key-points of ti and denoted
as KP (ti), where KP (ti) =

{
kp1(ti), kp2(ti), · · ·

}
.

For a key-point kpj(ti), we can record the location of
kpj(ti) and the two targets which intersect and generate
kpj(ti). We find that the KP (ti) divide �ti into some arcs,{ _

kp1(ti)kp2(ti),
_

kp2(ti)kp3(ti), · · ·
}

. Those arcs divide the
surveillance region and generate some subareas. We define
the arcs as follows:

Definition 5. (Curved-boundary): We can sort KP (ti) in anti-
clockwise order, and get a sequence of key-points

{
kp1(ti)→

kp2(ti) → · · · → kp1(ti)
}

. The neighboring key-points can

generate an arc
_

kpj(ti)kpj+1(ti), which is defined as curved-
boundary.

Definition 6. (Covered-set of curved-boundary): The sensors

on the same curved-boundary,
_

kpj(ti)kpj+1(ti), can cover the
same targets set. We define this targets set as covered-set of the

curved-boundary
_

kpj(ti)kpj+1(ti). We denote this covered-set
as T (ti, j).

Obviously, ti ∈ T (ti, j). Besides, the distance between

the sensors on
_

kpj(ti)kpj+1(ti) and ti is equal to r. For
the other targets which are in T (ti, j)\{ti}, the distance
must be less than r. Thus we classify the targets in T (ti, j)
into two categories: ti which is marked as grey target for

_

kpj(ti)kpj+1(ti), and T (ti, j)\{ti} which are marked as black

targets for
_

kpj(ti)kpj+1(ti).
Sometimes, T (ti, j)\{ti} may be ∅. Thus we classi-

fy
_

kpj(ti)kpj+1(ti) into two types: grey curved-boundary
when T (ti, j)\{ti} = ∅, black curved-boundary when
T (ti, j)\{ti} 6= ∅. A sequence of closed curved-boundary
generate a subarea. We give the definition of covered-set.

Definition 7. (Covered-set of subarea): We can get some
curved-boundaries from targets set T . The curved-boundaries
generate some subareas. Each subarea Ω′ represents a target
set which named covered-set. The covered-set is denoted by
T (Ω′). A sensor in Ω′ can cover all targets in a covered-set.

Fig. 2. Illustration of Definitions

Next, We give an instance to further illustrate the definitions
above. As shown in Fig. 2, there are four targets in the
surveillance region. We draw the detection-cycles of all targets,
and divide the surveillance region into 11 disjoint subareas.
The intersection point of �t1 and �t3, kp1(t1) is the first
key-point of t1. Of course, we can also denote kp1(t1) as
kp1(t3). A subarea Ω′ is enclosed by three curved-boundaries,

_

kp1(t1)kp2(t1),
_

kp1(t1)kp1(t2) and
_

kp1(t2)kp2(t1). We can
find that T (Ω′) =

{
t1, t2, t3

}
. T (t1, 1) =

{
t1, t2, t3

}
and t1

is a grey target in T (t1, 1).

In fact, we can easily prove that: if
_

kpj(ti)kpj+1(ti) is a
curved-boundary of a subarea Ω′, then T (Ω′) ⊆ T (ti, j) and
T (ti, j)\T (Ω′) =

{
ti
}

or ∅.
We can also infer that:

1) If T (ti, j) only contains grey target ti, then T (Ω′) ={
ti
}

or ∅.

2) If
_

kpq(tp)kpq+1(tp) is also a curved-boundary of Ω′,
then T (tp, q)/T (ti, j) =

{
tp
}

or ∅.

3)
_

kpj+1(ti)kpj+2(ti) and
_

kpj−1(ti)kpj(ti) cannot be the
curved-boundaries of Ω′.

Next, we give the detail to calculate the subareas according
to the discussion above.

