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Approximation Algorithms for Sweep Coverage
Problem With Multiple Mobile Sensors
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Abstract— Sweep coverage plays an important role in many
applications like data gathering, sensing coverage, and devices
control. In this paper, we deal with the sweep coverage problem
with multiple mobile sensors to periodically cover n targets in
the surveillance region. We propose three constant-factor approx-
imations, namely, CycleSplit, HeteroCycleSplit, and PathSplit,
to minimize the longest sweep period of mobile sensors under
different scenarios, respectively. CycleSplit deals with the min-
period sweep coverage problem (MPSC), in which each mobile
sensor works independently along a predetermined trajectory
cycle. It has an approximation ratio of (5 − 2/(n − m + 1)),
which improves the best known approximation ratio of 5.
HeteroCycleSplit is a 5α-approximation. It computes the sensor
routes for heterogeneous velocity min-period sweep coverage
problem (HVMPSC), where each mobile sensor has a different
velocity. PathSplit is a 2-approximation for connected path min-
period sweep coverage problem (CPMPSC). It solves a variant
problem of sweep coverage where we need to cover all the given
edges. Besides, we also propose an optimal algorithm DP-MPSC
for min-period sweep coverage problem in 1-D case. Finally,
we provide various numerical experiments and comparisons with
several previous work to validate the efficiency of our design.

Index Terms— Sweep coverage, mobile sensor, TSP cycle,
approximation.

I. INTRODUCTION

COVERAGE problems in Wireless Sensor Networks
(WSN) have been studied extensively under various

models. Briefly speaking, this kind of problems requires a
strategy of deploying wireless sensors to collect useful infor-
mation about a given region. Some studies focus on covering
PoIs (Points of Interest), and formulate the problem as Target
Coverage problem [1]. In target coverage problem, we need to
use a number of wireless sensors to cover a set of static targets.
Besides, some consider Area Coverage problem, in which the
objective is to fully cover or partially cover the given area with
a given number of static wireless sensor. This is a traditional
problem about sensor coverage and has been used in many
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practical scenarios. Another interesting application is Barrier
Coverage: we want to monitor a belt region, such that any
intruder that tries to cross the region will be detected [2]–[4].
Researchers also investigate the coverage issues for direc-
tional sensor networks [5] called Camera Sensor Coverage.
An object in camera sensor coverage is often called full-view
covered if there is always a camera sensor facing close to it
no matter which direction it faces [6].

Instead of continuous monitoring, many applications only
require periodic patrol inspection for a certain set of PoIs.
Typical examples include police patrolling, message ferrying,
devices control, etc. In such scenario, a mobile sensor can
move around to collect data from targets actively, and the
objective is usually to minimize the number of detecting
sensors under a time constraint or find the minimum sweep
period given the number of targets or shorten the trajectory
length of mobile sensors. We refer to such problem as Sweep
Coverage [7]–[11]. Similar models have also been studied
under the context of autonomous robots, vehicle routing, and
data collection.

In this paper, we mainly focus on sweep coverage problem
with multiple mobile sensors. Assume that there are n targets
in the surveillance region and m mobile sensors. Each mobile
sensor works as a data ferry to collect information from targets.
If a sensor moves to the position of a target, then this target
is considered to be detected by the mobile sensor. Imagine
that all the mobile sensors move along a set of predefined
trajectories continuously to collect data, and a target is said
to be t-sweep covered if it is detected by a mobile sensor at
least once every t time units (we call t its sweep period). The
objective here is to minimize the sweep period for all targets.
We consider three variations of this problem. Their detailed
descriptions are as follows.

To begin with, assume that all mobile sensors have the same
velocity v. In Min-Period Sweep Coverage problem (MPSC),
each mobile sensor moves along one cycle and each target
belongs to exactly one of these cycles. An example is shown
in Figure 1. The sweep period of the target on cycle C is
Len(C)

v , which is proportional to l = Len(C). Here Len(C)
denotes the length of cycle C. If we assign l as the trajectory
length for the sensor on C, then minimizing the sweep period
for PoIs is equal to minimizing the maximum trajectory length
for all mobile sensors.

We further consider a more realistic version of Min-Period
Sweep Coverage, in which the speeds of sensors are hetero-
geneous. In other words, the sweep period for each target on
cycle C covered by the ith mobile sensor is Len(C)

vi
. We change
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Fig. 1. An illustration for sweep coverage problem.

the expression to WiLen(C) and assign it as the weighted
trajectory length for the sensor on C. The goal is to minimize
the maximum weighted trajectory length so as to minimize the
sweep period for all n targets. We refer to it as Heterogeneous
Velocity Min-Period Sweep Coverage problem (HVMPSC).

There is also another version of Min-Period Sweep Cov-
erage. Here we want to cover not only the targets, but also
some connected edges. This is useful when periodic patrol
inspection is required for several routes or continuous paths.
Given a set of connected edges Es and m mobile sensors,
we are supposed to schedule the path for each mobile sensor
to cover all the edges that belong to Es. We refer to this
problem as Connected Path Min-Period Sweep Coverage prob-
lem (CPMPSC), the sweep period of which is Len(Pi)

v . Again,
we use the trajectory length Len(Pi) in the objective of this
problem.

Easy to see, if m = 1, the Min-Period Sweep Cover-
age problem becomes a Traveling-Salesman-Problem (TSP),
which is a classic NP-complete problem. Therefore MPSC,
HVMPSC and CPMPSC are all NP-complete. In previous
literature, the MPSC problem is also known as Min-Max Cycle
Cover Problem (MMCCP) [12], which looks for at most k
disjoint cycles to cover the given targets with a minimum cost.
Correspondingly, Yu and Liu [12] proposed a 5-approximation
to solve this problem, which is the best approximation up to
now. Besides, [13] studied the k-TSP problem which is similar
to MPSC. However, the cycles in [13] share a common starting
point while we use separated cycles in MPSC. There is an
approximation in [14] for Heterogeneous Velocity Min-Period
Sweep Coverage problem. However, when the range between
the groups of targets are too large, its approximation of output
cannot maintain. There has been no approximation to solve
Connected Path Min-Period Sweep Coverage problem yet.

Correspondingly, in this paper we propose three
constant-factor approximations, namely CycleSplit, and
HeteroCycleSplit, PathSplit to solve the above mentioned three
variations respectively. The first approximation, CycleSplit,
deals with MPSC problem with the approximation ratio of
(5− 2

n−m+1). It improves the best known approximation ratio
of 5 in [12]. The second approximation HeteroCycleSplit
is a 5α-approximation for the Heterogeneous Velocity

Min-Period Sweep Coverage problem. It implements the
modified CycleSplit algorithm to achieve the goal. The
third approximation is a 2-approximation called PathSplit
for Connected Path Min-Period Sweep Coverage problem.
Besides, we also provide an optimal algorithm for Min-Period
Sweep Coverage problem in one dimensional case.

We relax our discussion to metric space since we only
use the triangle inequality property in our analysis. Thus,
in the following discussion, all the problems are defined in
metric space unless explicitly mentioned, which means that
our algorithms are applicable to more general cases.

Next, we provide various numerical experiments to validate
the efficiency of our design. We compare our algorithms with
OSweep algorithm in [15], MinExpand algorithm proposed
in [15] and PDBA algorithm in [16]. The performance eval-
uation shows that our algorithms can achieve better results
under the same network scale.

To sum up, the contributions of our paper are as follows.

