
1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

1

Cooperative Sweep Coverage Problem
with Mobile Sensors

Xiaofeng Gao, Member, IEEE, Jiahao Fan, Fan Wu, Member, IEEE,
Guihai Chen, Senior Member, IEEE

Abstract—Sweep coverage plays an important role in many applications such as data gathering, sensing coverage and devices control.
In this paper, we deal with the cooperative sweep coverage problem with multiple mobile sensors to periodically cover all positions of
interest (PoIs) in the surveillance region. Different from traditional sweep coverage scenarios, the cooperative sweep coverage (CSC)
problem allows the deployment of multiple sensors on the same trajectory to further reduce the sweep period or detection delay. We
also consider the multi-sink sweep coverage (MSSC) problem where each mobile sensor must periodically transmit its collected data to
a base station due to the limited storage capacity and power supply. Correspondingly, we propose two constant-factor approximations,
namely CoCycle and SinkCycle, to minimize the maximum sweep period for these two problems. The approximation ratios of CoCycle
and SinkCycle are proved to be 4 and 6 respectively. As far as we know, SinkCycle is the first approximation for the sweep coverage
problem with multiple sinks. We also provide two optimal algorithms for the CSC problem in one dimensional case and a useful insight
regarding the MSSC problem with only one available sink. Finally, we conduct various numerical experiments to validate the effectiveness
and efficiency of our designs.

Index Terms—Sweep Coverage, Wireless Sensor Network, Traveling Salesman Problem, Approximation

F

1 INTRODUCTION

W IRELESS sensor network (WSN) consists of numerous
wireless sensors which are usually low-priced and

work cooperatively to form an ad-hoc network [1]. For
these wireless sensor networks, coverage problems have
been studied extensively under various models. In general,
these problems are mainly about monitoring positions of
interest (PoIs) and collecting data from a given area by
deploying a certain number of sensors. Some studies assume
the coverage area of the sensor as a unit disk [2]. Others
adopt the probabilistic model to compute the probability of
covering the whole region [3].

While many studies focus on continuous monitoring,
such as Target Coverage problem [4], Area Coverage prob-
lem [5], [6] and Barrier Coverage problem [7], [8], there are
some other application scenarios in which only periodic
patrol inspections are required for a certain set of PoIs.
Typical examples may include police patrolling, message
ferrying and device control. In these scenarios, a mobile
sensor is capable of moving along some certain trajectory
and collecting data from PoIs. The objective in these scenar-
ios can be minimizing the number of sensors under some
time constraint or minimizing the detection period with a
given number of sensors. We refer to such problems as Sweep
Coverage [9], [10], [11], [12], [13], [14], [15]. Similar models
have also been studied under the context of autonomous
robots, vehicle routing, and data collection.

In a typical sweep coverage scenario, each mobile sensor
follows a predetermined trajectory to collect data from PoIs

• X. Gao, J. Fan, F. Wu, and G. Chen are with the Shanghai Key Laboratory
of Scalable Computing and Systems, Department of Computer Science
and Engineering, Shanghai Jiao Tong University, China. E-mails: gao-
xf@cs.sjtu.edu.cn, j.h.fan@sjtu.edu.cn, {fwu, gchen}@cs.sjtu.edu.cn.

• Xiaofeng Gao is the corresponding author.

on its route. Based on whether multiple mobile sensors can
work together on the same trajectory, we can categorize
sweep coverage problems into the non-cooperative version
and the cooperative version as shown in Figure 1. Under
non-cooperative settings, there is exactly one sensor on each
trajectory. While under cooperative settings, one or more
sensors may be assigned to the same trajectory. In this
paper, we mainly focus on the cooperative sweep coverage
problem with multiple mobile sensors. Assume that there
are n PoIs (or targets) in the surveillance region and we have
m mobile sensors to cover them. Each sensor serves as a
data ferry to collect information from PoIs. A mobile sensor
detects a PoI by approaching its exact location, and a PoI is
said to be t-sweep covered if it is detected by some mobile
sensor at least once every t time units (we call t its sweep
period). The main objective considered in this paper is to
minimize the sweep period for all PoIs. We consider two
variations of this problem and their detailed descriptions
are as follows.

First, we would like to consider the Cooperative Sweep
Coverage (CSC) problem in its basic form. Assume that all
mobile sensors have the same velocity v. If we deploy m
mobile sensors evenly on a cycle C and make them move
towards the same direction to cover the PoIs on C, then
the sweep period for each PoI on this cycle should be d(C)

mv ,
where d(C) is the length of C. Since the velocity of sensors
has no influence on the final outcome in this scenario, we
just denote the sweep period as d(C)

m for simplicity. The CSC
problem aims to find a coverage scheme that minimizes the
maximum sweep period among all PoIs.

Next, we consider a more realistic version of the coop-
erative sweep coverage problem named Multi-Sink Sweep
Coverage (MSSC). In this scenario, the data storage capacity
and battery power of each mobile sensor is limited and it

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

2

has to visit one of the data sinks to upload its collected
data in each sweep cycle. The MSSC problem shares the
same optimization objective as the basic CSC problem (i.e.,
to minimize the maximum sweep period among all PoIs).
However, there must be at least one data sink on each cycle
of the solution to the MSSC problem.Target Point Mobile Sensor

(a) Non-cooperative version

Target Point Mobile Sensor
(b) Cooperative version

Fig. 1. An illustration for sweep coverage problem

Correspondingly, in this paper we propose two constant-
factor approximations, namely CoCycle and SinkCycle, to
solve the CSC problem and the MSSC problem respectively.
The first approximation CoCycle deals with the CSC prob-
lem with the approximation ratio of 4. Its main idea is to
first find a tree cover, then determine the optimal sensor
allocation among these trees and finally transform trees
to distinct cycles to construct a desired cycle cover. The
second approximation SinkCycle is a 6-approximation for the
MSSC problem. It integrates the design idea from CoCycle
together with the modified Prim’s algorithm to first find a
tree cover for all PoIs and some data sinks, then determine
the optimal sensor allocation among these trees and finally
transform trees to distinct cycles to construct a desired cycle
cover with at least one sink on each cycle. As far as we
know, SinkCycle is the first approximation algorithm with
a guaranteed performance ratio for the sweep coverage
problem with multiple sinks.

In addition, we also give two optimal algorithms,
LineSplit-DP and LineSplit-Greedy, for the CSC problem in
one dimensional case (CSC1D) and a useful insight re-
garding the MSSC problem with only one available sink.
The analysis of these two special cases further reveals the
essence and hardness of the considered problems.

Finally, we provide various comparative experiments
to validate the effectiveness and efficiency of our designs.
We also conduct several parametric analysis experiments
to show the performance of our algorithms under different
parametric settings.

To sum up, the contributions of our paper are as follows.

• We formulate two variations of the cooperative
sweep coverage problem with multiple mobile sen-
sors, namely Cooperative Sweep Coverage (CSC) and
Multi-Sink Sweep Coverage (MSSC). The objective is to
have sensors work cooperatively and minimize the
maximum sweep period among all PoIs.

• We propose two constant-factor approximations to
solve these two problems respectively. We also give
detailed theoretical analysis regarding their approxi-
mation ratios and complexity. Furthermore, SinkCycle
is the first approximation algorithm with a guar-
anteed performance ratio for the sweep coverage
problem with multiple sinks.

• We provide two optimal algorithms for the CSC
problem in one dimensional case (CSC1D) and a
useful insight regarding the MSSC problem with
only one available sink.

• We compare our algorithms with several previous
works by simulations. Both theoretical analysis and
numerical experiments validate the effectiveness and
efficiency of our designs.

The rest of this paper is organized as follows. Section 2
discusses some related work. Section 3 introduces some
preliminaries for later sections. In Section 4 and Section 5,
we propose algorithms for Cooperative Sweep Coverage (CSC)
and Multi-Sink Sweep Coverage (MSSC) respectively with
theoretical analysis. In Section 6, we conduct experiments
to evaluate the performance of our algorithms. Section 7 is
the final conclusion and future work.

2 RELATED WORK

As for the sweep coverage problem, previous papers mainly
focused on three different scenarios.

• Message Ferry (or Data Gathering) [16], [17], [18]. In
this scenario, there are some static target points that
produce desired data, and the goal is to enable data
sharing among these target points or data collection
to a base station. We can use mobile sensors to
successively visit these points to collect data. This
is closely related to the Internet of Things (IoT).

• Sensing Coverage [11], [19], [20], [21], [22]. In a large-
scale sensor network, covering all targets with tradi-
tional static sensors imposes a high implementation
cost. Thus, if possible, we prefer to use mobile sen-
sors to periodically cover each target by having them
move along certain trajectories.

• Device Control [23]. In this scenario, in order to work
properly, each facility locating in a discrete address
needs to periodically receive instructions from a mo-
bile device such as a mobile phone.

Based on these scenarios, researchers also considered
various optimization objectives and the most common ones
are as follows.

• Find the minimum number of sensors with a fixed
velocity under the constraint of the sweep period for
all targets [12], [21], [22], [24], [25].

• Find the minimum sweep period for all targets with a
fixed number of sensors [15], [18], [26], [27]. In such
problem formulations, the velocities of sensors can
be the same or not, while different velocities could
make the analysis more complicated.

• Find the minimum velocity with a fixed number of
sensors under the constraint of the sweep period for
all targets [20], [27], [28].

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

3

According to our survey, related works mainly used the
following approaches to solve the sweep coverage problem:

• Trajectory planning. Obviously, in order to reduce
energy consumption and the number of sensors, we
need to find a trajectory to visit all target points,
which is usually converted to a Traveling Salesman
Problem (TSP) instance. In [29], the considered prob-
lem was converted to an integer programming which
is also NP-hard, and the authors proposed an ap-
proximation solution by LP relaxation and rounding.

• Vertex partition. Since different target points may
have various sweep period constraints, having the
same sweep period for all targets may be unneces-
sary for vertices that do not require frequent visits.
In [22], [28], authors first partitioned vertices based
on their locations and sweep period constraints, and
then planned trajectories accordingly.

• Velocity control. There are works assuming hetero-
geneous velocities of sensors, which is related to
latency and power consumption. In [27], authors
discussed its influence on data collection latency.