Given the set of all targets, firstly we can easily get
all key-points and all curved-boundaries. Secondly we con-
struct a new graph G = (V,E) to calculate the sub-
areas generated by all curved-boundaries. To construct G,
we propose Graph Conversion (GC) algorithm which is
shown in Algorithm 1. In G, each node v(ti, j) represents a

curved-boundaries
_

kpj(ti)kpj+1(ti). There is an edge between
v(ti, j) and v(tp, q), if p 6= i, T (tp, q) ∩ T (ti, j) 6= ∅ and

_

kpj(ti)kpj+1(ti),
_

kpq(tp)kpq+1(tp) are connected. We also
need to calculate T (ti, j). In this paper, we select the mid-
point of the curved-boundary and calculate the distance from
the mid-point to the targets. If the distance is no more than r,
then the target is in T (ti, j). Then a subarea corresponds to a
cycle L in G which satisfies a specific condition as follows: if
v(ti, j) is in L, then ∀v(tp, q) in L, T (ti, j)\{ti} ⊆ T (tp, q).

Algorithm 1 Graph Conversion (GC) algorithm
Input: The set of targets, T ;
Output: A new graph, G = (V,E);
1: Calculate the key-points set of ti, ∀ti ∈ T .
2: Calculate the covered set of all curved-boundaries;
3: Generate G = (V,E). Each node in G represents a

curved-boundaries, two nodes have an edge if the cor-
responding curved-boundaries are connected and have
different centers.

4: return G = (V,E);

To find this kind of cycle, we propose Variant Depth First
Search (VDFS) algorithm. When we need to find all subareas
involved with the node v(ti, j), we start from v(ti, j) and
search the graphs until we get a cycle corresponding to Ω′.
At the first step of search, we move from v(ti, j) to v(tp1, q1)
and check weather ti ∈ T (tp1, q1). If ti /∈ T (tp1, q1), T (Ω′) =
T (ti, j)\{ti}. Otherwise, T (Ω′) = T (ti, j). Then we move
forward to the next node v(tp2, q2), only if T (Ω′) ⊆ T (tp2, q2)
and T (tp2, q2)\{tp2} ⊆ T (Ω′). When we return back to
v(ti, j), we get a cycle. Obviously, a curved boundary is
involved in two subareas. Thus we can only find two cycles
when we start from v(ti, j) and the two cycles have no public
edges.

The detail of VDFS is shown in Algorithm 2 and 3.
To further illustrate GC and VDFS, we give a simple

example as shown in Fig. 3. There are two targets and four
curved-boundaries in this example. Thus we can generate a
new graph G = (V,E) and |V | = 4. v(t1, 1) and v(t1, 2)
do not have an edge, since they have the same center t1.
v(t1, 1) and v(t2, 2) also do not have not an edge, since
T (t1, 1) ∩ T (t2, 2) = ∅.

Then we try to find all three subareas. we can search from
v(t1, 1). Obviously, T (t1, 1) = {t1}, then T ′ = {t1} in
Algorithm 3. We add v(t1, 1) and v(t2, 1) to the path in turn.
Since T (t1, 2)\{t1} * T ′, v(t1, 2) cannot add to the path.
Finally, we get a cycle v(t1, 1)→ v(t2, 1)→ v(t1, 1) and the
cycle represent the subarea Ω1 such that T (Ω1) = {t1}. Next,

Algorithm 2 Variant Depth First Search (VDFS) algorithm
Input: G = (V,E);
Output: The paths involved with v(ti, j);
1: for all v ∈ V do
2: visited(v)=false;
3: end for
4: visited(v(ti, j))=true;
5: if T (ti, j)\{ti} 6= ∅ and the path corresponding to
T (ti, j)\{ti} is not found then

6: EXPLORE(G, v(ti, j), T (ti, j)\{ti});
7: end if
8: if We have not find path corresponding to T (ti, j) then
9: EXPLORE(G, v(ti, j), T (ti, j));

10: end if
11: return ;

Algorithm 3 EXPLORE(G, v(ti, j), T
′)

Input: G = (V,E), v(ti, j), T ′;
Output: The paths involved with v(ti, j);
1: if T ′ is explored then
2: return ;
3: end if
4: path.add(v(ti, j));
5: if T ′ ⊆ T (tp, q) and T (tp, q)\{tp} ⊆ T ′ and

(v(ti, j), v(tp, q)) ∈ E and visitedv(tp, q) = false then
6: visitedv(tp, q) = true;
7: EXPLORE(G, t(tp, q), T ′)
8: end if
9: if No such v(tp, q) exists then

10: Output path;
11: path=null;
12: return ;
13: end if
14: return ;

we search from v(t2, 1). Since T (t2, 1)\{t2} = T (Ω1) = {t1}
and we have found Ω1, we only find the subarea Ω2 such that
T (Ω2) = T (t2, 1) = {t1, t2}. We add v(t2, 1) and v(t1, 2) to
the path, and get Ω2. In this way, we can easily find all three
subareas Ω1, Ω2, Ω3. T (Ω1) = {t1}, T (Ω2) = T (t2, 1) =
{t1, t2}, T (Ω3) = T (t2, 1) = {t2}.