• we consider three variations of sweep coverage problem
under metric space with multiple mobile sensors, namely
Min-Period Sweep Coverage problem (MPSC), Heteroge-
neous Velocity Min-Period Sweep Coverage (HVMPSC)
problem and Connected Path Min-Period Sweep Cover-
age (CPMPSC) problem. The objective is to shorten the
longest trajectory length of mobile sensors to reduce the
target detection period.

• We propose one optimal algorithm, DP-MPSC for Min-
Period Sweep Coverage problem in one dimensional case.

• We propose three constant-factor approximations Cycle-
Split, HeteroCycleSplit and PathSplit to solve these three
problems respectively. Both CycleSplit and HeteroCy-
cleSplit have better approximation ratio than the best
state-of-the-art algorithms, while PathSplit is the first
constant-factor approximation for Sweep Coverage prob-
lem in this scenario.

• We compare our algorithms with several previous litera-
tures by simulations. Both theoretical analysis and numer-
ical experiments validate the efficiency of our design.

The rest of this paper is organized as follows. Section II
discusses some related work. Section III introduces the pre-
liminaries for later sections. In Section IV, Section V and
Section VI, we propose algorithms for Min-Period Sweep
Coverage, Heterogeneous Velocity Min-Period Sweep Cover-
age and Connected Path Min-Period Sweep Coverage respec-
tively with approximation analysis. In Section VII, we give
experiments to evaluate the performance of our algorithms.
Section VIII is the final conclusion and future work.

II. RELATED WORK

The min-period sweep coverage problem with multiple
sensors is closely related to multiple Traveling-Salesman-
Problem (TSP) with min-max objective (denoted as min-
max m-TSP problem, or min-max k-cycle problem). The
traditional single TSP is one of the most intensively stud-
ied problems in the area of combinational optimization.
A simple algorithm based on minimum spanning tree (MST)
gives a 2-approximation solution. By a clever construction,
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TABLE I

SOME PREVIOUS WORK CONCERNING SWEEP COVERAGE PROBLEM

Christofides [27] improved the approximation ratio from
2 to 1.5. It has been proved that the metric TSP is inapprox-
imable within a ratio of 123

122 , unless P = NP [28]. Obviously,
the min-period sweep coverage problem (MPSC) is at least as
hard as the original TSP.

Following the similar strategy, we could firstly find a min-
max k-tree for a given graph, and then construct cycles based
on these trees. If the min-max k-tree problem has an α-
approximation, then there is a 2α-approximation for min-max
k-cycle problem. Unfortunately, min-max k-tree is also an
NP-hard problem, which is proved in [29] by reduction from
Bin Packing. Even et al. [29] presented a 4-approximation
algorithm for min-max k-tree and a 4-approximation algorithm
for its rooted variant. In 2014, Khani and Salavatipour [30]
improved the approximation ration from 4 to 3. It has also been
proved in [31] that the min-max k-tree problem and its rooted
variant have an inapproximability bound of 3

2 . Therefore,
following this approach, we cannot design an approximation
with ratio better than 3 to min-max k-cycle problem.

Researchers have made many contributions to solve prob-
lems concerning sweep coverage [10], [14]–[26], [32]–[42].
Related literatures usually focused on these problems: finding

the minimum sweep period or determining the minimum
number of mobile sensors. Table I shows some previous work
concerning these problems.

Li et al. [10] proposed two centralized algorithm for sce-
narios about Global t-Sweep Coverage. The first centralized
algorithm named CSWEEP aims to compute a globe TSP cycle
based on the positions of PoIs and then split it into several
distinct loops for mobile sensors. The second centralized
algorithm named GSWEEP considers that different PoIs have
different sweep period and replaces each original PoI with
several virtual PoIs. Then GSWEEP converts the new problem
to the original problem and solves it with CSWEEP. For prac-
ticability and scalability, they proposed a distributed sweep
algorithm, DSWEEP, which cooperates sensors efficiently to
provide required coverage with the best effort.

Xue et al. [14] proposed several new variations of sweep
coverage problem with neighborhood. An approximation algo-
rithm is introduced in this paper to solve the sweep cover-
age problem called k-ITSPN without a fixed initial velocity.
However this algorithm cannot be used in all scenarios.
When the range between the groups of targets are too large,
the approximation of output cannot maintain.
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Du et al. [15] designed a centralized algorithm named
MinExpand to find the minimum number of mobile sensors
required for sweep coverage. MinExpand gradually deploys
more mobile sensors and schedules distinct sweep route for
new mobile sensor according to the positions of the remaining
PoIs and sweep period t until all PoIs satisfy t-sweep coverage
requirement.

Liu et al. [16] proposed a heuristic, called the perpendicular-
distance-based algorithm (PDBA), to minimize the number of
mobile sensors and the total energy consumed. They chose
a PoI to join the route of a mobile sensor according to
its perpendicular distance to the bottom of the graph. The
algorithm deploys more mobile sensors when the paths of the
existing mobile sensors exceeds the length constraint.

Gorain and Mandal [17] considered the sweep coverage
problem to find the minimum number of mobile sensors
to ensure periodic monitoring for a given set of points of
interest. They proposed a 3-approximation algorithm named
GSWEEPCOVERAGE for this problem.

Feng [18] proposed a constant-factor approximation BS-
Sweep for the optimization problem to minimize the makespan
of mobile sweep routes (M3SR) based on the idea of binary
search. They use the weight of the minimum spanning forests
to continuously check if the expected value can be achieved
with the given conditions.

Li et al. [19] would like to support dynamical POI coverage
and data delivery simultaneously by modeling the minimum
number of required sensors problem in sweep coverage as
a Vehicle Routing Problem (VRP). They proposed a novel
sweep coverage scheme, named VRPSC (Vehicle Routing
Problem based Sweep Coverage) to address the problem.
An greedy insertion algorithm is designed to create the initial
scanning routes for POIs, and then the Simulated Annealing
is employed to optimize these routes.

Moazzez-Estanjini and Paschalidis [20] presented an algo-
rithm named PSH to minimize the average delay in delivering
data using mobile elements in wireless networks. A single sink
is located among the POIs to collect data from multiple mobile
sensors. PSH transforms Hamiltonian solutions to potentially
better non-Hamiltonian solutions by splitting an available
Hamiltonian solution into several loops.

Zhao et al. [21] presented a new problem in which every
mobile sensor not only covers the PoIs but also visits a
base station periodically. They considered the Double Delay
Constrained Min-Velocity Scheduling (DDC-MVS) problem,
to determine the minimum velocity for a single mobile sensor
to satisfy the double delay constraints. They proposed two
algorithms STSP and ITSP to solve the problem. The solution
of STSP can be very bad when the two delay constraints differ
greatly. So they designed ITSP to improve the solution.

Chen et al. [22] considered the impact of sensing range and
proposed the Distance-Sensitive-Route-Scheduling (DSRS)
problem. In this scenario, each sensor has its sensing range,
and whenever a target falls into the sensing area, it is consid-
ered to be detected. They designed an approximation called
G-ROSE to address the route scheduling problem.

Gorain and Mandal [23] wanted to cover a set of line seg-
ments on a plane. They designed a 2-approximation algorithm

to find a solution. They also proposed a 3-approximation algo-
rithm for periodically data gathering from mobile sensor nodes
with minimum number of data mules. The main difference
between their line sweep coverage problem and our connected
path min-period sweep coverage problem (CPMPSC) is that
the edges in their problem are all separated from each other,
while the edges in CPMPSC belong to a connected graph
according to our definition.