The cooperative sweep coverage problem considered in
this paper is close related to the multiple Traveling Salesman
Problem (TSP) with a min-max objective (denoted as min-
max m-TSP). The main difference is that in cooperative
sweep coverage, multiple “salesmen” can work together in
one cycle to further decrease the longest trajectory length.
The TSP problem is one of the most intensively studied
problems in the area of combinatorial optimization. A sim-
ple algorithm based on minimum spanning tree (MST)
gives a 2-approximation solution. By a clever construction,
Christofides [30] improved the approximation ratio from 2
to 3

2 . It has been proved that the metric TSP is inapprox-
imable within a ratio of 123

122 , unless P = NP [31]. Obviously,
the min-max m-TSP problem and the cooperative sweep
coverage problem are at least as hard as the original TSP.

To minimize the number of mobile sensors under the
sweep period requirement, Li et al. [12] proposed a 3-
approximation with bounded time constraint. However,
their approximation analysis has a serious flaw, which
has been notified by Gorain et al. [13]. They mistakenly
compared the result of their algorithm with the optimal
solution of the m-TSP problem instead of their original
problem. Thus their approximation ratio is considered to
be incorrect. Zhao et al. [20] designed a simulated annealing
algorithm to schedule the paths, but their algorithm has no
guaranteed performance ratio. Shu et al. [22] discussed this
problem with the single-sink constraint, to which mobile
sensors must return back in each detection period. They also
proposed a heuristic algorithm without theoretical bounds.

Since mobile sensors have sensing ranges, some re-
searchers took the neighborhood effect into consideration
to further decrease the trajectory length. In fact, mobile
sensors do not need to travel to the exact positions of
targets [32]. Any position in the neighborhoods of targets
is acceptable as long as the sensor can collect the data
as required. He et al. [33] formulated such a problem as
Traveling Salesman Problem with Neighborhoods (TSPN),
in which there is only one mobile sensor. Kim et al. [34]
proposed solutions for min-max m-TSP with neighborhood

effect. Xue et al. [35] relaxed the assumption to allow mobile
sensors with different velocities.

It is worth mentioning that most previous papers did
not consider having mobile sensors work in a cooperative
manner. OSweep [24] is a simple TSP-based cooperative
sweep coverage algorithm, which computes a single TSP
cycle covering all PoIs and allocates all sensors evenly on
this cycle. MinExpand [24] and PDBA [36] are two heuristic
algorithms for non-cooperative sweep coverage problems,
both of which find the minimum path increment based
on different criteria during the iteration process. In our
simulations, we choose OSweep, MinExpand and PDBA as
baselines to validate the effectiveness and efficiency of our
cooperative sweep coverage scheme CoCycle.

Due to limited storage capacity and battery power,
some works [37], [38], [39] also require mobile sensors to
periodically visit some base stations (data sinks) in order
to upload data and recharge the battery. Yang et al. [37]
designed a heuristic algorithm named SCOPe-M -Solver to
satisfy both the sweep period for PoIs and the base station
visiting period for sensors. It first assigns each PoI to the
cluster of its nearest base station, and then constructs cycles
from the base station in each cluster by expanding in a
similar way to MinExpand. Liang et al. [38] considered the
maximum travel distance before visiting some base station
in addition to the sweep period constraint. They also gave
analysis of their solutions under tree metric specifically. In
our simulations, we compare our multi-sink cooperative
sweep coverage scheme SinkCycle with SCOPe-M -Solver
under different parameter settings and give detailed dis-
cussions about how the clustering step of SCOPe-M -Solver
may affect cross-sink cooperation considered in SinkCycle.

Recently, with the development of mobile smart de-
vices, researchers tend to investigate the sensing coverage
problem under more complex scenarios such as obstacle
avoidance [40] and mobile crowdsensing [41]. Different
from the fundamental problems in this paper, these works
may consider more complex constraints such as coverage
persistence and sensing cost.

3 PRELIMINARY

In this section, we define some basic concepts and introduce
some primitive methods which will be used in later sections.

3.1 Metric Space

For any given complete graph G(V,E), we will use d to
represent a metric on V such that d : V × V → R+. Triangle
inequality is the most important property that a metric space
holds, i.e.,

d(x, y) ≤ d(x, z) + d(z, y) for any x, y, z ∈ V.

Suppose e is the edge between vertices x and y, we will
use d(x, y) and d(e) to denote the same thing in context
without ambiguity, which represents the distance between
vertices x and y or the length (cost) of edge e. For an edge
set E′ ⊆ E, define

d(E′) =
∑
e∈E′

d(e).

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

4

Unless explicitly mentioned, we will assume graphs
considered in this paper are complete graphs such that the
distances between vertices form a metric.

3.2 Cycle Cover and Tree Cover
Now we will give the definitions of Cycle Cover and Tree
Cover. Briefly speaking, Cycle Cover is to cover all vertices
in a graph with multiple cycles. Tree Cover is similar to
Cycle Cover in the sense of covering. Different from Cycle
Cover, Tree Cover uses multiple spanning trees to cover all
vertices in a graph. The formal definitions of Cycle Cover and
Tree Cover are as follows.

Definition 1 (Cycle Cover). Given a graph G = (V,E) and a
vertex set V ′ ⊆ V , a cycle cover for V ′ is a set of cycles C =
{C1, C2, . . . , Cr}, which are subgraphs of G, and the union of
their vertices is V ′.

Definition 2 (Tree Cover). Given a graph G = (V,E)
and a vertex set V ′ ⊆ V , a tree cover for V ′ is a forest
T = {T1, T2, . . . , Tr}, which are subgraphs of G, and the union
of their vertices is V ′.

3.3 Constructing Cycle from Tree
In our algorithm design, we first obtain some trees spanning
over all PoIs, and then construct cycles from these trees.
Here we would like to illustrate the transformation process
from trees to cycles.

Suppose we have a spanning tree. The first step is to
duplicate all its edges, after which every vertex will have
an even degree. Then we can construct an Eulerian cycle.
Finally we obtain a Hamiltonian cycle by traversing this
Eulerian cycle and removing the repeated vertices, which
is called shortcutting. Due to the triangle inequality, short-
cutting does not increase the overall edge cost. Algorithm 1
explains the whole process in detail and runs in O(|V |) time,
where V is the vertex set of the given tree T .

Algorithm 1: Constructing cycle from tree
input : a tree T with the vertex set V
output: a cycle C with the same vertex set V

1 Duplicate all the edges in T to get a graph G′;
2 Find a Eulerian cycle in G′;
3 Construct a Hamiltonian cycle C by removing the

repeated vertices from the previous Eulerian cycle;
4 return C;

With Algorithm 1, we have the following lemma:

Lemma 1. For any tree T , we can construct a cycle C that
contains exactly the same set of vertices. Moreover, it holds that

d(C) ≤ 2d(T).

Remark. We could use Christofides’ improvements [30] to con-
struct cycles from trees in our algorithm, but we cannot triv-
ially get a better approximation ratio. We briefly explain how
Christofides’ algorithm works as follows.

1) Let T be a spanning tree of G and E′ be the set of vertices
whose degree is odd in T . By the handshaking lemma, E′

has an even number of vertices.

2) Find a minimum-weight perfect matching M in the
induced subgraph given by the vertices from E′.

3) Combine the edges of M and T to form a connected
multigraph G′ in which every vertex has an even degree.

4) Form a Eulerian cycle in G′ and make the cycle found
in previous step into a Hamiltonian cycle by removing
the repeated vertices from the cycle, which is called
shortcutting.

This algorithm does not duplicate all the edges to guarantee
an even degree for every vertex. Therefore, the overall edge cost of
its generated cycle is supposed to be smaller. According to [30],
the running time of this algorithm is O(|V |3).

3.4 Global t-Sweep Coverage
Sweep coverage, unlike traditional area coverage or barrier
coverage, does not require static and continuous coverage
all the time. In sweep coverage, we only need to cover every
PoI at least once every certain time interval to guarantee
event detection within a certain delay bound. With this idea,
we define t-Sweep Coverage as follows.

Definition 3 (t-Sweep Coverage). A PoI is said to be t-sweep
covered by a coverage scheme F if and only if it is scanned at least
once every t time units by the mobile sensors allocated by F .

If a PoI is t-sweep covered, time interval t is called the
sweep period of the PoI. When there is a set of PoIs, different
PoIs may have different sweep periods. In order to unify the
requirements, we define Global t-Sweep Coverage as follows.

Definition 4 (Global t-Sweep Coverage). A set of PoIs is said
to be global t-sweep covered by a coverage scheme F if and only if
all PoIs are scanned at least once every t time units by the mobile
sensors allocated by F .

4 COOPERATIVE SWEEP COVERAGE

In this section, we will formally define the Cooperative
Sweep Coverage (CSC) problem, and then design an ap-
proximation named CoCycle for this problem. We also pro-
pose two optimal algorithms for Cooperative Sweep Cover-
age problem in one dimensional case (CSC1D). Besides, we
will prove the correctness of our algorithms.

4.1 CSC: General Case
In this subsection, we will talk about the Cooperative Sweep
Coverage problem in general case. We firstly give the formal
formulation of the problem and then propose an approxima-
tion for it, the approximation ratio of which is 4.

4.1.1 Problem Formulation
The basic idea of our algorithm to solve the Cooperative
Sweep Coverage problem follows these steps:

1) Find a tree cover T .
2) Determine a sensor allocation scheme for T .
3) Construct a cycle cover C from T .

To formally describe the process in the second step, we
further introduce the concept of Sensor Allocation.

Definition 5 (Sensor Allocation). Given m sensors and a cycle
cover C (or tree cover T), a sensor allocation for C (or T) is a

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

5

number setA = {m1,m2, . . . ,mr} such that r = |C | (or |T |),
mi ≥ 1 for 1 ≤ i ≤ r, and

∑r
i=1 mi = m.

Throughout this paper, we consider the sweep coverage
scenario where mobile wireless sensors allocated to the
same cycle work cooperatively to scan PoIs (as shown in
Figure 1b). We define it as Cooperative Sweep Coverage (CSC).