Theorem 1. The time complexity in the first phase is O(n2).

Proof: We have n targets in total. Each pair of targets
have 2 key-points at most. Thus we have 2(n− 1) key-points
at most for each target, and we have n(n − 1) key-points at
most in total. The time complexity of GC is O(n2). There are
no more than 2n(n− 1) curved-boundaries. Thus in the new
graph that we construct, the number of vertices is less that
2n(n−1). Obviously, each vertex averagely has no more than
4 edges and the number of edges is less than 4n(n−1) in total.
When we search all subareas, we visit a vertex at most twice,
since a curved-boundaries is involved with two sub areas at
most. Thus the time complexity of VDFS is also O(n2). In

the first phase, we only apply GC and VDFS. Therefore, the
time complexity in the first phase is O(n2).

Fig. 3. Illustration for GC and VDFS

C. The Second Phase

After all the preprocessing in the first phase, we can sched-
ule the mobile sensors in the second phase. In the scheduling,
we need to select stations where the mobile sensors start and
the destinations to cover the targets. Obviously, the destination
must be the subareas that we find in the first phase. Since
the mobile sensor in the same subarea can cover the same
targets set, we just need select subareas as the destinations
and calculate the minimized sensor movement distance.

Firstly, we study how to calculate the minimized movement
distance when a mobile sensor move from the station pi to
the subarea Ωj . Apparently, to minimize movement distance,
the mobile sensor must stop at the curved-boundaries of Ωj .
Thus we just need to calculate the distance between the station
and all curved-boundaries of Ωj respectively. Then the mini-
mum distance is the sensor movement distance. We calculate
distance between pi and a curved-boundaries according to
Theorem 2.

Theorem 2. We have a curved-boundary
_

kpj(ti)kpj+1(ti)
and a station pi. If the segment piti intersects with the curved-
boundary and the intersection point is O, the minimum dis-
tance is |piO|; otherwise, the minimum distance is |kpj(ti)pi|
or |kpj+1(ti)pi|.

Fig. 4. The proof of Theorem 2

Proof: As shown in Fig. 4, A is a point on the detection
cycle of ti. According to Cosine Law, |Apj | = |pjti|2 +

|Ati|2− 2 cosα|pjti||Ati|. |pjti| and |Ati| are constant value.
Thus when A move from O to C along �ti, cosα is
decreasing and |Apj | is increasing. |Apj | is minimum when
A = O, |Apj | is maximum when A = C.

We can assume that A is a point at the curved-boundaries,
A 6= kpj(ti), A 6= kpj+1(ti), A 6= O, and |Apj | is
the minimum distance. Then we can move A to make α
smaller, and Apj become smaller. This leads to a contradiction.
Therefore, the theorem is proved.

According to the discussion above, we can easily calculate
the minimum distance between subareas and stations. When
we select a subarea, we just need to ask the nearest station
send a mobile sensor. Thus each subarea σi has a covered
targets set and a weight w(σi) which represents the minimum
distance.

Next, we discuss about how to select subareas with mini-
mum total weight. The main idea of the selection is partition
and shifting [33].

In advance, we give a simple algorithm, called Partition
algorithm. Assume that Q is a square which exactly contains
all targets in the surveillance region. Firstly, we divide the
square Q into a grid of squares, named as cells. The size of
each cell is equal to 2mr × 2mr, where m is a constant and
m ∈ N+. Then we can apply brute-force search algorithm and
find the optimal solution for each cell. Finally, we combine
the solutions of all cells and get a solution of the original
problem. The detail is shown in Algorithm 4.