Gorain and Mandal [24] discussed the Point Sweep Cover-
age Problem, to minimize the number of mobile sensor nodes
with a constant velocity. They proposed an 2-approximation
algorithm to solve the point sweep coverage problem when
the PoIs are static sensor nodes. They also introduced a
new problem called Area Sweep Coverage and provided an
approximation to solve it.

Liu et al. [25] studied the problem of sweep coverage with
return time constraint. This problem requires that the POIs
should be covered and the collected data should be delivered
to the base station within a preset time window. G-MSCR and
MinD-Expand are two heuristic algorithms designed to solve
this problem. In practice, G-MSCR leads to shorter return time
and MinD-Expand requires fewer sensor nodes.

Huang et al. [26] considered the data delivery to sink in
sweep coverage and designed the ACOSC algorithm based
on the ant colony optimization (ACO) algorithm to search
for a solution. In ACOSC, each ant builds a list of feasible
movements and chooses the one by a probabilistic rule. The
total mobile sensor number is minimized to decrease the
network cost.

III. PRELIMINARY

In this section, we define some basic concepts and introduce
some primitive methods which will be used in later sections.

A. Metric Space

For any given complete graph G(V, E), we will use d to
represent a metric on V such that d : V × V → R

+. Triangle
inequality is the most important property that a metric space
holds, i.e. d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ V .

Suppose e is the edge between vertices u and v, we will use
d(u, v) and d(e) to denote the same thing in context without
ambiguity, which represents the distance between points u and
v or the length of edge e. For an edge set E� ⊂ E, define
d(E�) =

∑

e∈E′
d(e).

B. Cycle Cover and Tree Cover

The formal definition of Cycle Cover is shown as follows.
Definition 1 (Cycle Cover): Given a graph G = (V, E)

and a vertex set V � ⊆ V , a cycle cover for V � is a set of
cycles C = {C1, . . . , Ct}, which are subgraphs of G, and the
union of their vertices is V �.

Similarly, we can define tree cover as follows.
Definition 2 (Tree Cover): Given G = (V, E) and V � ⊆ V ,

a tree cover for V � is a forest T = {T1, . . . , Tt}, which are
subgraphs of G, and the union of their vertices is V �.
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C. Constructing Cycle From Tree

We could use Christofides’ improvements [27] to construct
cycles from trees in our algorithm, but we cannot trivially
get a better approximation ratio. The approximation ratio
of Christofides’ algorithm is 1.5. We briefly explain how
Christofides’ algorithm works. Let G(V, E) be an instance
of the Travelling Salesman Problem. In other words, G is a
complete graph on the set V of vertices, and the set E assigns
a non-negative real weight to every edge of G.

The whole algorithm for constructing cycle from tree can
be described as follows.

1) Find a minimum spanning tree T of G.
2) Let E� be the set of vertices whose degree is odd in T .

By the handshaking lemma, E� has an even number of
vertices.

3) Find a minimum-weight perfect matching M in the
induced subgraph given by the vertices from E�.

4) Combine the edges of M and T to form a connected
multigraph G� in which every vertex has even degree.

5) Form a Eulerian circuit in G� and make the circuit found
in previous step into a Hamiltonian circuit by removing
the repeated vertices from the circuit, which is called
shortcutting.

Besides, there is a useful theorem in [27], which will later
be used in our own proof.

Theorem 1: A Hamiltonian circuit CH of a complete graph
G can be found with cost

C(CH) ≤ C(T ∗) +
1
2
C(TSP ∗) ≤ 3

2
C(TSP ∗),

where T ∗ is a minimum spanning tree of G and TSP ∗ is an
optimal solution to the Travel Salesman Problem in G.

D. Global t-Sweep Coverage

Sweep coverage, unlike traditional area coverage or barrier
coverage, does not require static and continuous coverage all
the time. In sweep coverage, we only need to cover every
PoI at least once every certain time interval to guarantee
event detection within a certain delay bound. With this idea,
we define t-Sweep Coverage as follows.

Definition 3 (t-Sweep Coverage): A PoI is said to be t-
sweep covered by a coverage scheme F if and only if it is
scanned at least once every t time units by the mobile sensors
allocated by F .

If a PoI is t-sweep covered, time interval t is called the
sweep period of the PoI. When there is a set of PoIs, different
PoIs may have different sweep periods. In order to unify the
requirements, we need to define Global t-Sweep Coverage as
follows.

Definition 4 (Global t-Sweep Coverage): A set of PoIs is
said to be global t-sweep covered by a coverage scheme F
if and only if all PoIs are scanned at least once every t time
units by the mobile sensors allocated by F .

E. Min-Sensor Sweep Coverage Problem

Some previous algorithms for sweep coverage problem are
to find the minimum number of mobile sensors to satisfy the

required global t-sweep coverage constraints for PoIs [10],
[15], [16]. This problem is denoted as Min-Sensor Sweep
Coverage Problem in [10]. Briefly, it is defined as follows.

Definition 5 (Min-Sensor Sweep Coverage Problem):
Given input triple (G, T, d), where G = (V, E) is a
complete graph, T is the global sweep period constraint,
d : V × V → R

+ is a metric, Min-Sensor Sweep Coverage
Problem aims to find a coverage scheme F such that the
number of mobile sensors m is minimized.

Li et al. [10] showed that determining the minimum number
of required sensors (min-sensor sweep coverage problem) is
NP-hard, and it cannot be approximated within a factor of 2,
unless P = NP.

IV. MIN-PERIOD SWEEP COVERAGE

In this section, we will formally define the Min-Period
Sweep Coverage problem (MPSC), and then design an approx-
imation named CycleSplit for this problem. We also propose an
optimal algorithm for Min-Period Sweep Coverage problem in
one dimensional case. Besides, we will prove the correctness
of our algorithms.

A. MPSC: General Case

In this section, we will talk about Min-Period Sweep
Coverage problem in general case. We firstly give the formal
formulation of the problem and then propose an approxima-
tion for this problem, the approximation ratio of which is
(5− 2

n−m+1 ).
1) Problem Formulation: The basic idea of our algorithms

to solve the Min-Period Sweep Coverage problem follows the
following procedures:

1) Construct a cycle cover C ;
2) Determine how many sensors will be allocated to each

cycle in C .
3) Split the cycle evenly and construct a new cycle for each

mobile wireless sensor.

Mobile wireless sensors do not work cooperatively, and
each sensor traverses a distinct cycle (as shown in Figure 1).
We define it as Min-Period Sweep Coverage problem (MPSC).

Definition 6 (Min-Period Sweep Coverage (MPSC)):
Given input triple (G, m, d), where G = (V, E) is a complete
graph, m is the number of sensors, d : V × V → R

+ is a
metric, Min-Period Sweep Coverage (MPSC) problem aims
to find a cycle cover C such that |C | = m and max

1≤i≤|C |
d(Ci)

is minimized.
As mentioned in Section I, MPSC problem is actually the

multiple Traveling-Salesman-Problem with min-max objec-
tive (min-max m-TSP).

2) CycleSplit (An Approximation for MPSC): In this sub-
section we design CycleSplit algorithm to solve the MPSC
problem. The main idea is to first select some connected
components from the given graph, compute a TSP cycle for
each connected component, split the TSP cycle into several
segments and finally form distinct cycles.