Definition 6 (Cooperative Sweep Coverage (CSC)). Given
input triple (G,m, d), where G = (V,E) is a complete graph,
m is the number of sensors and d : E → R+ is a metric,
Cooperative Sweep Coverage (CSC) aims to find a coverage scheme
F = (C ,A), consisting of a cycle cover C = {C1, C2, . . . , Cr}
for V and a sensor allocation A = {m1,m2, . . . ,mr} for C ,
such that max

1≤i≤r

{
d(Ci)
mi

}
is minimized.

Note that we use d(Ci)
mi

and max
1≤i≤r

{
d(Ci)
mi

}
to represent the

sweep period of the PoIs in Ci and the global sweep period of all
PoIs respectively for simplicity considering that all sensors
have the same speed in our assumptions.

4.1.2 CoCycle (An Approximation for CSC)
Now we design the CoCycle algorithm to solve the CSC
problem. The main idea is to first find a tree cover, then
determine the optimal sensor allocation among these trees
and finally transform trees to distinct cycles to construct a
desired cycle cover.

To start with, we need to search for a relatively good
tree cover in the original graph. Thus we define a variant
problem called Cooperative Tree Coverage (CTC).

Definition 7 (Cooperative Tree Coverage (CTC)). Given
input triple (G,m, d), where G = (V,E) is a complete graph,
m is the number of sensors and d : E → R+ is a metric,
Cooperative Tree Coverage (CTC) aims to find a coverage scheme
F = (T ,A), consisting of a tree cover T = {T1, T2, . . . , Tr}
for V and a sensor allocation A = {m1,m2, . . . ,mr} for T ,
such that max

1≤i≤r

{
d(Ti)
mi

}
is minimized.

Our interest in the CTC problem arises from the fact
that a connection between CSC and CTC can easily be
established as follows.

Lemma 2. If there is an α-approximation algorithm for CTC,
then there is a 2α-approximation algorithm for CSC.

Proof. Suppose ({T ∗
i }, {m∗

i }) is an optimal solution for
CTC, and ({C∗i }, {w∗

i }) is an optimal solution for CSC.
We have an α-approximation algorithm which returns a
solution ({Ti}, {mi}) for CTC, i.e.,

max
i

{
d(Ti)
mi

}
≤ α×max

i

{
d(T ∗

i)

m∗
i

}
. (1)

Deleting one edge from each C∗i leads to a solution for
CTC, thus we have

max
i

{
d(T ∗

i)

m∗
i

}
≤ max

i

{
d(C∗i)
w∗

i

}
. (2)

We can use Algorithm 1 to transform {Ti} to {Ci}, and
according to Lemma 1, it holds that

d(Ci) ≤ 2× d(Ti). (3)

Combining (1), (2) and (3), we have

max
i

{
d(Ci)
mi

}
≤ 2α×max

i

{
d(C∗i)
w∗

i

}
. (4)

Thus, we obtain a 2α-approximation algorithm for CSC
which returns the solution ({Ci}, {mi}).

Guided by the insight from the above lemma, we first
design the CoTree algorithm to solve the CTC problem. Then
we can get the CoCycle algorithm for the CSC problem
by constructing cycles from the trees returned by CoTree.
Therefore, we now focus on the description and analysis of
our proposed CoTree algorithm.

Recall Kruskal’s algorithm for constructing a minimum
spanning tree. We add edges to the empty graph G0 = (V, ∅)
one by one in an increasing order of the length (i.e., d(·)). In
each stage i of Kruskal’s algorithm, Gi will have a number
of connected components, and each subgraph induced by a
connected component is a spanning tree on its vertices. In
other words, Gi is a spanning forest of the original graph G
and contains a tree cover for V . The main idea of CoTree
is to utilize these intermediate tree covers and deliver a
performance-guaranteed solution for the CTC problem.

Algorithm 2 describes CoTree in detail. CoTree will choose
the best of all feasible tree covers found in the algorithm.

Algorithm 2: CoTree

input : G = (V,E), d : E → R+ and m sensors
output: A tree cover T = {T1, T2, . . . , Tr} and a

sensor allocation A = {m1,m2, . . . ,mr} for T

1 i← 0; E0 ← ∅; G0 ← (V,E0);
2 foreach e ∈ E (chosen in ascending order by d(·)) do
3 if adding e to Gi does not produce a cycle then
4 i← i+ 1; ei ← e;
5 Ei ← Ei−1 ∪ {e}; Gi ← (V,Ei);
6 if # of Gi’s connected components ≤ m then
7 Obtain a tree cover Ti directly from Gi;
8 Find an optimal sensor allocation Ai for Ti;

9 return the best coverage scheme in {(Ti,Ai)} (with
minimum global sweep period maxi

{
d(Ti)
mi

}
);

The initialization step is done in Line 1. In Line 2-8, we
continuously add edges into the edge set Ei in an ascending
order of edge length. We check if the adding edge will
produce a cycle. In Line 9, we find the best coverage scheme
among all the considered schemes.

For Line 8 in Algorithm 2, we could design an efficient
allocation strategy for this step. Before this step, we have
already got a tree cover, so the task here is just determining
how many sensors should be assigned to each tree. An opti-
mal solution can be achieved by a simple greedy algorithm
described in Algorithm 3, whose optimality is proved in
Lemma 3.

Lemma 3. Algorithm 3 finds an optimal sensor allocation for
any given tree cover T efficiently. Here the optimality means that
max
1≤i≤r

{
d(Ti)
mi

}
is minimized when fixing T = {T1, T2, . . . , Tr}.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

6

Algorithm 3: Greedy Allocation

input : A tree cover T = {T1, T2, . . . , Tr}, a metric d
and m sensors

output: A sensor allocation A = {m1,m2, . . . ,mr} for
T

1 mi ← 1 for 1 ≤ i ≤ r;
2 while m >

∑r
i=1 mi do

3 k̂ ← argmax
1≤i≤r

{
d(Ti)
mi

}
;

4 mk̂ ← mk̂ + 1;

5 return A = {m1,m2, . . . ,mr};

Proof. We prove this lemma by contradiction. Assume on
the contrary there is a different sensor allocation A′ =
{m′

1,m
′
2, . . . ,m

′
r} such that

max
1≤i≤r

{
d(Ti)
m′

i

}
< max

1≤i≤r

{
d(Ti)
mi

}
. (5)

Since A′ is different from A, then there must exist a k̂
such that

m′
k̂
< mk̂ and

d(Tk̂)
m′

k̂

≥
d(Tk̂)
mk̂

. (6)

In Algorithm 3, we did increase the value of mk̂ from
m′

k̂
to m′

k̂
+ 1, which means that d(Tk̂)

m′
k̂

is the maximum

among
{

d(Ti)
mi

}
at some iteration. Notice that the value

of max
1≤i≤r

{
d(Ti)
mi

}
is non-increasing during the iterations.

Therefore, we have

d(Tk̂)
m′

k̂

≥ max
1≤i≤r

{
d(Ti)
mi

}
, (7)

which contradicts the assumption.

Based on the coverage scheme FCTC = (T ,A) returned
by CoTree, CoCycle just uses Algorithm 1 (with or without the
Christofides’ improvements) on each tree in T respectively
to transform the tree cover T to a cycle cover C , and returns
a corresponding coverage scheme FCSC = (C ,A) as its
solution for the CSC problem.

4.1.3 Performance Analysis
Now we will prove the approximation ratios of the pro-
posed CoTree and CoCycle algorithms. Assign n = |V | as
the number of PoIs in this subsection. From the for-loop in
Algorithm 2, we have d(e1) ≤ d(e2) ≤ · · · ≤ d(en−1), and it
is easy to get the following fact.

Lemma 4. Gi is a minimum spanning forest with (n − i)
connected components. For each connected component CC in Gi,
the subgraph induced by CC is actually a minimum spanning
tree on the vertex set of CC .

Proof. For some connected component CC of Gi, we know
that the induced subgraph is an MST of CC by

• This subgraph is connected since CC exactly means
connected component.

• This subgraph is a tree, which is guaranteed by
Line 3 in Algorithm 2.

• This tree is minimized, which is guaranteed by the
correctness of Kruskal’s algorithm (the edge set se-
lected by Algorithm 2 in CC is exactly the same as
what would be returned by Kruskal’s algorithm).

Thus this lemma holds.

Suppose we have an optimal coverage scheme
F∗

CTC = (T ∗,A∗) for the CTC problem, where T ∗ =
{T ∗

1 , T ∗
2 , . . . , T ∗

r∗} and A∗ = {m∗
1,m

∗
2, · · · ,m∗

r∗}. Set

OPT = max
1≤i≤r∗

{
d(T ∗

i)

m∗
i

}
(8)

and
σ = argmax

1≤i≤n−1
d(ei)≤OPT

{d(ei)} . (9)

Suppose the connected components in Gσ are
CCσ

1 , CCσ
2 , . . . , CCσ

n−σ , and we use T σ
1 , T σ

2 , . . . , T σ
n−σ

to denote their corresponding spanning trees.

Lemma 5. There is an optimal coverage scheme F∗
CTC =

(T ∗,A∗) such that all vertices of T ∗
i belong to the same con-

nected component of Gσ , for 1 ≤ i ≤ r∗. In other words, any
edge used in this optimal solution has a cost no more than OPT.

Proof. Suppose T ∗
i uses an edge e′ to connect two different

connected components of Gσ , then we have d(e′) > OPT.
If we do not use e′, T ∗

i will be partitioned into two trees,
TL and TR. Reallocating the m∗

i sensors between TL and
TR accordingly gives a coverage scheme with a smaller
sweep period for PoIs in T ∗

i . More specifically, assign
mL = ⌈d(TL)

OPT ⌉ sensors to TL, and mR = m∗
i −mL sensors

to TR. Notice that
d(TL)
mL

≤ OPT, (10)

and

d(TR)
mR

=
d(T ∗

i)− d(TL)− d(e′)

m∗
i −mL

(11)

≤ (m∗
i − (mL − 1)− 1)×OPT

m∗
i −mL

(12)

= OPT. (13)

Thus we can eliminate all such edges to get an optimal
coverage scheme satisfying the property described in this
lemma. For the rest of this subsection, we will assume that
the considered optimal coverage scheme F∗

CTC = (T ∗,A∗)
has this property.

Now we prove the approximation ratio of CoTree.