Algorithm 4 Partition algorithm
Input: T ; A grid of squares that contain all targets, Q;
Output: The subareas that we select to cover T ;
1: Divide Q into cells which denoted as cell(Q), and the size

of each cell is 2mr × 2mr;
2: for each e ∈ cell(Q) do
3: Select the subareas which can cover all targets in e,

such that the sum of all selected subareas weight is
minimum;

4: end for
5: return All the selected subareas;

Theorem 3. The time complexity of the Partition algorithm is
nO(m2).

Proof: We analyze the time complexity for each cell e
firstly. Assume that the number of targets in e is ne. Then the
number of curved-boundaries is less than n2e, since each target
correspond to ne curved-boundaries at most. Each subarea has
at least two curved-boundaries and each curved-boundary is
shared by only two neighbouring subareas. Thus the number of
subareas is less than n2e. Note that when we select a subarea,
and make a mobile sensor move in it, the sensor can cover
a
√

2r/2 ×
√

2r/2 square. The size of e is 2mr × 2mr. We
need to select at most

⌈√
2m
⌉2

subareas. In conclusion, the

number of possible solutions for e is at most n
2d√2me2
e .

According to the discussion above, we can infer that the

time complexity of Partition algorithm is as follows:∑
e∈cell(Q)

nO(m2)
e ≤ (

∑
e∈cell(Q)

ne)
O(m2) = nO(m2)

Theorem 4. The approximation ratio of the Partition algo-
rithm is 4.

Proof: Assume the optimal solution of selection is S∗,
and the feasible solution we get from Partition algorithm is S.
S∗(e) is the set of subareas which are contained by S∗ and
σi ∈ S∗(e) if and only if some targets in the covered-set of σi
are distributed in the cell e. S(e) is the set of subareas which
are contained by S and intersect with the cell e. Obviously,
S∗(e) is a feasible solution for e, and S(e) is the optimal
solution for e. Thus

∑
σi∈S∗(e) w(σi) ≥

∑
σi∈S(e) w(σi).

Assume that S∗k is the set of subareas which are contained
by S∗, and σi ∈ S∗k if and only if the covered-set of σi is
distributed in k cells. Apparently, 1 ≤ k ≤ 4. Thus we can
infer that:∑
σi∈S

w(σi) =
∑

e∈cell(Q)

∑
σi∈S(e)

w(σi) ≤
∑

e∈cell(Q)

∑
σi∈S∗(e)

w(σi)

=
4∑
k=1

∑
σi∈S∗

k

k · w(σi) ≤
4∑
k=1

∑
σi∈S∗

k

4w(σi) = 4
∑
σi∈S∗

w(σi)

Then, the Theorem 4 is proved.
Next, We try to optimize the algorithm by the method of

shifting. We can find that the gap between the optimal solution
and our solution is generated by the subareas which intersect
more than one cell. Since the targets are distributed in the
surveillance region randomly and uniformly, the subareas and
the sensors are also evenly distributed in the square Q. As
shown in Fig. 5, when the sensors stop in the area which is
labeled as k (1 ≤ k ≤ 4), the covered-set of subareas where
the sensors stop, distributed in k cells.

Fig. 5. Illustration for the intersection

Assume that S∗k(e) is the set of subareas which are con-
tained by S∗(e), and σi ∈ S∗k(e) if and only if the covered-set
of σi is distributed in k cells. According to Fig. 5, we can

Fig. 6. Illustration for the shifting

infer that as follows:

|S∗1 (e)| = (m− 1)2/m2|S∗(e)|;
|S∗2 (e)| = 2(m− 1)/m2|S∗(e)|;
|S∗3 (e)| = (4− π)/4m2|S∗(e)|;
|S∗4 (e)| = π/4m2|S∗(e)|;

Then we can conclude that
∑
e∈cell(Q) |S∗(e)| =∑

e∈cell(Q)

∑4
k=1 k|S∗k(e)| = (1 + 2

m + π
m2)|S∗|. When

the stations are evenly distributed in the surveillance region
and we denote the average weight of subareas as w̄, we can
infer that:∑
σi∈S

w(σi) =
∑

e∈cell(Q)

∑
σi∈S(e)

w(σi) ≤
∑

e∈cell(Q)

|S∗(e)|w̄

= (1 +
2

m
+

π

m2
)|S∗|w̄ = (1 +

2

m
+

π

m2
)
∑
σi∈S∗

w(σi)