Recall Kruskal’s algorithm for constructing a minimum
spanning tree. We add edges to the empty graph G� = (V, ∅)
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one by one, by an increasing order of their length (i.e. d(·)).
In each stage of Kruskal’s algorithm, G� will have a number
of connected components, and each subgraph induced by the
connected component is a tree. These trees will be used as
a basis to construct a cycle cover. After obtaining the cycle
cover, we will split some cycles to get exactly m cycles.

Algorithm 1 describes CycleSplit in detail. CycleSplit
will choose the best of all feasible cycle covers in
algorithm.

Algorithm 1 CycleSplit

input : G = (V, E), d : E → R
+, m sensors

output: A cycle cover C = {C1, C2, . . . , Cm}
1 E0 ← ∅; G0 ← (V, E0); i← 0;
2 foreach e ∈ E (chosen in ascending order by d(·)) do
3 if adding e to Gi does not produce a cycle then
4 i← i + 1; ei ← e;
5 Ei ← Ei−1 ∪ {e}; Gi ← (V, Ei);
6 if # of connected components > m then
7 Go to next iteration;

8 C � ← ∅;
9 foreach connected component CC in Gi do

10 Construct a cycle C by Christofides’ Alg. [27];
11 C � ← C � ∪ {C};
12 Split the cycles in C � to get a new cycle set C (i)

with |C (i)| = m;

13 Choose the best cycle cover from the above computed
cycle covers, and denote it as C ;

14 return C ;

In Line 2-12, we continue to add edges into the edge set
Ei in ascending order by length. We check if the adding edge
will produce a cycle. In Line 9-11, we construct a cycle for
each connected component in Gi by Christofide’s algorithm.
In line 12, we split some of the cycles to get a new cycle cover
C (i) with |C (i)| = m. In Line 13, we find the best answer
among all C (i).

For Line 12 in Algorithm 1, we could design an efficient
splitting strategy for this step. Before this step, we have already
got a cycle cover, so the task here is just determining how to
split large cycle into small ones, i.e. how many sensors should
be assigned to each large cycle. The solution can be achieved
by a simple greedy algorithm described in Algorithm 2, whose
optimality is proved in Lemma 1.

Lemma 1: Algorithm 2 can find an optimal sensor alloca-
tion for a given cycle cover C efficiently. Here the optimality
means that max d(Ci)

mi
is minimized.

Proof: Assume on the contrary there is a different sensor
allocation A� = {m�

1, m
�
2, . . . , m

�
t} such that

max
1≤i≤t

d(Ci)
m�

i

< max
1≤i≤t

d(Ci)
mi

.

Since A� is different from A, then there exists a k such that
m�

k < mk and d(Ck)
m′

k
≥ d(Ck)

mk
. In Algorithm 2, we increased

the value of mk from m�
k to m�

k + 1, which means that d(Ck)
m′

k

Algorithm 2 GreedyAllocation

input : m sensors, a cycle cover C = {C1, C2, . . . , Ct}
and a metric d

output: a sensor allocation for C and a cycle cover C �

with |C �| = m
1 mi ← 1 for 1 ≤ i ≤ t;
2 while m >

∑t
i=1 mi do

3 k ← arg max
1≤i≤t

d(Ci)
mi

; mk ← mk + 1;

4 Split each Ci into mi segments evenly; For each segment,
add the edge connecting its two outmost vertices to form
a cycle and remove the redundant part; Put these mi new
cycles into C �;

5 return A = {m1, m2, . . . , mt} and C �;

is the maximum among { d(Ci)
mi
} at some iteration. Notice that

the value of max
1≤i≤t

d(Ci)
mi

is non-increasing during the iterations.

Therefore, we have

d(Ck)
m�

k

≥ max
1≤i≤t

d(Ci)
mi

which contradicts the assumption. �
Now we will prove the approximation ratio for the Cycle-

Split algorithm. Denote the optimal solution as C ∗ =
{C∗1 , C∗2 , . . . , C∗m}, set OPT = maxi(d(C∗i )). We use d∗max

to denote the maximal distance between any two vertices in
the same cycle, i.e. d∗max = maxu,v∈C∗

i
{d(u, v)}, where u, v

belongs to the vertices of some C∗i . We first derive an upper
bound for d∗max.

Lemma 2: d∗max ≤ 1
2OPT.

Proof: Suppose that d(u, v) = d∗max for u, v in some
C∗i . To construct a cycle, we must travel along a path from u
to v, then back from v to u. Since we are considering metric
space, both of the two paths are larger than or equal to d(u, v).
Therefore

OPT ≥ d(C∗i ) ≥ 2 d(u, v) = 2 d∗max.

Thus Lemma 2 holds. �
As shown in Algorithm 1, denote the edges added to the

graph as e1, e2, . . . , e|V |−1, we have d(e1) ≤ d(e2) ≤ · · · ≤
d(e|V |−1). Let Gi = (V, Ei) where Ei = {e1, e2, . . . , ei}. It is
easy to get the following fact.

Lemma 3: Gi is a minimum spanning forest with |V | − i
connected components. For each connected component CC,
the subgraph induced by CC is actually a minimum spanning
tree for CC.

Set j = arg max
1≤i≤|V |−1

d(ei) ≤ d∗max. Suppose the connected

components of Gj are CC
(j)
1 , CC

(j)
2 , . . . , CC

(j)
|V |−j . We will

use T (j)
1 , T (j)

2 , . . . , T (j)
|V |−j to denote their corresponding trees.

Denote T ∗
i as the MST for the vertices in C∗i .

Lemma 4: d(T ∗
i ) ≤ (1 − 1

|V | −m + 1
)OPT, for 1 ≤ i ≤

m.
Proof: Notice that the number of vertices in any C∗i is

smaller than or equal to (|V | − m + 1). Additionally, there
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must be an edge e� in C∗i such that

d(e�) ≥ d(C∗i )
# of vertices in C∗i

≥ d(C∗i )
|V | −m + 1

Delete e� from C∗i we can get a spanning tree and by
d(C∗i ) ≤ OPT, we have

d(T ∗
i ) ≤ d(C∗i )− d(e�) ≤ (|V | −m)d(C∗i )

|V | −m + 1

≤ (|V | −m)OPT
|V | −m + 1

Thus the lemma holds. �
Lemma 5: All vertices of C∗i belongs to the same connected

component of Gj , for 1 ≤ i ≤ |V | − j.
Proof: Suppose that C∗i use an edge e� to connect

two different connected components of Gj . Recall that j =
argmax

1≤i≤|V |−1

d(ei) ≤ d∗max. Abstract from our algorithm, d(e�) >

d∗max, which contradicts the definition of dmax. �
Lemma 6: Suppose CC

(j)
i contains k∗

i cycles from the
optimal solution, then

d(T (j)
i ) ≤ ((

3
2
− 1
|V | −m + 1

)k∗
i −

1
2
)OPT

Proof: From Lemma 5, we can find that these k∗
i cycles

from the optimal solution. We can use k∗
i −1 edges to connect

them, and each edge will cost no more than d(ej). Since T (j)
i

is an MST, we have

d(T (j)
i ) ≤ k∗

i d(T ∗
i ) + (k∗

i − 1)d(ej)
≤ k∗

i d(T ∗
i ) + (k∗

i − 1)d∗max

≤ k∗
i

(|V | −m)OPT
|V | −m + 1

+ (k∗
i − 1)

OPT
2

≤
(

(
3
2
− 1
|V | −m + 1

)k∗
i −

1
2

)

OPT

�
Lemma 7: Denote TSP

(j)
i as the optimal TSP cycle for

CC
(j)
i . Suppose CC

(j)
i contains k∗

i cycles from the optimal
solution, then d(TSP

(j)
i ) ≤ (2k∗

i − 1)OPT.
Proof: Consider the k∗

i cycles from the optimal solution.
We can use k∗

i − 1 edges to connect them, and duplicating
these edges will result in a TSP cycle. Each edge will cost no
more than d(ej). Thus we have

d(TSP
(j)
i ) ≤ k∗

i OPT + 2(k∗
i − 1)d(ej)

≤ k∗
i OPT + 2(k∗

i − 1)d∗max

≤ k∗
i OPT + (k∗

i − 1)OPT

≤ (2k∗
i − 1)OPT

We can find that the statement holds. �
Lemma 8: Denote C�(j)i as the TSP cycle computed by

Christofides’ Alg. for CC
(j)
i at Line 10 in Algorithm 1.