Theorem 1. CoTree is a 2-approximation for CTC.

Proof. Suppose CCσ
i contains µσ

i trees from the optimal
coverage scheme F∗

CTC, and these µσ
i trees use totally λσ

i

(≥ µσ
i) sensors in the optimal coverage scheme, then

d(T σ
i) ≤ λσ

i ×OPT + (µσ
i − 1)×OPT, (14)

which gives
d(T σ

i)

λσ
i

≤ 2×OPT. (15)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

7

Thus for the tree cover Tσ = {T σ
1 , T σ

2 , . . . , T σ
n−σ}, we

already have a sensor allocation A′
σ = {λσ

1 , λ
σ
2 , . . . , λ

σ
n−σ}

such that

max
1≤i≤n−σ

{
d(T σ

i)

λσ
i

}
≤ 2×OPT. (16)

By Lemma 3, we can find an optimal sensor allocation
Aσ = {mσ

1 ,m
σ
2 , . . . ,m

σ
n−σ} for Tσ whose global sweep

period will satisfy

max
1≤i≤n−σ

{
d(T σ

i)

mσ
i

}
≤ max

1≤i≤n−σ

{
d(T σ

i)

λσ
i

}
≤ 2×OPT. (17)

Therefore, since CoTree returns the best considered
coverage scheme, we can conclude that CoTree is a 2-
approximation for CTC.

According to Lemma 2, we get the following corollary.

Corollary 1. CoCycle is a 4-approximation for CSC.

As the first step of CoTree, we have to put all the edges
in ascending order. This sorting process can be done in
O(|E| log |E|)) steps. Considering that G is a complete
graph, we have |E| = |V | · (|V | − 1) = n(n − 1), thus
the running time of this step is O(n2 log n)). Then, we
perform Algorithm 3 whose average time complexity is
O(m2) for m times. Therefore, the overall complexity of
CoTree is O(n2 log n+m3), which is also the time complexity
of CoCycle since Algorithm 1 runs in O(n) time.

4.2 CSC: One Dimensional Case

In this subsection, we consider the Cooperative Sweep Cov-
erage problem in one dimensional case (CSC1D). In practice,
CSC1D can be applied in such scenarios that all PoIs are
located on a single route, including street patrolling and
periodical intrusion detection on borders.

Suppose all PoIs are distributed along a straight line. We
mark these n PoIs from left to right as p1, p2, . . . , pn, and we
have m mobile sensors to cover them all. Intuitively, we find
that in an optimal solution for CSC1D, cycles are just some
disjoint line segments visually, each having one or more
sensors moving back and forth on it. In fact, this special
case for CSC is not NP-hard and can be solved in polynomial
time. We introduce two algorithms for this special case, both
of which are proved to be optimal.

4.2.1 LineSplit-DP (An Optimal Algorithm for CSC1D)

First, we provide a dynamic programming based algorithm
named LineSplit-DP to solve this case. Denote tij (i, j ≥ 1)
as the minimum global sweep period if we cover the first
i PoIs p1, p2, . . . , pi using just j sensors. After a careful
analysis, we obtain the recurrence relation in (18). The first
two cases are rather straightforward. If i = 1 (i.e., there is
only one PoI), the minimum global sweep period is zero;
if j = 1, then we only have one sensor to cover all PoIs,
the minimum global sweep period is 2d(p1, pi). For the last
case, consider dividing the optimal solution into two parts:
covering the leftmost u PoIs {p1, p2, . . . , pu} with v sensors
and leaving the rest PoIs {pu+1, pu+2, . . . , pi} as a whole
to the remaining (j − v) sensors. Such division must exist
based on our observation that cycles in the optimal solution

are visually disjoint line segments, each containing several
continuous PoIs. Thus, the solution given by (18) is optimal.

tij =

0 if i = 1

2d(p1, pi) if j = 1

min
1≤u<i
1≤v<j

{
max

{
tuv,

2d(pu+1,pi)
j−v

}}
otherwise

(18)

Based on this recurrence relation, we implement
LineSplit-DP in Algorithm 4 using a bottom-up approach.

Algorithm 4: LineSplit-DP

input : n PoIs P = {p1, p2, . . . , pn} in a straight line,
d : P × P → R+ and m sensors

output: A set of disjoint PoI groups (the union of
which is P) P = {P1,P2, . . . ,Pr} where Pi

consists of several continuous PoIs, and a
sensor allocation A = {m1,m2, . . . ,mr} for P

1 t1j ← 0; ti1 ← 2d(p1, pi);
2 P1j ← {{p1}}; Pi1 ← {{p1, p2, . . . , pi}};
3 A1j ← {j}; Ai1 ← {1};
4 for i← 2 to n, j ← 2 to m do
5 for u← 1 to i− 1, v ← 1 to j − 1 do
6 if tij > max

{
tuv,

2d(pu+1,pi)
j−v

}
then

7 tij ← max
{
tuv,

2d(pu+1,pi)
j−v

}
;

8 Pij ←Puv ∪ {{pu+1, pu+2, . . . , pi}};
9 Aij ← Auv ∪ {j − v};

10 return (Pnm,Anm);

After obtaining the partition of PoIs, sensors allocated
to each group just move back and forth from the leftmost
PoI to the rightmost PoI in the group. Now we prove the
optimality of LineSplit-DP in the following theorem.

Theorem 2. LineSplit-DP is an optimal algorithm for the
CSC1D problem, which means its solution achieves the minimum
global sweep period.

Proof. Algorithm 4 evaluates tij in a bottom-up approach.
At the time of tij being evaluated, tuv (1 ≤ u < i, 1 ≤ v < j)
would all have been computed. As a result, the coverage
scheme (Pnm,Anm) returned by Algorithm 4 produces the
minimum global sweep period tnm for the CSC1D problem.
This finishes the proof of the theorem.

For a naive implementation as shown in Algorithm 4,
LineSplit-DP has a time complexity of O(m2n2) and a space
complexity of O(m2n). (Note that each group in Pij can
be represented as a constant-size tuple containing only the
start and the end PoIs.)

4.2.2 LineSplit-Greedy (An Efficient Algorithm for CSC1D)
As we can see above, the time complexity of LineSplit-DP is
too high. After a further analysis, we find that the recurrence
relation in (18) can be simplified according to Lemma 6.

Lemma 6. In the optimal solution of CSC1D, no PoI will be
covered by two or more sensors.

Proof. For simplicity, here we denote d(pi, pi+1) as li, which
is the distance between pi and pi+1 as shown in Figure 2.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

8

l1 li-1 li li+1 ln-1

left right

Fig. 2. An illustration for optimal coverage in CSC1D

Suppose initially we have 2 sensors to cover n PoIs, so
the global sweep period t should be

t =
2
∑n−1

k=1 lk
2

=
n−1∑
k=1

lk. (19)

If we equally divide the whole segment into two parts,
left and right, as shown in Figure 2, with the division line at
somewhere between pi and pi+1. Then we have

2
i−1∑
k=1

lk <
n−1∑
k=1

lk and 2
n−1∑

k=i+1

lk <
n−1∑
k=1

lk. (20)

If we place the two sensors separately in the left and right
part, the global sweep period t′ satisfies

t′ = max {tleft, tright} (21)

= max

{
2

i−1∑
k=1

lk, 2
n−1∑

k=i+1

lk

}
(22)

<
n−1∑
k=1

lk = t. (23)

This means that the non-cooperative sweep coverage ap-
proach is optimal in CSC1D, which proves this lemma.

Now that we know in the optimal solution, the coverage
areas of sensors have no overlap, we can fix the number of
PoIs and only keep the for-loop over the number of sensors.
Bearing this idea, Algorithm 5 describes a modified optimal
algorithm for CSC1D named LineSplit-Greedy.

In Line 1, we only have one sensor, so the optimal
coverage scheme is obviously the only scheme. Then in each
iteration with a new sensor added, we first find the longest
line segment between PoIs in the same group and divide it
into two parts in Line 3-6. Naturally, we put PoIs in different
parts of the line segment into two different subgroups.
When there is a PoI right on the division line, we break the
tie by comparing the distances to its left and right neighbors.
This strategy is described in Line 7-16. Finally, in Line 17,
we replace the old PoI group with two new subgroups and
carry on to the next iteration. After obtaining the partition
of PoIs in Line 18, we allocate one sensor to each group, and
again have it move back and forth from the leftmost PoI to
the rightmost PoI in its group.

We give an example in Figure 3. In Figure 3a, the optimal
coverage scheme with respect to n = 6 and m = 2 is
already given by LineSplit-Greedy. If we add a new sensor,
we find that there is exactly one PoI p3 on the division
line. According to the strategy discussed above, since the
distance between p3 and p4 is longer than that between p2
and p3, we put p3 in the left subgroup to give the optimal
coverage scheme with respect to m = 3 in Figure 3b.

Algorithm 5: LineSplit-Greedy

input : n PoIs P = {p1, p2, . . . , pn} in a straight line,
d : P × P → R+ and m sensors

output: A set of disjoint PoI groups (the union of
which is P) P = {P1,P2, . . . ,Pm} where Pi

consists of several continuous PoIs

1 P1 ← {P};
2 for j ← 2 to m do

3 k̂ ← argmax
Pi∈Pj−1

{
max
x,y∈Pi

{d(x, y)}
}

;

4 pu ← the leftmost PoI in Pk̂;
5 pv ← the rightmost PoI in Pk̂;
6 Divide Pk̂ into two subgroups PL and PR by

cutting the line segment connecting pu and pv
from the middle, the division line of which is ℓj ;

7 if some PoI pc (u < c < v) is right on ℓj then
8 if d(pc−1, pc) ≤ d(pc, pc+1) then
9 PL ← {pu, pu+1, . . . , pc};

10 PR ← {pc+1, pc+2, . . . , pv};
11 else
12 PL ← {pu, pu+1, . . . , pc−1};
13 PR ← {pc, pc+1, . . . , pv};
14 else
15 PL ← Pk̂ ∩ {PoIs to the left of ℓj};
16 PR ← Pk̂ ∩ {PoIs to the right of ℓj};
17 Pj ← (Pj−1 \ {Pk̂}) ∪ {PL,PR};
18 return Pm;

 ! " # $ % &

(a) Optimal coverage scheme w.r.t. n = 6, m = 2

 ! " # $ % &

(b) Optimal coverage scheme w.r.t. n = 6, m = 3

Fig. 3. An example for optimal coverage in CSC1D with n = 6

Theorem 3. LineSplit-Greedy is an optimal algorithm for the
CSC1D problem, which means its solution achieves the minimum
global sweep period.