Thus we can conclude that the expected approximation ratio
of Partition Algorithm is 1 + 2

m + π
m2 . We can apply shifting

method for derandomization.
As shown in Fig. 6, we define the partition according to

the lower-left corner. P (3, 3) denotes the partition which has
a lower-left corner at (3, 3). P (0, 0) denotes the partition
which has a lower-left corner at (0, 0). Obviously, the partition
P (0, 0) and the partition P (2mr, 2mr) is the same partition.
The main idea of the shifting algorithm is shift the partition
from P (0, 0) to P (2r(m−1), 2r(m−1)), and apply Algorithm
4 to find a solution of k-MMTC. Finally, we chose the optimal
solution and the algorithm is end. The detail of shifting
algorithm is shown in Algorithm 5.

Algorithm 5 Shifting algorithm
Input: T ;
Output: The subareas that we select to cover T ;
1: for (i = 0; i < m; + + i) do
2: Apply Algorithm 4 in the partition P (2ri, 2ri) and get

a set of selected subareas;
3: end for
4: Select the set with minimum total weight;
5: return The selected set;

Theorem 5. The time complexity of Algorithm 5 is mnO(m2).

Proof: We invoke Algorithm 4 for m times and the time
complexity of Algorithm 4 is nO(m2). Apparently, the time
complexity of Algorithm 5 is mnO(m2).

Theorem 6. The approximation ratio of Algorithm 5 is 1 +
3/m.

Proof: We assume that Sen∗ denotes the location of
sensors in the optimal solution. Then each sensor is assigned to
a selected subarea and we can infer that |Sen∗| = |S∗|. Sa de-
notes the solution of Algorithm 4 in the partition P (2ra, 2ra).
As shown in Fig. 5, Hk,a denotes a subset of S∗. SenHk,a

denotes the sensors set assigned to Hk,a. ∀s ∈ SenHk,a,
the detection cycle of s intersects the horizontal line of
P (2ra, 2ra), and intersects with k cells. Similarly, we define
Vk,a and SenVk,a. ∀s ∈ SenVk,a, the detection cycle of s
intersects the vertical line of P (2ra, 2ra), and intersects with
k cells. Then we can infer that: H3,a = V3,a, H4,a = V4,a.

We define that Ha =
∑4
k=2Hk,a and Va =

∑4
k=2 Vk,a.

Then we can infer that:∑
σi∈Sa

w(σi) =
∑

e∈cell(Q)

∑
σi∈S(e)

w(σi) ≤
∑

e∈cell(Q)

∑
σi∈S∗(e)

w(σi)

=
∑
σi∈S∗

w(σi) +
4∑
k=2

∑
σi∈Hk,a

(k − 1)w(σi) +
∑

σi∈V2,a

w(σi)

=
∑
σi∈S∗

w(σi) +
∑
σi∈Ha

w(σi) +
∑
σi∈Va

w(σi) +
∑

σi∈H4,a

w(σi)

We can conclude that:∑
σi∈Sa

w(σi) ≤
∑
σi∈S∗

w(σi) + 2
∑
σi∈Ha

w(σi) +
∑
σi∈Va

w(σi)

Apparently, ∀s ∈ S∗, the detection cycle of s cannot
intersect both the horizontal line of P (2ra, 2ra) and the
horizontal line of P (2rb, 2rb) at the same time if a 6= b. Thus,
we can infer that:

m−1∑
a=0

∑
σi∈Ha

w(σi) ≤
∑
σi∈S∗

w(σi)

Similarly,
m−1∑
a=0

∑
σi∈Va

w(σi) ≤
∑
σi∈S∗

w(σi)

Therefore, we can infer that:
∑m−1
a=0

∑
σi∈Sa

w(σi) ≤∑m−1
a=0 (

∑
σi∈S∗ w(σi) + 2

∑
σi∈Ha

w(σi) +
∑
σi∈Va

w(σi)).
Simplify the equation above, we can get that:

m−1∑
a=0

∑
σi∈Sa

w(σi) ≤ (m+ 3)
∑
σi∈S∗

w(σi)

1

m

m−1∑
a=0

∑
σi∈Sa

w(σi) ≤ (1 +
3

m
)
∑
σi∈S∗

w(σi)

The average value of all solutions that we get from the
partitions P (0, 0), P (2r, 2r), · · · , P (2(m − 1)r, 2(m − 1)r)

is (1 + 3
m)
∑
σi∈S∗ w(σi). In Algorithm 5, we select the

solution with minimum value. Thus the approximation ratio
of Algorithm 5 is less than 1 + 3/m. Then Theorem 6 is
proved.