Suppose CC
(j)
i contains k∗

i cycles from the optimal solution,
then

d(C�(j)i ) ≤
(

(
5
2
− 1
|V | −m + 1

)k∗
i − 1

)

OPT

Proof: From Christofides’ algorithm, we can get that

d(C�(j)i ) ≤ d(T (j)
i ) +

1
2
d(TSP

(j)
i )

≤
(

(
3
2
− 1
|V | −m + 1

)k∗
i −

1
2

)

OPT

+
1
2
((2k∗

i − 1)OPT)

≤
(

(
5
2
− 1
|V | −m + 1

)k∗
i − 1

)

OPT

This finishes the proof. �
If we split C�(j)i into k∗

i paths, then each path will have
length less than (5

2 −
1

|V |−m+1 )OPT. Thus the cycles obtained
from these paths will have length less than (5− 2

|V |−m+1)OPT.
As we have already stated in Lemma 1, the optimal way to split
these cycles can be found. Therefore, we have the following
theorem.

Theorem 2: C (j) is a (5 − 2
|V | −m + 1

)-approximation,

i.e.

max
C∈C (j)

d(C) ≤ (5− 2
|V | −m + 1

)OPT,

and CycleSplit is a (5 − 2
|V |−m+1 )-approximation for Min-

Period Sweep Coverage problem.
According to Theorem 2, CycleSplit is theoretically better

than the existing 5-approximation solution in [12]. However,
when |V | is far greater than m (i.e., the number of targets
is far greater than the number of sensors), the approximation
ratio of CycleSplit also becomes 5.

As the first step of CycleSplit, we have to put all the
edges in ascending order. This sorting process can be done in
O(|E|log(|E|)) steps. Assign n = |V | as the number of targets
in the following calculation. Considering that G is a complete
graph, we have |E| = |V | · (|V | − 1) = n(n − 1), thus the
running time of this step is O(n2log(n)). According to [27],
the running time of Christofides’ algorithm is O(n3). In the
for-loop of CycleSplit, we perform Christofides’ algorithm on
the scale of the entire graph for m times. Then, we perform
Algorithm 2 whose average time complexity is O(m2) for
m times. Therefore, the overall complexity is O(n2log(n) +
m · (n3 + m2)). Since the number of sensors m is usually
smaller than the number of targets n, the time complexity
of CycleSplit should be O(mn3). (Note that the last step of
choosing the best cycle cover can be done in constant time if
we keep record of the current best result in the process.)

B. MPSC: One Dimensional Case

In this section, we will introduce an optimal algorithm
called DP-MPSC for Min-Period Sweep Coverage problem in
one dimensional case. In this scenario, all targets and mobile
sensors are distributed along a straight line.

Given G = (V, E), we denote pi as each point belong
to V . We enumerate the pi ∈ V from one endpoint to another
endpoint of the straight line. Recall that d(pi, pj) denote the
distance between pi and pj .
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1) DP-MPSC (An Optimal Algorithm for MPSC in One
Dimensional Case): We design an optimal dynamic program-
ming named DP-MPSC to solve Min-Period Sweep Coverage
problem in one dimensional case. We divide all points belong
to V into several groups and the locations of points in each
group are continuous along the straight line. According to
the optimal substructure analysis, we assign a mobile sensor
to each PoI group, double the largest distance between any
two points of each group and get the optimal solution for
Min-Period Sweep Coverage problem in one dimensional
case. We present the state transition equation of dynamic
programming as follows:

Len(i, j) = min
k<i

max (Len(k, j − 1), 2d(pi, pk+1))

Where j firstly loops from 1 to m, i secondly loops from 1 to
|V |, Len(i, j) denotes the optimal answer when use j mobile
sensors to cover the former i PoIs (p1, p2, . . . , pi).

We present the pseudo code of DP-MPSC for Min-Period
Sweep Coverage in Algorithm 3. Firstly the input of DP-
MPSC is G(V, E) and the number of mobile sensors. All
distances are ordered by their locations in Line 1. Finally
we use the state transition equation to calculate the value of
Len(i, j) in Line 2-9.

All routes are straight lines and mobile sensors move along
the line back and forth.

Algorithm 3 DP-MPSC

input : G = (V, E), d : E → R
+, m sensors

output: A cycle cover A cycle cover
C = {C1, C2, . . . , Cm}

1 Sort the pi ∈ G in order;
2 foreach j ← 1; j ≤ m; j + + do
3 foreach i← j; i ≤ |V |; i + + do
4 C i

j ← ∅;
5 foreach k ← j − 1; k < i; k + + do
6 if Len(i, j) > max(Len(k, j − 1), 2d(pi, pk+1))

then
7 Len(i, j)←

max(Len(k, j − 1), 2d(pi, pk+1));
8 Construct a cycle C� from the set

{pi, pi−1, . . . , pk+1};
9 C i

j ← C k
j−1 ∪ {C�};

10 return C
|V |
m ;

Theorem 3: DP-MPSC is an optimal algorithm for Min-
Period Sweep Coverage problem in one dimensional case.

Proof: It is obvious that neither of two sweep routes are
overlapped and PoIs on one sweep route should be contin-
uous. Therefore the optimal solution for Min-Period Sweep
Coverage problem in one dimensional case is to partition all
PoIs and mobile sensors into several groups, and the locations
of PoIs in each group must be continuous, which is the goal
of DP-MPSC. We prove we can compute Len(i, j) correctly
if we have known the optimal solution for all Len(k, j − 1),
where k < i. Because the PoIs in one group are continuous,

the group including pi must be pk+1, pk+2, . . . , pi where
k < i. Since we have known all Len(k, j − 1), we do not
care about the partition of the former k PoIs and j − 1
mobile sensros. Each enumeration with k can get one solution
for our problem, max(Len(k, j − 1), 2d(pi, pk+1)). After all
enumerations, we have tried all partitions and the minimum of
all enumerations must be the optimal solution for Len(i, j).
Therefore Len(|V |, m) is the optimal answer for Min-Period
Sweep Coverage problem in one dimensional case. Therefore
Theorem 3 holds. �

According to Theorem 3, we know that DP-MPSC can get
an optimal solution for Min-Period Sweep Coverage problem
in one dimensional case. DP-MPSC runs in three for-loops.
Therefore the time complexity of DP-MPSC is O(n2m). With
the help of some advanced data structure (Segment tree),
we can reduce the time complexity to O(nmlog(n)).