Proof. By Lemma 6, we know that no PoI is covered by two
or more sensors in the optimal solution of CSC1D. We also
know that if we are to minimize the global sweep period, the
optimal division is cutting the original line segment from
the middle. These facts prove the optimality of our division
strategy for the PoI group.

Next, we prove the original theorem by induction on m:

• When m = 1, there is only one possible coverage
scheme and it is certainly optimal.

• Assume LineSplit-Greedy delivers an optimal cover-
age scheme when m = k and its global sweep period

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

9

is tk, which is dominated by PoI group Pik , i.e.,

tk = 2× max
x,y∈Pik

{d(x, y)} . (24)

• When m = k + 1, if we follow Algorithm 5 and add
the new sensor to Pik , then tk+1 has a chance to be
smaller than, if not equal to, tk. Otherwise, tk+1 will
remain the same as tk. Since we have proved the
optimality of our division strategy for Pik above,
we can conclude that LineSplit-Greedy also delivers
an optimal coverage scheme when m = k + 1.

This finishes the proof of this theorem.

From Algorithm 5, we can find that LineSplit-Greedy has a
time complexity of O(mn) and a space complexity of O(n),
which is much more efficient than LineSplit-DP. (Note that
if we maintain a max-heap for Line 3 and 17, and use the
binary search strategy for Line 6, the time complexity can be
further reduced to O(m log n).)

5 MULTI-SINK SWEEP COVERAGE

Usually, the limited storage capacity and battery power
constraints require mobile sensors to transmit their collected
data to base stations (also called “sinks”) periodically. For
example, drones need to be refueled after several hours
of patrolling in a certain region, making the basic CSC
formulation not feasible in such real-world applications.
In this section, we consider a more realistic sweep cover-
age problem named Multi-Sink Sweep Coverage (MSSC)
which takes base station visiting events into consideration.
An approximation is designed for the general case of this
problem followed by the theoretical analysis regarding its
approximation ratio. We also give an insight regrading a
special case of MSSC where there is only one available sink.

5.1 MSSC: General Case

In this subsection, we will talk about the Multi-Sink Sweep
Coverage problem in general case. We firstly give a formal
definition of MSSC, and then propose a novel approxima-
tion algorithm named SinkCycle to solve it, the approxima-
tion ratio of which is 6.

5.1.1 Problem Formulation

Suppose there are multiple static data sinks and each sensor
has to approach at least one of them during each sweep
cycle. Then how to compute trajectory cycles for mobile sen-
sors with this new constraint raises a challenging problem.
We define it as Multi-Sink Sweep Coverage (MSSC).

Definition 8 (Multi-Sink Sweep Coverage (MSSC)). Given
input (G,S,m, d), where G = (V,E) is a complete graph, S ⊂
V is a set of sinks with |S| ≤ m, m is the number of sensors and
d : E → R+ is a metric, Multi-Sink Sweep Coverage (MSSC)
aims to find a coverage scheme F = (V,C ,A), consisting of
a vertex set V with (V \ S) ⊂ V ⊆ V , a cycle cover C =
{C1, C2, . . . , Cr} for V with at least one sink in each Ci ∈ C ,
and a sensor allocation A = {m1,m2, . . . ,mr} for C , such that
max
1≤i≤r

{
d(Ci)
mi

}
is minimized.

Again, we use d(Ci)
mi

and max
1≤i≤r

{
d(Ci)
mi

}
to represent the

sweep period of the PoIs in Ci and the global sweep period of all
PoIs respectively for simplicity.

Figure 4 is an illustration for MSSC, where 8 mobile
sensors work cooperatively to cover 17 PoIs along 4 distinct
trajectory cycles with a data sink on each cycle to collect
sensing data. Target Point Mobile Sensor Sink
Fig. 4. An illustration for multi-sink sweep coverage problem

5.1.2 SinkCycle (a Novel Approximation for MSSC)

Now we introduce the SinkCycle algorithm for the MSSC
problem. It integrates the design idea from CoCycle together
with the modified Prim’s algorithm to first find a tree cover
for all PoIs and some data sinks, then determine the optimal
sensor allocation among these trees and finally transform
trees to distinct cycles to construct a desired cycle cover.
Therefore, we also define a variant problem called Multi-
Sink Tree Coverage (MSTC) as follows.

Definition 9 (Multi-Sink Tree Coverage (MSTC)). Given
input (G,S,m, d), where G = (V,E) is a complete graph,
S ⊂ V is a set of sinks with |S| ≤ m, m is the number of sensors
and d : E → R+ is a metric, Multi-Sink Tree Coverage (MSTC)
aims to find a coverage scheme F = (V,T ,A), consisting
of a vertex set V with (V \ S) ⊂ V ⊆ V , a tree cover
T = {T1, T2, . . . , Tr} for V with at least one sink in each
Ti ∈ T , and a sensor allocation A = {m1,m2, . . . ,mr} for
T , such that max

1≤i≤r

{
d(Ti)
mi

}
is minimized.

Similar to Lemma 2, we can get the following lemma.

Lemma 7. If there is an α-approximation algorithm for MSTC,
then there is a 2α-approximation algorithm for MSSC.

Next, we design the SinkTree algorithm to solve the M-
STC problem and the SinkCycle algorithm follows naturally.
To better describe SinkTree, we need the following definition.

Definition 10 (Tree Cover with Roots). Given a vertex set V
and a set of roots S ⊆ V , if a tree cover T for V has exactly one
root from S in each tree, then T is a tree cover with roots S for
V , denoted as T ↑ S.

Given a graph G = (V,E) and a sink set S ⊂ V ,
a minimum tree cover with roots S for V can be found
through Algorithm 6, whose optimality is guaranteed by
the correctness of Prim’s algorithm.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

10

Algorithm 6: Modified Prim’s Algorithm

input : G = (V,E), S ⊂ V , d : E → R+

output: A tree cover T̂ with roots S for V

1 foreach v ∈ V do
2 pre(v)← argmin

s∈S
{d(s, v)};

3 V ′ ← S; T̂ ← ∅;
4 while V ′ ̸= V do
5 u← argmin

v∈V \V ′
{d(v, pre(v))};

6 V ′ ← V ′ ∪ {u}; T̂ ← T̂ ∪ {(u, pre(u))};
7 foreach v ∈ V \ V ′ do
8 if d(v, u) < d(v, pre(v)) then
9 pre(v)← u;

10 return T̂ ;

Intuitively, we find that a minimum tree cover T̂0 with
roots S can produce a feasible solution to MSTC. However,
trees in T̂0 can be severely unbalanced such that their
weights (i.e., d(T) where T ∈ T̂0) may vary greatly. If
we do not have enough mobile sensors to balance them,
the global sweep period can be very large. Therefore, after
obtaining T̂0, we need to add more edges to merge some
spanning trees. Based on this thought, we introduce the
SinkTree algorithm as shown in Algorithm 7.

Algorithm 7: SinkTree

input : G = (V,E), S ⊂ V , d : E → R+ and m
sensors

output: A vertex set V with (V \ S) ⊂ V ⊆ V , a tree
cover T = {T1, T2, . . . , Tr} for V with at least
one sink in each Ti ∈ T , and a sensor
allocation A = {m1,m2, . . . ,mr} for T

1 Find a tree cover T̂0 with roots S by Algorithm 6,
whose overall edge cost is minimized.;

2 i← 0; E0 ← the set of all edges in T̂0; G0 ← (V,E0);
3 T0 ← {T | T ∈ T̂0 and T ∩ (V \ S) ̸= ∅};
4 if |T0| ≤ m then
5 V0 ← the set of all vertices in T0;
6 Find an optimal sensor allocation A0 for T0;

7 foreach e ∈ E \E0 (chosen in ascending order by d(·)) do
8 if adding e to Gi does not produce a cycle then
9 i← i+ 1; ei ← e;

10 Ei ← Ei−1 ∪ {e}; Gi ← (V,Ei);
11 Obtain a tree cover T̂i directly from Gi;
12 Ti ← {T | T ∈ T̂i and T ∩ (V \ S) ̸= ∅};
13 if |Ti| ≤ m then
14 Vi ← the set of all vertices in Ti;
15 Find an optimal sensor allocation Ai for Ti;

16 return the best coverage scheme in {(Vi,Ti,Ai)} (with
minimum global sweep period maxi

{
d(Ti)
mi

}
);

In Line 1, we find a minimum tree cover with roots
S. Then in Line 2-6, we use this tree cover to do the

initialization steps. In Line 7-15, we continuously add edges
into the edge set Ei in an ascending order of edge length.
During this process, we ensure that the adding edge will
not produce a cycle and no sensor will be allocated to a tree
without PoIs. In Line 16, we find the best coverage scheme
among all the considered schemes.

Based on the coverage scheme FMSTC = (V,T ,A) re-
turned by SinkTree, SinkCycle just uses Algorithm 1 (with
or without the Christofides’ improvements) on each tree in
T respectively to transform the tree cover T to a cycle
cover C , and returns a corresponding coverage scheme
FMSSC = (V,C ,A) as its solution for the MSSC problem.

5.1.3 Performance Analysis

Now we will prove the approximation ratios of the pro-
posed SinkTree and SinkCycle algorithms. Suppose we have
an optimal solution F∗

MSTC = (V∗,T ∗,A∗) for the M-
STC problem, where T ∗ = {T ∗

1 , T ∗
2 , . . . , T ∗

r∗} and A∗ =
{m∗

1,m
∗
2, . . . ,m

∗
r∗}. Set

OPT = max
1≤i≤r∗

{
d(T ∗

i)

m∗
i

}
(25)

and

σ = argmax
1≤i≤|S|−1
d(ei)≤OPT

{d(ei)} . (26)

Suppose the connected components in Gσ are
CCσ

1 , CCσ
2 , . . . , and we use T σ

1 , T σ
2 , . . . to denote their

corresponding spanning trees.