In summary, the detail of EEMA is shown in Algorithm 6.

Algorithm 6 EEMA algorithm
Input: k stations which can send mobile sensors to cover the

targets in the surveillance region, P ; T ;
Output: The schedule of mobile sensors to cover T ;
1: Apply Algorithm 1 to preprocess the targets T ;
2: Apply Algorithm 2 to get all subareas generated by T ;
3: Calculate the weight of all subareas according to the

position of P ;
4: Apply Algorithm 5 to select subareas;
5: Choose sensors from P to the selected subareas;
6: return The solution of k-MMTC;

According to Theorem 5 and Theorem 6, we can conclude
that ∀ε > 0, EEMA can be a (1+ε)-approximation algorithm
for k-MMTC problem that runs in time nO(1/ε2), when we
set m = d3/εe.

V. EVALUATION

In this section, we use C++ and Matlab to conduct some
simulations and evaluate the performance of the proposed
algorithm EEMA. To confirm the effectiveness and efficiency
of EEMA, we compare the numerical results with the optimal
solution and TV-greedy [32].

TABLE I
SIMULATION PARAMETERS

Parameter Surveillance Region |T | |P | r m

Simulation A 50m× 50m 20 10 1m 3

Simulation B 500m× 500m 50-230 20-400 1m 9

A. Comparison with the optimal solution

The detailed parameters in the evaluation are listed in the
simulation A of Table I. The surveillance region is 50m×50m.
The number of targets is 20. The number of stations which
can send sensors is 10. The sensing range of sensors is 1m.
In Algorithm 4, we set the value of m as 3.

Since the initial deployment of sensors and targets is ran-
dom, we run the algorithm for 1000 times with different initial
deployment of sensors and targets and the numerical results is
shown as Fig. 7.

If m = 3, we can infer that the approximation ratio of
EEMA is 2. In the Fig. 7, we can find that the experiment
results is consistent with Theorem 6. Besides, we also find
that in the most cases the approximation ratio is between 1.4
and 1.6. We can conclude that EEMA works well for random
small scale inputs.

Fig. 7. Comparison with the optimal solution

B. Comparison with TV-greedy

We can hardly calculate the result for large scale inputs.
Thus we compare EEMA with TV-greedy [32]. The detailed
parameters in the evaluation are listed in the simulation B of
Table I.

In this subsection, we also run EEMA and TV-greedy for
1000 times with the same number of targets and stations. Then
we calculate the average value. The result is shown in Fig. 8
and Fig. 9.

Fig. 8. Comparison with TV-Greedy with different targets density

Fig. 9. Comparison with TV-Greedy with different stations density

Firstly, we set |P | = 100 and change the number of targets
from 50 to 230. The numerical result is shown as Fig. 8. In
the Fig. 8, we can see that EEMA works more effectively than
TV-Greedy. Moreover, EEMA can save more energy than TV-
Greedy especially when the number of targets is large.

Then we set |T | = 100 and change the number of stations
from 20 to 400. The numerical result is shown as Fig. 9. In
the Fig. 9, we can see that EEMA still works well and is more
energy efficient than TV-Greedy. However, when the number

of stations becomes large, EEMA save less energy than TV-
Greedy. The reason is that when the number of stations is
large, each target has many stations nearby we can easily get
an energy efficient schedule.

VI. CONCLUSION

In this paper, we consider a variation of target coverage
problem in mobile sensor network named k-Sink Minimum
Movement Target Coverage (k-MMTC). To solve this problem,
we propose a polynomial-time approximation scheme (PTAS),
named Energy Effective Movement Algorithm (EEMA). EEMA
can be divided into two phrases. In the first phrase, we partition
the objective region into subareas according to the detection
cycle of each target. Then in the second phrase, we select some
subareas and schedule sensors to cover them respectively.
The approximation ratio of EEMA is 1 + ε and the time
complexity of EEMA is nO(1/ε2). We also provide several
numerical experiments to compare the results of EEMA with
the optimal solution and one of previous works. The simulation
results validate the effectiveness and efficiency of EEMA. In
all, EEMA is the first PTAS for sensor movement scheduling
to achieve target coverage requirement.