V. HETEROGENEOUS VELOCITY MIN-PERIOD

SWEEP COVERAGE

In this section we will introduce a variant of Min-Period
Sweep Coverage problem. Considering that the velocities of
mobile sensors are not homogenous in practical scenario,
we take the heterogeneous velocities into account. To make
the problem more general, we change the problem into another
version and normalize it.

A. Problem Formulation

In this problem, we need a new parameter W =
{W1,W2, . . . ,Wm}. The basic idea of our algorithms to
solve the Heterogeneous Velocity Min-Period Sweep Coverage
problem follows the following procedures:

1) Construct a cycle cover C ;
2) Try to allocate some mobile wireless sensors to each

cycle in C and find the optimal distribution.
3) Split the cycle according the velocities of mobile sensors

and construct new cycle for each mobile wireless sensor.

Definition 7 (Heterogeneous Velocity Min-Period Sweep
Coverage (HVMPSC)): Given input quadruple (G, m, d, W ),
where G = (V, E) is a complete graph, m is the number of
sensors, d : V ×V → R

+ is a metric, W is a weight function
that is inversely proportional to the velocities of mobile sensors
and W1 < W2 < · · · < Wm = 1. Heterogeneous Velocity
Min-Period Sweep Coverage (HVMPSC) problem aims to find
a cycle cover C such that |C | = m and max

1≤i≤|C |
Wid(Ci) is

minimized.
Besides, to be more practical, we assume that W1 > 1

α .

B. HeteroCycleSplit: An Approximation for HVMPSC

In this section, we will introduce a approximation Hetero-
CycleSplit to solve Heterogeneous Velocity Min-Period Sweep
Coverage problem. The basic idea of HeteroCycleSplit is
shown as follows:

1) Add edges into graph to construct connected compo-
nents.

2) Construct cycles for these connected components.
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3) Find the optimal sensor allocation for these connected
components.

4) Divide the cycle for mobile sensors according to Wi.
5) Connect two endpoints of each route to construct a new

cycle for each mobile sensor.

We denote A = {A1,A2, . . .} as a sensor allocation for
each cycle. We denoteAi = {Wi

1,Wi
2, . . .} and

∑
i |Ai| = m.

The detail of HeteroCycleSplit is shown in Algorithm 4.
In Line 3-7, we add edges into set in ascending order by the
weight of edges. In Line 5, we can get Gi, which consists
of several connected components. In Line 8-11, we con-
struct TSP cycle for each connected component. In Line 12,
we find the optimal sensor allocation for the cycle cover.
In Line 13, we calculate the output for the cycle cover and
sensor allocation. In Line 14-15, we output the solution for
HeteroCycleSplit.

Algorithm 4 HeteroCycleSplit

input : G = (V, E), d : E → R
+, m sensors, A

output: A cycle cover C = {C1, C2, . . . , Cm}, a sensor
allocation A = {A1,A2, . . . ,Am}

1 E0 ← ∅; G0 ← (V, E0); i← 0;
2 foreach e ∈ E (chosen in ascending order by d(·)) do
3 if adding e to Gi does not produce a cycle then
4 i← i + 1; ei ← e;
5 Ei ← Ei−1 ∪ {e}; Gi ← (V, Ei);
6 if # of connected components > m then
7 Go to next iteration;

8 C � ← ∅;
9 foreach connected component CC in Gi do

10 Construct a cycle C by Christofides’ Alg. [27];
11 C � ← C � ∪ {C};
12 Find the optimal sensor allocation A � for C � such

that max
1≤i≤|C ′|

d(C′
i)

�|A′
i
|

j=1
1

Wi
j

is minimized;

13 Split the cycles in C � to get a new cycle set C (i)

with |C (i)| = m and allocate the corresponding
W(i) to A (i);

14 Choose the best cycle cover from the above computed
cycle covers, and denote it and the corresponding sensor
allocation as C and A ;

15 return C and A ;

In order to justify the objective for sensor allocation in
Line 12, we need to prove the following lemma.

Lemma 9: Given a cycle Ci and its sensor allocation Ai =
{Wi

1,Wi
2, . . . ,Wi

ti
}, if we split Ci into |Ai| = ti paths (i.e.,

{P(i)
1 ,P(i)

2 , . . . ,P(i)
ti
}), and make sure that Wi

jd(P(i)
j ) =

Wi
kd(P(i)

k ), for 1 ≤ j < k ≤ ti. Then

d(Ci)
∑ti

j=1
1

Wi
j

=Wi
kd(P(i)

k ),

for 1 ≤ k ≤ ti.

Proof: Since we get {P(i)
1 ,P(i)

2 , . . . ,P(i)
ti
} from the cycle

Ci,
ti∑

j=1

d(P(i)) = d(Ci)

Suppose Wi
jd(P(i)

j ) = Wi
kd(P(i)

k ) = CONST, for 1 ≤ j <
k ≤ ti, then

d(Ci)
∑ti

j=1
1

Wi
j

=

∑ti

j=1 d(P(i))
∑ti

j=1
1

Wi
j

=

∑ti

j=1
CONST
Wi

j
∑ti

j=1
1

Wi
j

= CONST

Therefore, Lemma 9 holds. �
From the above lemma, it is clear that if we can minimize
max

1≤i≤|C ′|
d(C′

i)
�|A′

i
|

j=1
1

Wi
j

in Line 12, then after splitting the cycles to

get a new cycle set C (i) in Line 13, max
1≤i≤|C (i)|

Wid(Ci) will

also be minimized.
HeteroCycleSplit is a 5α-approximation for Heterogeneous

Velocity Min-Period Sweep Coverage problem. To prove our
algorithm’s correctness, we should define some variables first.

Similarly, We denote C ∗ = {C∗1 , C∗2 , . . . , C∗m} and W ∗ =
{W∗

1 ,W∗
2 , . . . ,W∗

m} as the optimal solution. Here we set
OPT = maxi(W∗

i d(C∗i )). We use d∗max to denote the max-
imal distance between any two vertices in the same cycle,
i.e., d∗max = maxu,v∈C∗

i
{d(u, v)}, where u, v belongs to the

vertices of some C∗
i .

Lemma 10: d∗max ≤ OPT
2W1

.
Proof: Suppose that d(u, v) = d∗max for u, v in some C∗i .

To construct a cycle containing both u and v, we must
travel along a path from u to v, then back from v to u.
Since we are considering metric space, both of the paths are
larger than or equal to d(u, v). Also, by definition, we have
W∗

i ≥ W1. Therefore,

OPT
W1

≥ W
∗
i d(C∗i )
W1

≥ d(C∗i ) ≥ 2d(u, v) = 2d∗max.

Thus Lemma 10 holds. �
As shown in Algorithm 4, denote the edges added to the

graph as e1, e2, . . . , e|V |−1, we have d(e1) ≤ d(e2) ≤ · · · ≤
d(e|V |−1). Let Gi = (V, Ei) where Ei = {e1, e2, . . . , ei}.

It is obvious that Gi is a minimum spanning forest with
|V |−i connected components. For each connected component
CC, the subgraph induced by CC is actually a minimum
spanning tree for all the vertices in CC.

Set j = arg max
1≤i≤|V |−1

d(ei) ≤ d∗max. Suppose the connected

components of Gj are CC
(j)
1 , CC

(j)
2 , . . . , CC

(j)
|V |−j . We will

use T (j)
1 , T (j)

2 , . . . , T (j)
|V |−j to denote their corresponding min-

imal spanning trees.
Denote T ∗

i as the MST for the vertices in C∗i . From
Lemma 10, we can easily get the following fact.