Lemma 8. There is a coverage scheme F ′
MSTC = (V ′,T ′,A′)

such that all vertices of T ′ ∈ T ′ belong to the same connected
component of Gσ and maxi

{
d(T ′

i)
m′

i

}
≤ 2×OPT.

Proof. We construct such a coverage scheme F ′
MSTC from the

optimal cover scheme F∗
MSTC.

It is obvious that T̂0 as well as T ∗ has only one sink in
each tree. Use T̂ 0

↑s and T ∗
↑s to represent the tree rooted at sink

s in T̂0 and T ∗ respectively. Consider an edge (u, v) ∈ T ∗
↑s1

which connects two different connected components in Gσ ,
then we have d(u, v) > OPT. Suppose u ∈ T̂ 0

↑s1 , v ∈ T̂ 0
↑s2

and w is the parent of v in T̂ 0
↑s2 . Deleting edge (u, v) divides

T ∗
↑s1 into two parts, T1 and T2 (T1 contains s1).

Notice that d(v, w) ≤ d(u, v) (otherwise, replacing (v, w)
with (u, v) in T̂0 will result in a smaller tree cover with roots
S, which contradicts the optimality of T̂0). We replace (u, v)
with (v, w) in T ∗ to get a new tree cover. Basically, T ∗

↑s1
becomes T ′

↑s1 = T ∗
↑s1 − {(u, v)} − T2, and T ∗

↑s2 becomes
T ′
↑s2 = T ∗

↑s2 + {(v, w)}+ T2.
Suppose in A∗, the corresponding numbers of sensors

for T ∗
↑s1 and T ∗

↑s2 are m∗
↑s1 and m∗

↑s2 respectively. If we

assign m′
↑s1 = ⌈d(T

′
↑s1

)

OPT ⌉ sensors to T ′
↑s1 , and m′

↑s2 =
m∗

↑s2 +m∗
↑s1 −m′

↑s1 sensors to T ′
↑s2 , we will have

d(T ′
↑s1)

m′
↑s1

≤ OPT, (27)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

11

and

d(T ′
↑s2)

m′
↑s2

=
d(T ∗

↑s2) + d(v, w) + d(T2)
m∗

↑s2 +m∗
↑s1 −m′

↑s1
(28)

≤
d(T ∗

↑s2) + d(u, v) + d(T2)
m∗

↑s2 +m∗
↑s1 −m′

↑s1
(29)

=
d(T ∗

↑s2) + d(T ∗
↑s1)− d(T ′

↑s1)

m∗
↑s2 +m∗

↑s1 −m′
↑s1

(30)

≤
(m∗

↑s2 +m∗
↑s1 − (m′

↑s1 − 1))×OPT

m∗
↑s2 +m∗

↑s1 −m′
↑s1

(31)

≤ 2×OPT. (32)

By replacing all such edges, we get a new coverage
scheme F ′

MSTC = (V ′,T ′,A′) satisfying the property de-
scribed in this lemma.

Now we continue to prove the approximation ratio of
SinkTree using F ′

MSTC = (V ′,T ′,A′).

Theorem 4. SinkTree is a 3-approximation for MSTC.

Proof. Suppose CCσ
i contains µσ

i trees from T ′. Then CCσ
i

also contains µσ
i sinks, which means CCσ

i contains µσ
i trees

from T̂0. From the optimality of T̂0, we have∑
T ∈(T̂0∩CCσ

i)

d(T) ≤
∑

T ∈(T ′∩CCσ
i)

d(T). (33)

If these µσ
i trees use totally λσ

i (≥ µσ
i) sensors in F ′

MSTC.
Then after Algorithm 7 adds (µσ

i − 1) edges to connect the
trees in (T̂0 ∩ CCσ

i), we have

d(T σ
i) ≤

∑
T ∈(T̂0∩CCσ

i)

d(T) + (µσ
i − 1)×OPT (34)

≤
∑

T ∈(T ′∩CCσ
i)

d(T) + (µσ
i − 1)×OPT (35)

≤ 2λσ
i ×OPT + (µσ

i − 1)×OPT, (36)

which gives
d(T σ

i)

λσ
i

≤ 3×OPT. (37)

By Lemma 3, we can find an optimal sensor allocation
Aσ = {mσ

i } for Tσ whose global sweep period will satisfy

max
i

{
d(T σ

i)

mσ
i

}
≤ max

i

{
d(T σ

i)

λσ
i

}
≤ 3×OPT. (38)

Therefore, we can conclude that SinkTree is a 3-
approximation for MSTC.

According to Lemma 7, we get the following corollary.

Corollary 2. SinkCycle is a 6-approximation for MSSC.

Similar to CoCycle, the overall time complexity of
SinkCycle is also O(n2 logn + m3). Note that Algorithm 6
runs in O(n2) time as Prim’s algorithm.

5.2 MSSC: Single Sink Case

In this subsection, we consider a special case of MSSC where
there is only one available sink and different sweep cycles
can share this sink together. After a careful investigation, we
give the following insight regarding this special case.

Theorem 5. If there is only one sink in MSSC and sink sharing
is allowed, then its optimal solution is to find a minimum
Hamiltonian cycle through all PoIs and this sink with all sensors
working cooperatively along this cycle.

Proof. Suppose some sensors work on two different cycles,
C1 and C2, in the optimal solution, which are respectively
allocated m1 and m2 sensors as shown in Figure 5a. Since
we only have one sink s, C1 and C2 must both contain s.

(a) Before reallocation (b) After reallocation

Fig. 5. An illustration for single-sink sweep coverage problem

If we join these two cycles together as C as shown in
Figure 5b, according to triangle inequality, we have

d(C) ≤ d(C1) + d(C2). (39)

Now reallocate the (m1 +m2) sensors to C. We can get a
better global sweep period

d(C)
m1 +m2

≤ d(C1) + d(C2)
m1 +m2

≤ max

{
d(C1)
m1

,
d(C2)
m2

}
. (40)

This finishes the proof of this theorem.

Theorem 5 also reveals the fact that in the optimal
coverage scheme of MSSC, sweep cycles do not share sinks.
This justifies our choice of cycle covers (i.e., no sink sharing)
as solutions to the MSSC problem in general case.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performances of CoCycle and
SinkCycle, and compare them with other previous works on
a simulation platform written in Python 3.6. All simulations
are carried out on a standard Intel(R) Core(TM) i7-8750H
CPU @ 2.2GHz processor.

6.1 Algorithms in Comparison

We find several previous algorithms for evaluation purpose
and their brief descriptions are as follows.

• OSweep [24] is an algorithm for the CSC problem. It
first uses a polynomial time approximation scheme
(PTAS) to find a TSP cycle, and then allocates the
sensors evenly on this cycle, making them move
towards the same direction to cooperatively cover
all PoIs. Although the approximation ratio of the
PTAS is fairly good, its time complexity is too high

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

12

in practice. In our simulations, we use a simpler MST
based algorithm to find the TSP cycle for OSweep.

• MinExpand [24] is a heuristic algorithm for the CSC
problem. Its objective is to find the minimum num-
ber of sensors with a fixed global sweep period. It
selects a corner PoI as the starting point of a cycle,
and constantly adds the PoI with the smallest path
increment to this cycle before it fails to meet the
sweep period requirement. Then it requests a new
sensor and repeats the above procedure until there
are no uncovered PoIs. In our simulations, although
MinExpand has a different objective from the defini-
tion of CSC, we use the binary search strategy to find
the minimum sweep period it can achieve with no
more than m sensors.

• PDBA [36] is a randomized heuristic algorithm for
the CSC problem. Its objective is to find the minimum
number of sensors with a fixed global sweep period
as well. It randomly selects a PoI as the starting
point of a cycle, and constantly expands this cycle
by adding the PoI with the minimum perpendicular
distance to the last line segment of the cycle. When
this cycle cannot meet the sweep period requirement,
it requests a new sensor and repeats this procedure
until all PoIs are covered. In our simulations, we
again use the binary search strategy to find the
minimum sweep period it can achieve with no more
than m sensors. Since it is a randomized algorithm,
we also run it several times and take its average
performance for comparison.

• SCOPe-M -Solver [37] is a heuristic algorithm for the
MSSC problem. Its objective is to find the minimum
number of sensors satisfying both the sweep period
for PoIs and the base station (sink) visiting period
for sensors. It first assigns each PoI to the cluster of
its nearest base station, and then constructs cycles
from the base station in each cluster by expanding
in a similar way to MinExpand. By adjusting its
period requirements and adopting the binary search
strategy, we can find the minimum sweep period it
can achieve with no more than m sensors.

Among these algorithms, we use OSweep, MinExpand
and PDBA to compare with CoCycle and use SCOPe-M -
Solver to compare with SinkCycle in our simulations.

6.2 Parameter Settings
In our simulations, we prepare a 200 × 200 virtual plane
and randomly deploy a number of PoIs. For simplicity, we
use the Euclidean Distance as the metric d(·). For the CSC
problem, in each simulation, we fix the ratio between the
number of PoIs n and the number of sensors m, and vary
the number of PoIs n from 20 to 500 with a step of 20. The
ratio (n : m) is chosen from [(20 : 1), (20 : 2), (20 : 3), (20 :
4)]. For the MSSC problem, we first fix the ratio among the
number of PoIs n, the number of sinks k and the number of
sensors m when varying the number of PoIs n from 20 to
500 with a step of 20. The ratio (n : k : m) is chosen from
[(20 : 1 : 4), (20 : 2 : 4), (20 : 1 : 8), (20 : 2 : 8)]. Then we
fix the number of PoIs n and the number of sensors m, and
vary the number of sinks k for 10 times in each simulation.

Here, n is fixed to 200 and m is chosen from [10, 20, 30, 40]. k
will not exceed m in our simulations since SCOPe-M -Solver
may not be able to deliver a feasible solution otherwise.

6.3 Simulation Results

In this subsection, we present the simulation results fol-
lowed by some discussions regarding the performances of
the algorithms in comparison.