In the future work, we will study the problem where each
station pi can only send qi (qi > 0) sensors.

REFERENCES

[1] B. Wang, Coverage control in sensor networks. Springer Science &
Business Media, 2010.

[2] H. M. Ammari, “On the problem of k-coverage in mission-oriented
mobile wireless sensor networks,” Computer Networks (COMNET),
vol. 56, no. 7, pp. 1935–1950, 2012.

[3] Y. C. Wang and Y. C. Tseng, “Distributed deployment schemes for
mobile wireless sensor networks to ensure multilevel coverage,” IEEE
Transactions on Parallel & Distributed Systems (TPDS), vol. 19, no. 9,
pp. 1280–1294, 2007.

[4] B. Liu, O. Dousse, P. Nain, and D. Towsley, “Dynamic coverage of
mobile sensor networks,” IEEE Transactions on Parallel & Distributed
Systems (TPDS), vol. 24, no. 2, pp. 301–311, 2011.

[5] S. He, J. Chen, X. Li, X. Shen, and Y. Sun, “Cost-effective barrier
coverage by mobile sensor networks,” in IEEE International Conference
on Computer Communications (INFOCOM), 2012, pp. 819–827.

[6] T. Wimalajeewa and S. K. Jayaweera, “A novel distributed mobility pro-
tocol for dynamic coverage in sensor networks,” in IEEE International
Conference on Global Telecommunications Conference (GLOBECOM),
2010, pp. 1–5.

[7] P. Sahoo and W.-C. Liao, “Hora: A distributed coverage hole repair
algorithm for wireless sensor networks,” IEEE Transactions on Mobile
Computing (TMC), vol. 14, no. 7, pp. 1397–1410, July 2015.

[8] D. Zorbas and T. Razafindralambo, “Prolonging network lifetime un-
der probabilistic target coverage in wireless mobile sensor networks,”
Computer Communications (CC), vol. 36, no. 9, pp. 1039–1053, 2013.

[9] S. Mini, S. K. Udgata, and S. L. Sabat, “Sensor deployment for
probabilistic target k-coverage using artificial bee colony algorithm,”
in Swarm, Evolutionary, and Memetic Computing, 2011, pp. 654–661.

[10] D. K. Yau, N. K. Yip, C. Y. Ma, N. S. Rao, and M. Shankar, “Quality
of monitoring of stochastic events by periodic and proportional-share
scheduling of sensor coverage,” ACM Transactions on Sensor Networks
(TOSN), vol. 7, no. 2, pp. 2019–2021, 2010.

[11] M. P. Habib, S.J., “A coverage restoration scheme for wireless sensor
networks within simulated annealing,” in International Conference On
Wireless And Optical Communications Networks (ICWOCN), 2010, pp.
1–5.

[12] C. Sahin, M. Uyar, S. Gundry, and E. Urrea, “Self organization for
area coverage maximization and energy conservation in mobile ad hoc
networks,” Transactions on Computational Science XV, vol. 15, pp. 49–
73, 2012.

[13] F. Lin, Z. Sun, and T. Qiu, “Genetic algorithm-based 3d coverage
research in wireless sensor networks,” in International Conference on
Complex, Intelligent, and Software Intensive Systems (CISIS), 2013, pp.
623–628.

[14] H. P. Corporation, “Level set based coverage holes detection and holes
healing scheme in hybrid sensor network,” International Journal of
Distributed Sensor Networks (JDSN), vol. 41, no. 4, pp. 128–134, 2013.

[15] Y. Li, Y.-q. Song, Y.-h. Zhu, and S. Ren, “Deploying wireless sensors for
differentiated coverage and probabilistic connectivity,” in IEEE Wireless
Communications and Networking Conference (WCNC), 2010, pp. 1–6.

[16] R. Andreacute, S. Alok, and M. Sevaux, “Column generation algorithm
for sensor coverage scheduling under bandwidth constraints,” Networks,
vol. 60, no. 3, pp. 141–154, 2012.