Lemma 11: d(T ∗
i ) ≤ d(C∗i ) ≤ OPT

W1
, for 1 ≤ i ≤ m.

Lemma 12: All vertices of C∗i belong to the same connected
component of Gj , for 1 ≤ i ≤ |V | − j.

Proof: Suppose that C∗i uses an edge e� to connect
two different connected components of Gj . Recall that
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j = arg max
1≤i≤|V |−1

d(ei) ≤ d∗max. This will lead to d(e�) >

d∗max, which contradicts the definition of d∗max. Therefore,
Lemma 12 holds. �

Lemma 13: Suppose CC
(j)
i contains t∗i cycles from the

optimal solution, then

d(T (j)
i ) ≤ (

3
2
t∗i −

1
2
)

OPT
W1

.

Proof: From Lemma 12, we can find these t∗i cycles from
the optimal solution. Use t∗ − 1 edges no larger than d(ej)
to connect them and delete on edge from each cycle. After
this method, we can get a new spanning tree. Since T (j)

i is an
MST, we have

d(T (j)
i ) ≤ t∗i d(T ∗

i ) + (t∗i − 1)d∗max

≤ t∗i d(C∗i ) + (t∗i − 1)d∗max

≤ t∗i
OPT
W1

+ (t∗i − 1)
OPT
2W1

≤ (
3
2
t∗i −

1
2
)

OPT
W1

�
Lemma 14: Denote TSP

(j)
i as the optimal TSP cycle for

CC
(j)
i . Suppose CC

(j)
i contains t∗i cycles from the optimal

solution, then

d(TSP
(j)
i ) ≤ (2t∗i − 1)

OPT
W1

Proof: Use t∗ − 1 edges no larger than d(ej) to connect
the t∗i cycles, and duplicate these edges will result in a TSP
cycle. Each edge in the TSP cycle will cost no more than
d(ej). Thus we have

d(TSP
(j)
i ) ≤ t∗i d(C∗i ) + 2(t∗i − 1)d(ej)

≤ t∗i
OPT
W1

+ 2(t∗i − 1)
OPT
2W1

≤ (2t∗i − 1)
OPT
W1

�
Lemma 15: Denote C(j)

i as the TSP cycle computed by
Christofides’ algorithm for CC

(j)
i at Line 10. Suppose CC

(j)
i

contains t∗i cycles from the optimal solution, then

d(C(j)
i ) ≤ (

5
2
t∗i − 1)

OPT
W1

.

Proof: From Christofides’ algorithm, we can get that

d(C(j)
i ) ≤ d(T (j)

i ) +
1
2
d(TSP

(j)
i )

≤ (
3
2
t∗i −

1
2
)

OPT
W1

+
1
2
(2t∗i − 1)

OPT
W1

≤ (
5
2
t∗i − 1)

OPT
W1

This finished the proof. �

From the above lemma, since 1
α <W1 ≤ Wi

k ≤ Wm = 1,
we can get that

d(C(j)
i )

∑t∗i
k=1

1
Wi

k

≤ (
5
2
t∗i − 1)

OPT

W1

∑t∗i
k=1

1
Wi

k

≤ (
5
2
t∗i − 1)

OPT

W1
t∗i

Wm

≤ (
5
2
α− α

t∗i
)OPT

If we split C(j)
i into t∗i paths and assign a weight to each

path, satisfying the conditions in Lemma 9, then after being
multiplied by its own weight, each path will give a value less
than 5

2α ·OPT. Thus, the cycles obtained from these paths will
each give a value less than 5α ·OPT. Therefore, we have the
following theorem.

Theorem 4: C (j) is a 5α-approximation, i.e.,

max
C∈C (j)

WCd(C) ≤ 5α ·OPT,

and HeteroCycleSplit is a 5α-approximation for Heteroge-
neous Velocity Min-Period Sweep Coverage problem.

Similar to CycleSplit, the overall time complexity of Hete-
roCycleSplit is also O(mn3) for simplicity.

VI. CONNECTED PATH MIN-PERIOD SWEEP COVERAGE

In this section, we propose a new variant of Min-Period
Sweep Coverage. We formally give a definition for Connected
Path Min-Period Sweep Coverage (CPMPSC) problem and
propose a 2-approximation called PathSplit for this problem.

A. Problem Formulation

In this part, we will give a formal definition for Connected
Path Min-Period Sweep Coverage problem.

Definition 8 (Connected Path Min-Period Sweep Cover-
age (CPMPSC)) Given input triple (G, m, d), where G =
(V, E) is an undirected connected graph, m is the number
of sensors, d : V × V → R

+ is a metric, Connected Path
Min-Period Sweep Coverage (CPMPSC) problem aims to
find a path cover P such that

⋃
Pi = E, |P| = m and

max
1≤i≤|P|

d(Pi) is minimized.

Besides, we must define the Chinese Postman Problem [43].
Definition 9 (Chinese Postman Problem): Given G(V, E),

double some edges e ∈ E to make each point v ∈ V has even
degree or just two points have odd degree. The total length of
all these edges is minimized.

We can use the algorithm in [43] to get optimal solution for
Chinese Postman Problem. The algorithm can be described as
follows.

1) First determine for every pair vi, vj ∈ V of odd nodes
the shortest path Pij joining these two nodes and define
dij to be the length of path Pij .

2) Construct the complele graph G = (V , E) where V
denotes the set of all odd degree nodes in G. Asso-
ciate with every edge eij joining vi, vj ∈ V the edge
weight dij and solve the associated stable marriage
problem (SMP).
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3) The edges eij of the optimal matching correspond to
the path Pij the edges of which have to be duplicated
to obtain the optimal postman tours.

4) Finally, construct an Eulerian path in G as the optimal
solution to the problem.

B. PathSplit: An Approximation for CPMPSC

In this section, we will introduce a 2-approximation called
PathSplit for Connected Path Min-Period Sweep Coverage
problem. The basic idea for this problem is shown as follow:

1) Construct a Chinese Postman Path for the whole graph
G(V, E)

2) Divide the path into m paths and assign each path a
mobile wireless sensor.

The algorithm is shown as follows in Algorithm 5.

Algorithm 5 PathSplit

input : G = (V, E), d : E → R
+, m sensors

output: A Path cover P = {P1,P2, . . . ,Pm}
1 P � ← an optimal path for the Chinese Postman

Problem instance on G;

2 Len← d(P′)
m ;

3 P ← ∅;
4 while d(P �) > Len do
5 P” ← ∅;
6 foreach vertex v ∈ P � in order along the path P do
7 if d(P”) < Len then
8 Add v into P”;

9 P � = P �\P”;
10 Add P” into P;

11 return P;

In Line 1, we produce an optimal path for the Chinese
Postman Problem instance on G. In Line 4-10, we divide
the optimal path for Chinese Postman Problem to construct
m paths for Connected Path Min-Period Sweep Coverage
problem, which is restricted by Len computed from the length
of the optimal path for the Chinese Postman Problem.

We denote the optimal solution as P∗ =
{P∗

1 ,P∗
2 , . . . ,P∗

m}, and set OPT = max
1≤i≤|P∗|

d(P∗
i ). Then we

have the following theorem.
Theorem 5: Algorithm PathSplit is a 2-approximation

algorithm.
Proof: The optimal solution uses m paths and totally

covers E. Therefore, d(E) ≤ mOPT. To construct P � from G,
we double some of the edges in E, therefore, d(P �) ≤ 2d(E),
and our output is d(P′)

m . We can get

d(E)
m
≤ OPT ≤ d(P �)

m
≤ 2d(E)

m
≤ 2OPT.