6.3.1 Results for CSC

Figure 6 shows the simulation results of varying n when
fixing the ratio (n : m) to (20 : 1), (20 : 2), (20 : 3),
(20 : 4) respectively. As we can see, the global sweep period
decreases when we have more PoIs while maintaining the
same ratio of (n : m) in the restricted area. The increase in
the density of PoIs allows us to cover more of them using
almost the same number of sensors without compromising
the sweep period requirement. Apparently, we can also
decrease the sweep period by using more sensors given the
same number of PoIs.

(a) n : m = 20 : 1 (b) n : m = 20 : 2

(c) n : m = 20 : 3 (d) n : m = 20 : 4

Fig. 6. Results of varying n in the CSC problem (n = |V |)

Among these four algorithms, CoCycle delivers the best
results under most settings, especially when the number of
sensors is relatively small. This is due to the cooperation
among sensors enabled in CoCycle. Although OSweep also
allows cooperative sweep coverage, it forces all sensors
to move on a single TSP cycle through all PoIs, causing
some of them to move extra distances. MinExpand and
PDBA are relatively better than OSweep even though they
do not enable any cooperation among sensors, and their
performances are close to CoCycle. However, they have a
common time complexity of O(n3), which makes them less
efficient than CoCycle when there are a large number of
PoIs. In our simulation, by setting n = 1000 and m = 50,
the average running time is 743ms for CoCycle, 851ms for
MinExpand and 1097ms for PDBA.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

13

6.3.2 Results for MSSC

Figure 7 shows the simulation results of varying n when
fixing the ratio (n : k : m) to (20 : 1 : 4), (20 : 2 : 4),
(20 : 1 : 8), (20 : 2 : 8) respectively. As is shown in the
figure, the global sweep period decreases when we have
more PoIs while maintaining the same ratio of (n : k : m) in
the restricted area. The increase of the number of sensors can
lead to the decrease in the sweep period for both SinkCycle
and SCOPe-M -Solver. However, the increase in the number
of sinks only has a noticeable influence on the sweep period
for SCOPe-M -Solver while the performance of SinkCycle
remains almost the same.

(a) n : k : m = 20 : 1 : 4 (b) n : k : m = 20 : 2 : 4

(c) n : k : m = 20 : 1 : 8 (d) n : k : m = 20 : 2 : 8

Fig. 7. Results of varying n in the MSSC problem (n = |V |, k = |S|)

To further investigate the phenomenon described above,
we conduct more simulations by varying the number of
sinks when fixing both the number of PoIs and the number
of sensors. Figure 8 shows the simulation results of varying
k when fixing n to 200 and assigning k to 10, 20, 30, 40
respectively. Since SCOPe-M -Solver only includes one sink
in each sweep cycle, the initial increases in the number of
sinks can reduce the sweep period effectively by shortening
the average edge length in the same cluster. However, with
the further increases in the number of sinks, the benefit of in-
cluding multiple sinks in each sweep cycle begins to reveal,
and the performance of SCOPe-M -Solver becomes worse.
Such behavior is especially noticeable when the number of
sensors is relatively small (e.g., in Figure 8a and 8b). This
explains the observation made by Yang et al. [37] that the
number of base stations (sinks) only has a limited impact
over the number of mobile sensors deployed by SCOPe-M -
Solver. Thus in our simulations, its impact over the sweep
period is also limited given a fixed number of sensors. On
the contrary, the performance of SinkCycle is stable during
this process and stays ahead of SCOPe-M -Solver all the time
due to the consideration of the cross-sink cooperation in
each sweep cycle, which is ignored by the clustering step
of SCOPe-M -Solver.

(a) n = 200, m = 10 (b) n = 200, m = 20

(c) n = 200, m = 30 (d) n = 200, m = 40

Fig. 8. Results of varying k in the MSSC problem (n = |V |, k = |S|)

6.4 Evaluation on Real Dataset

In order to investigate the performance of our proposed
algorithms in a more realistic scenario, we find a real-world
PoI dataset on Kaggle [42] which includes over 400,000
unique positions of interest mentioned in wikipedia articles
and other metadata. We select a region of 20 × 20 km from
somewhere in Asian and filter out 2873 PoIs in this region.
The number of sensors is chosen from [200, 300, 400, 500] for
both CSC and MSSC, and we randomly initialize 100 sinks
for MSSC. The evaluation results are in Table 1.

TABLE 1
Results of sweep period on real dataset

Algorithm m = 200 m = 300 m = 400 m = 500

OSweep 6.33 4.57 3.12 2.46

MinExpand 5.93 4.05 2.91 2.37

PDBA 5.69 3.94 2.72 2.25

CoCycle 5.51 3.59 2.54 2.19

SCOPe-M -Solver 7.28 4.90 3.47 2.94

SinkCycle 5.59 3.66 2.65 2.23

In general, the evaluation results on this real-world PoI
dataset are consistent with the previous discussions. This
validates the potential benefits of using our designs in
practical applications.

7 CONCLUSION AND FUTURE WORK

In this paper, we discuss two variations of the cooperative
sweep coverage problem to minimize the maximum sweep
period for PoIs, and design two constant-factor approxima-
tion algorithms respectively.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

14

For the basic Cooperative Sweep Coverage (CSC) prob-
lem, We propose a 4-approximation named CoCycle to con-
struct a desired cycle cover. Mobile sensors allocated to the
same cycle are evenly deployed on this cycle and move
towards the same direction to cooperatively cover all PoIs
on it. For the Multi-Sink Sweep Coverage (MSSC) prob-
lem, we propose a 6-approximation named SinkCycle which
integrates the design idea from CoCycle together with the
modified Prim’s algorithm to deliver an efficient solution.
SinkCycle is the first constant-factor approximation for the
sweep coverage problem with multiple sinks.

We also investigate the CSC problem in one dimensional
case (CSC1D), and provide two optimal algorithms, name-
ly LineSplit-DP and LineSplit-Greedy, for this special case.
They are designed based on dynamic programming and
the greedy strategy respectively. Besides, after analyzing a
special case of the MSSC problem where there is only one
available sink, we find that the optimal coverage scheme
of the MSSC problem in general case does not share sinks
between different sweep cycles.

Finally, we compare our algorithms with several pre-
vious works through extensive simulations. Specifically,
we compare CoCycle with OSweep [24], MinExpand [24]
and PDBA [36], and compare SinkCycle with SCOPe-M -
Solver [37] to evaluate their performances. Both theoretical
analysis and numerical experiments validate the effective-
ness and efficiency of our designs.

There is a small possibility, however, that a large sweep
cycle with multiple sensors but only one sink may be includ-
ed in the solution to the MSSC problem, escalating the issue
of limited storage capacity and power supply. Although we
make sure that each PoI is assigned to its nearest sink at first
and try our best to shorten the sweep period for all PoIs, we
still cannot guarantee that such an issue will not become a
bottleneck in practice. In the future, we will further discuss
this issue and take the sink visiting period for sensors into
consideration of the MSSC problem.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Pro-
gram of China [2019YFB2102200]; the National Natural Sci-
ence Foundation of China [61872238, 61972254, 61672353],
and the CCF-Huawei Database System Innovation Research
Plan [CCF-Huawei DBIR2019002A]. The authors would like
to thank Xudong Zhu, Yuchen Feng and Gehua Qin for their
contribution on the early versions of this paper.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks, vol. 38,
no. 4, pp. 393–422, 2002.

[2] C.-F. Huang and Y.-C. Tseng, “The coverage problem in a wireless
sensor network,” Mobile Networks and Applications, vol. 10, no. 4,
pp. 519–528, 2005.

[3] N. Ahmed, S. S. Kanhere, and S. Jha, “Probabilistic coverage in
wireless sensor networks,” in IEEE Conference on Local Computer
Networks (LCN), 2005, pp. 672–681.

[4] M. Cardei, M. T. Thai, Y. Li, and W. Wu, “Energy-efficient target
coverage in wireless sensor networks,” in IEEE Conference on
Computer Communications (INFOCOM), vol. 3, 2005, pp. 1976–1984.

[5] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile sensor
network deployment using potential fields: A distributed, scalable
solution to the area coverage problem,” in International Symposium
on Distributed Autonomous Robotic Systems (DARS), 2002, pp. 299–
308.

[6] X. Bai, Z. Yun, D. Xuan, T.-h. Lai, and W. Jia, “Deploying four-
connectivity and full-coverage wireless sensor networks,” in IEEE
Conference on Computer Communications (INFOCOM), 2008, pp.
296–300.

[7] S. Kumar, T. H. Lai, and A. Arora, “Barrier coverage with wireless
sensors,” in ACM Annual International Conference on Mobile Com-
puting and Networking (MOBICOM), 2005, pp. 284–298.

[8] B. Liu, O. Dousse, J. Wang, and A. Saipulla, “Strong barrier cover-
age of wireless sensor networks,” in ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MOBIHOC), 2008, pp.
411–420.

[9] S. He, J. Chen, X. Li, X. Shen, and Y. Sun, “Cost-effective barrier
coverage by mobile sensor networks,” in IEEE Conference on Com-
puter Communications (INFOCOM), 2012, pp. 819–827.

[10] B. Liu, O. Dousse, P. Nain, and D. Towsley, “Dynamic coverage
of mobile sensor networks,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 2, no. 24, pp. 301–311, 2013.

[11] B. Gorain and P. S. Mandal, “Approximation algorithms for sweep
coverage in wireless sensor networks,” Journal of Parallel and
Distributed Computing, vol. 74, no. 8, pp. 2699–2707, 2014.

[12] M. Li, W. Cheng, K. Liu, Y. He, X. Li, and X. Liao, “Sweep cover-
age with mobile sensors,” IEEE Transactions on Mobile Computing
(TMC), vol. 10, no. 11, pp. 1534–1545, 2011.

[13] B. Gorain and P. S. Mandal, “Approximation algorithm for sweep
coverage on graph,” Information Processing Letters, vol. 115, no. 9,
pp. 712–718, 2015.

[14] N. Bisnik, A. Abouzeid, and V. Isler, “Stochastic event capture
using mobile sensors subject to a quality metric,” in ACM Annual
International Conference on Mobile Computing and Networking (MO-
BICOM), 2006, pp. 98–109.

[15] X. Gao, X. Zhu, Y. Feng, F. Wu, and G. Chen, “Data ferry trajectory
planning for sweep coverage problem with multiple mobile sen-
sors,” in IEEE International Conference on Sensing, Communication,
and Networking (SECON), 2016, pp. 1–9.