[17] W. Xue, S. Wang, and J. jie Ma, “An improved co-evolutionary particle
swarm optimization for wireless sensor networks with dynamic deploy-
ment,” Sensors, vol. 2007, no. 3, pp. 354–370, 2007.

[18] W. Ismail, W.Z., and S. Manaf, “Study on coverage in wireless sensor
network using grid based strategy and particle swarm optimization,”
in IEEE International Conference on Circuits and Systems (APCCAS),
2010, pp. 1175–1178.

[19] T.-J. Su, M.-Y. Huang, and Y.-J. Sun, “An adaptive particle swarm opti-
mization for the coverage of wireless sensor network,” Communications
in Computer and Information Science (CCIS), pp. 386–391, 2011.

[20] M. Esnaashari and M. Meybodi, “A learning automata based scheduling
solution to the dynamic point coverage problem in wireless sensor
networks,” Computer Networks (COMNET), vol. 54, no. 14, pp. 2410–
2438, 2010.

[21] H. Mohamadi, A. S. Ismail, and S. Salleh, “Solving target coverage
problem using cover sets in wireless sensor networks based on learning
automata,” Wireless Personal Communications (WPC), vol. 75, no. 1,
pp. 447–463, 2014.

[22] O. C, K. D, and G. B., “Probabilistic dynamic deployment of wireless
sensor networks by artificial bee colony algorithm,” Sensors, vol. 11,
no. 6, pp. 6056–6065, 2011.

[23] D. Tao, S. Tang, and L. Liu, “Constrained artificial fish-swarm based
area coverage optimization algorithm for directional sensor networks,”
IEEE International Conference on Mobile Ad-Hoc and Sensor Systems
(MASS), vol. 411, no. 6, pp. 304–309, 2013.

[24] L. Ding, W. Wu, W. J., L. Wu, Z. Lu, and W. Lee, “Constant-
approximation for target coverage problem in wireless sensor networks,”
IEEE International Conference on Computer Communications (INFO-
COM), vol. 131, no. 5, pp. 1584–1592, 2012.

[25] C. Liu and G. Cao, “Spatial-temporal coverage optimization in wireless
sensor networks,” IEEE Transactions on Mobile Computing (TMC),
vol. 10, no. 4, pp. 465–478, 2011.

[26] X. Xu and M. Song, “Restricted coverage in wireless networks,” in IEEE
International Conference on Computer Communications (INFOCOM),
2014, pp. 558–564.

[27] J. Chen, J. Li, Lai, and T.H., “Energy-efficient intrusion detection with a
barrier of probabilistic sensors: Global and local,” IEEE Transactions on
Wireless Communications (TWC), vol. 12, no. 9, pp. 4742–4755, 2013.

[28] G. Barun and M. P. Sarathi, “Point and area sweep coverage in wireless
sensor networks,” in International Symposium on Modeling Optimization
in Mobile, Ad Hoc Wireless Networks (WiOpt), 2013, pp. 140–145.

[29] B. Gorain and P. S. Mandal, “Approximation algorithms for sweep cov-
erage in wireless sensor networks,” Journal of Parallel and Distributed
Computing (JPDC), vol. 74, pp. 2699–2707, 2014.

[30] H. Huang, C.-C. Ni, X. Ban, A. Jie Gao, Schneider, and S. Lin,
“Connected wireless camera network deployment with visibility cover-
age,” in IEEE International Conference on Computer Communications
(INFOCOM), 2014, pp. 1204–1212.

[31] B. Wang, H. B. Lim, and D. Ma, “A survey of movement strategies for
improving network coverage in wireless sensor networks,” Computer
Communications (CC), vol. 32, no. 13-14, pp. 1427–1436, 2009.

[32] Z. Liao, S. Zhang, J. Cao, W. Wang, and J. Wang, “Minimizing
movement for target coverage in mobile sensor networks,” in IEEE
International Conference on Distributed Computing Systems (ICDCS),
2012, pp. 194–200.

[33] D.-Z. Du, K.-I. Ko, and X. Hu, Design and analysis of approximation
algorithms. Springer Science & Business Media, 2012, vol. 62.