Therefore theorem 5 holds. �
According to the algorithm in [43], the optimal path for

the Chinese Postman Problem can be calculated in O(n3)
computational steps. Besides, the path division takes O(n)
time to complete. Therefore, the growth rate of PathSplit is
O(n3).

VII. PERFORMANCE EVALUATION

In this section, we evaluate and compare the performance
of our algorithms and other algorithms on a stand alone C++
simulation platform. We prepare a 200× 200 virtual 2-D place
for simulation and randomly deploy a number of targets.

A. Performance Evaluation of CycleSplit

In this section, we evaluate the performance of CycleSplit.
We compare our algorithms with OSweep in [15], MinExpand
proposed in [15], and PDBA in [16]. In this simulation,
the number of targets range from 20 to 500 with a step
of 20 and the number of mobile sensors is 1

20 , 1
10 , 3

20 or 1
5 of

the number of targets. When the numbers of mobile sensors
and targets are fixed, we generate 20 problem instances and
calculate the average of the costs of the outputs of CycleSplit,
OSweep [15], MinExpand [15], and PDBA [16].

Since some previous algorithms are to find the mini-
mum number of mobile sensors to achieve Sweep Coverage
with a constraint on the length of mobile sensors’ trajecto-
ries [15], [16], we use binary search through changing the
bound length for sweep coverage until the output of the
previous algorithms equals to the number of mobile sensors
we input. We use that bound length as the output of these
algorithms, which is shown in Algorithm 6.

Algorithm 6 Simulation

input : G = (V, E), d : E → R
+, m sensors

output: Len
1 Ll ← 0;
2 Lr ← d(E);
3 while l + ε < r do
4 M ← (Ll+Lr)

2 ;
5 if TestAlgorithm(M) ≤ m then
6 Lr ←M ;
7 else
8 Ll ←M ;

9 return M ;

In Line 1-2, the algorithm initialize the left and the right
bounds for the output. In Line 3-8, the algorithm use binary
search to find the optimal length under the constraint of which
the output is equal to the number of given mobile wireless
sensors. The output is M in Line 9.

Figure 2 (a), Figure 2 (b), Figure 2 (c) and Figure 2 (d)
are simulation results for these four algorithms under different
parameter settings. The x axis denotes the number of targets
to be covered, while the y axis shows the length of the longest
trajectory calculated by each algorithm. We can easily abstract
from these four figures that CycleSplit algorithm outperforms
previous algorithms.

We can also find that when the number of targets become
larger, the difference of the largest trajectory length among
four algorithms become smaller. The reason for why this phe-
nomenon occurs is that given the virtual area, a large number
of targets will result in the trajectory for each mobile sensor
becoming small. It is the same with the difference among four
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Fig. 2. Simulation results of four algorithms. (a) m = n
20

. (b) m = n
10

.
(c) m = 3n

20
. (d) m = n

5
.

Fig. 3. 100 Targets to be covered.

algorithms. Besides, the TSP length for each sensor can be
more accurate when more targets and more mobile sensors are
distributed in the given area. When fixing the ratio between
the number of mobile sensors and targets, the largest trajectory
length becomes smaller with the increment of the number of
targets.

Figure 3 exhibits an instance with n = 100 targets and we
want to cover them with m = 20 sensors. Figure 4 (a)-(d) show
the output trajectories computed by these four algorithms.
We can find that the output of CycleSplit has the shortest
total length, which also definitely proves that the performance
of our algorithm is better than the performance of former
algorithms.

B. Performance Evaluation of HeteroCycleSplit

In this section, we evaluate the performance of HeteroCy-
cleSplit and compare our algorithms with k-ITSPN proposed
in [14]. In this simulation, the number of targets ranges from
40 to 200 with a step of 20 and the number of mobile
sensors are 5, 10, 15 and 20. When the numbers of mobile
sensors and targets are fixed, we generate 20 problem instances
and calculate the average of the costs of the outputs of
HeteroCycleSplit, k-ITSPN [14]. The weight of each mobile
sensor for m = 5 are from 0.6 to 1 with a step of 0.1. The
weight of each mobile sensor for m = 10 are from 0.55 to
1 with a step of 0.05. The weight of each mobile sensor for

Fig. 4. Outputs for one instance of MPSC. (a) Result by OSweep. (b) Result
by MinExpand. (c) Result by PDBA. (d) Result by CycleSplit.

Fig. 5. Simulation results of HeteroCycleSplit and k-ITSPN. (a) m = 5.
(b) m = 10. (c) m = 15. (d) m = 20.

m = 15 are from 0.533 to 1 with a step of 0.033. The weight
of each mobile sensor for m = 20 are from 0.525 to 1 with a
step of 0.025

The output data can be seen in Figure 5 (a), Figure 5 (b),
Figure 5 (c) and Figure 5 (d). Abstract from Figure 5, we can
find that our algorithm, HeteroCycleSplit is better than k-
ITSPN. When fixing the number of mobile sensors, the largest
weighted trajectory length becomes larger with the increment
of the number of targets.

The instance in Figure 3 is employed again and we want to
cover them with m = 5 sensors. The weight of each mobile
sensor is {0.6, 0.7, 0.8, 0.9, 1.0}. Figure 6 (a)-(b) show the
output trajectories computed by these two algorithms. The
targets of input data is the same as those in the former section.
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Fig. 6. Outputs for one instance of HVMPSC. (a) Result by k-ITSPN.
(b) Result by HeteroCycleSplit.

The figure shows that the output of k-ITSPN is 283.162.
Meanwhile, the output of HeteroCycleSplit is 254.973. We can
find that the output of HeteroCycleSplit has the shorter total
weighted length.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we discuss three variations of the sweep
coverage problem to minimize the longest sweep period of
mobile sensors, and design three constant-factor approxima-
tions respectively.

For min-period sweep coverage problem (MPSC), we pro-
pose a (5− 2

n−m+1 )-approximation named CycleSplit, which
improves the the best known approximation ratio of 5.
For heterogeneous velocity min-period sweep coverage prob-
lem (HVMPSC), we propose a 5α-approximation named Het-
eroCycleSplit. For connected path min-period sweep coverage
problem (CPMPSC), we propose a 2-approximation named
PathSplit. There has been no algorithm proposed for the last
problem mentioned above until now. Former approximation
algorithm in [14] deals with the k-ITSPN problem which is
similar to the HVMPSC problem. However, it cannot be used
in all scenarios. Our algorithm may not be so efficient, but
it does not have such limitation. We also propose an optimal
algorithm DP-MPSC for Min-Period Sweep Coverage problem
in one dimensional case. It is solved by dynamic programming.
With the help of Segment Tree, we can largely improve the
efficiency of our optimal algorithms. Our analysis is based on
the property of metric space, which is more general than the
commonly discussed Euclidean space.

Finally, we compare our algorithms with several previous
works by simulations. We compare our algorithm CycleSplit
with OSweep, PDBA and MinExpand. We also compare our
algorithm HeteroCycleSplit with k-ITSPN. Both theoretical
analysis and numerical experiments validate the efficiency
of our design. We also give some examples for some given
instances of these problems.

In future, we will discuss the problems in more practical
scenarios. We may take even more factors into consideration,
such as data capacity and energy consumption of mobile
sensors. Besides, we may also consider efficient data collect-
ing or data gathering mechanisms under these circumstances.
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