[16] W. Zhao, M. Ammar, and E. Zegura, “Controlling the mobility
of multiple data transport ferries in a delay-tolerant network,” in
IEEE Conference on Computer Communications (INFOCOM), vol. 2,
2005, pp. 1407–1418.

[17] M. M. Bin Tariq, M. Ammar, and E. Zegura, “Message ferry
route design for sparse ad hoc networks with mobile nodes,”
in ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), 2006, pp. 37–48.

[18] R. Moazzez-Estanjini and I. C. Paschalidis, “On delay-minimized
data harvesting with mobile elements in wireless sensor net-
works,” Ad Hoc Networks, vol. 10, no. 7, pp. 1191–1203, 2012.

[19] M. Xi, K. Wu, Y. Qi, J. Zhao, Y. Liu, and M. Li, “Run to potential:
Sweep coverage in wireless sensor networks,” in IEEE International
Conference on Parallel Processing (ICPP), 2009, pp. 50–57.

[20] D. Zhao, H. Ma, and L. Liu, “Mobile sensor scheduling for timely
sweep coverage,” in IEEE Wireless Communications and Networking
Conference (WCNC), 2012, pp. 1771–1776.

[21] B. Gorain and P. S. Mandal, “Point and area sweep coverage
in wireless sensor networks,” in IEEE International Symposium on
Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks
(WiOpt), 2013, pp. 140–145.

[22] L. Shu, K.-w. Cheng, X.-w. Zhang, and J.-l. Zhou, “Periodic sweep
coverage scheme based on periodic vehicle routing problem,”
Journal of Networks, vol. 9, no. 3, p. 726, 2014.

[23] J.-h. Roh and S. Jin, “Device control protocol using mobile phone,”
in International Conference on Advanced Communication Technology
(ICACT), 2014, pp. 355–359.

[24] J. Du, Y. Li, H. Liu, and K. Sha, “On sweep coverage with mini-
mum mobile sensors,” in IEEE International Conference on Parallel
and Distributed Systems (ICPADS), 2010, pp. 283–290.

[25] Z. Chen, X. Zhu, X. Gao, F. Wu, J. Gu, and G. Chen, “Efficient
scheduling strategies for mobile sensors in sweep coverage prob-
lem,” in IEEE International Conference on Sensing, Communication,
and Networking (SECON), 2016, pp. 1–4.

[26] X. Gao, J. Fan, F. Wu, and G. Chen, “Approximation algorithm-
s for sweep coverage problem with multiple mobile sensors,”
IEEE/ACM Transactions on Networking (TON), vol. 26, no. 2, pp.
990–1003, 2018.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3008348, IEEE
Transactions on Mobile Computing

15

[27] R. Sugihara and R. K. Gupta, “Optimal speed control of mobile
node for data collection in sensor networks,” IEEE Transactions on
Mobile Computing (TMC), vol. 9, no. 1, pp. 127–139, 2010.

[28] Y. Gu, D. Bozdağ, R. W. Brewer, and E. Ekici, “Data harvesting
with mobile elements in wireless sensor networks,” Computer
Networks, vol. 50, no. 17, pp. 3449–3465, 2006.

[29] A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava,
“Mobile element scheduling with dynamic deadlines,” IEEE Trans-
actions on Mobile Computing (TMC), vol. 6, no. 4, pp. 395–410, 2007.

[30] N. Christofides, “Worst-case analysis of a new heuristic for the
travelling salesman problem,” Carnegie-Mellon Univ Pittsburgh
Pa Management Sciences Research Group, Tech. Rep., 1976.

[31] M. Karpinski, M. Lampis, and R. Schmied, “New inapproximabil-
ity bounds for tsp,” Journal of Computer and System Sciences (JCSS),
vol. 81, no. 8, pp. 1665–1677, 2015.

[32] Z. Chen, S. Wu, X. Zhu, X. Gao, J. Gu, and G. Chen, “A route
scheduling algorithm for the sweep coverage problem,” in IEEE
International Conference on Distributed Computing Systems (ICDCS),
2015, pp. 750–751.

[33] L. He, J. Pan, and J. Xu, “A progressive approach to reducing
data collection latency in wireless sensor networks with mobile
elements,” IEEE Transactions on Mobile Computing (TMC), vol. 12,
no. 7, pp. 1308–1320, 2012.

[34] D. Kim, B. H. Abay, R. Uma, W. Wu, W. Wang, and A. O. Tokuta,
“Minimizing data collection latency in wireless sensor network
with multiple mobile elements,” in IEEE Conference on Computer
Communications (INFOCOM), 2012, pp. 504–512.

[35] L. Xue, D. Kim, Y. Zhu, D. Li, W. Wang, and A. O. Tokuta,
“Multiple heterogeneous data ferry trajectory planning in wireless
sensor networks,” in IEEE Conference on Computer Communications
(INFOCOM), 2014, pp. 2274–2282.

[36] B. H. Liu, N. T. Nguyen, and V. T. Pham, “An efficient method
for sweep coverage with minimum mobile sensor,” in IEEE Inter-
national Conference on Intelligent Information Hiding and Multimedia
Signal Processing (IIH-MSP), 2014, pp. 289–292.

[37] M. Yang, D. Kim, D. Li, W. Chen, H. Du, and A. O. Tokuta,
“Sweep-coverage with energy-restricted mobile wireless sensor
nodes,” in International Conference on Wireless Algorithms, Systems,
and Applications (WASA), 2013, pp. 486–497.

[38] J. Liang, X. Huang, and Z. Zhang, “Approximation algorithms for
distance constraint sweep coverage with base stations,” Journal of
Combinatorial Optimization, vol. 37, no. 4, pp. 1111–1125, 2019.

[39] D. Zhang, D. Zhao, and H. Ma, “On timely sweep coverage
with multiple mobile nodes,” in IEEE Wireless Communications and
Networking Conference (WCNC), 2019, pp. 1–6.

[40] Y. Tang, R. Zhou, G. Sun, B. Di, and R. Xiong, “A novel coopera-
tive path planning for multirobot persistent coverage in complex
environments,” IEEE Sensors Journal, vol. 20, no. 8, pp. 4485–4495,
2020.

[41] L. Wu, Y. Xiong, M. Wu, Y. He, and J. She, “A task assignment
method for sweep coverage optimization based on crowdsensing,”
IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 686–10 699, 2019.

[42] E. Hallmark, “Points of interest poi database,” https://www.
kaggle.com/ehallmar/points-of-interest-poi-database.

Xiaofeng Gao received the B.S. degree in infor-
mation and computational science from Nankai
University, China, in 2004; the M.S. degree in
operations research and control theory from Ts-
inghua University, China, in 2006; and the Ph.D.
degree in computer science from The University
of Texas at Dallas, USA, in 2010. She is cur-
rently a professor with the Department of Com-
puter Science and Engineering, Shanghai Jiao
Tong University, China. Her research interests
include distributed system, wireless communi-

cations, data engineering, and combinatorial optimizations. She has
published more than 160 peer-reviewed papers in the related area,
including well-archived international journals such as IEEE TC, TKDE,
TMC, TPDS, JSAC, and also in well-known conference proceedings
such as SIGKDD, INFOCOM, ICDCS, etc. She has served on the edito-
rial board of Discrete Mathematics, Algorithms and Applications, and as
the PCs and peer reviewers for a number of international conferences
and journals.

Jiahao Fan is a graduate student from the De-
partment of Computer Science and Engineering,
Shanghai Jiao Tong University, P.R.China. He re-
ceived his B.S. degree in Computer Science and
Technology from Shanghai Jiao Tong University
in 2018. His research interests include wireless
sensor networks and mobile crowdsourcing. He
has published several peer-reviewed papers in
the related area, some in well-archived interna-
tional journals such as TON and TMC.

Fan Wu is a professor in the Department of
Computer Science and Engineering, Shanghai
Jiao Tong University. He received his B.S. in
Computer Science from Nanjing University in
2004, and Ph.D. in Computer Science and En-
gineering from the State University of New York
at Buffalo in 2009. He has visited the Univer-
sity of Illinois at Urbana-Champaign (UIUC) as
a Post Doc Research Associate. His research
interests include wireless networking and mobile
computing, algorithmic game theory and its ap-

plications, and privacy preservation. He has published more than 150
peer-reviewed papers in technical journals and conference proceedings.
He is a recipient of the first class prize for Natural Science Award
of China Ministry of Education, NSFC Excellent Young Scholars Pro-
gram, ACM China Rising Star Award, CCF-Tencent “Rhinoceros bird”
Outstanding Award, and CCF-Intel Young Faculty Researcher Program
Award. He has served as an associate editor of IEEE Transactions on
Mobile Computing and ACM Transactions on Sensor Networks, an area
editor of Elsevier Computer Networks, and as the member of technical
program committees of more than 90 academic conferences. For more
information, please visit http://www.cs.sjtu.edu.cn/∼fwu/.

Guihai Chen earned his B.S. degree from Nan-
jing University in 1984, M.E. degree from South-
east University in 1987, and Ph.D. degree from
the University of Hong Kong in 1997. He is a
distinguished professor of Shanghai Jiao Tong
University, China. He had been invited as a
visiting professor by many universities including
Kyushu Institute of Technology, Japan in 1998,
University of Queensland, Australia in 2000, and
Wayne State University, USA during September
2001 to August 2003. He has a wide range of

research interests with focus on sensor networks, peer-to-peer comput-
ing, high-performance computer architecture and combinatorics. He is a
senior member of IEEE and has published more than 250 peer-reviewed
papers, and more than 170 of them are in well-archived international
journals such as IEEE Transactions on Parallel and Distributed Systems,
Journal of Parallel and Distributed Computing, Wireless Networks, The
Computer Journal, International Journal of Foundations of Computer
Science, and Performance Evaluation, and also in well-known confer-
ence proceedings such as HPCA, MOBIHOC, INFOCOM, ICNP, ICDCS,
CoNEXT and AAAI. He has won several best paper awards including
ICNP 2015 best paper award. His papers have been cited for more than
10000 times according to Google Scholar. He is a CCF fellow.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 11,2020 at 14:41:50 UTC from IEEE Xplore. Restrictions apply.

