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A General Privacy Preserving Auction Mechanism
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Abstract—Auctions are among the best-known market-based
tools to solve the problem of dynamic spectrum redistribution.
In recent years, a good number of strategy-proof auction mech-
anisms have been proposed to improve spectrum utilization and
to prevent market manipulation. However, the issue of privacy
preservation in spectrum auctions remains open. On the one
hand, truthful bidding reveals bidders’ private valuations of the
spectrum. On the other hand, coverage/interference areas of the
bidders may be revealed to determine conflicts.

In this paper, we present PISA, which is a PrIvacy preserving
and Strategy-proof Auction mechanism for spectrum allocation.
PISA provides protection for both bid privacy and cover-
age/interference area privacy leveraging a privacy preserving
integer comparison protocol, which is well applicable in other
contexts. We not only theoretically prove the privacy preserving
properties of PISA, but also extensively evaluate its performance.
Evaluation results show that PISA achieves good spectrum
allocation efficiency with light computation and communication
overheads.

I. INTRODUCTION

INDUSTRY experts indicate that the fast growing wireless
technology is being stalled by the scarcity of radio spec-

trum [10]. This scarcity is often considered to be a result of the
static and rigid spectrum allocation by the government. The
spectrum may be idle when the primary users are not engaged
in data transmission, while at the same time many unlicensed
users are starving for radio spectrum. Such a static allocation
mechanism can not fully utilize the limited spectrum. In
order to improve spectrum utilization, secondary spectrum
markets have emerged, where auctions are used to dynamically
redistribute channels (e.g., [2, 8, 9, 12, 13, 33, 36, 37, 46]).
Different from the auctions held by the government, auctions
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in secondary spectrum markets occur dynamically and more
frequently. The auctioneers may be primary users who tend to
lease their channels in order to receive proper payoff during
their idle time. The bidders may be secondary wireless service
providers that need spectrum to serve their subscribers, or a
mobile device that needs spectrum to transmit data.

In spectrum auctions, strategy-proofness (defined in Section
II) is the topic of major research efforts, which stimulates
bidders to bid their true valuations of the spectrum. It e-
liminates the overhead of gaming over each other and the
auctioneer can allocate the channels to who value it the most.
However, different from the primary spectrum auctions where
all bids are open and auction results are posted on FCC
web pages, there are privacy concerns in secondary spectrum
auctions. Truthful bidding divulges the bidder’s true valuations
towards the spectrum, which are closely related to the profits
of winning the spectrum. Bidders are not willing to share
such information with other bidders or the auctioneer. Let
us consider that the auctioneer is a cellular network provider,
named A, and another cellular network provider B participates
in the auction as a bidder to request for channels to transmit
data. The bid may imply B’s economic situation, which is
highly sensitive information. B is reluctant to disclose it to
the auctioneer (i.e. A), who is a competitor in some sense.
Furthermore, corrupt auctioneers may exploit such knowledge
to their advantage. For instance, the auctioneers/sellers may
set the reserve price accordingly in future auctions to increase
their own revenue. Unfortunately, most existing works fail to
protect bid privacy in auction design.

Moreover, spectrum allocation may disclose the bidders’
coverage/interference areas. Spectrum is spatially reusable.
Two bidders distanced by space can simultaneously use the
same channel for transmission. In auctions, bidders may be
required to reveal their coverage/interference areas to the auc-
tioneer to determine conflict. However, coverage/interference
areas may divulge the location information of the bidders,
especially when the bidders are mobile devices. It may also
disclose other sensitive information, such as their business
models and subscriber distribution. Thus, bidders are reluc-
tant to share their coverage/interference information with the
auctioneer.

Therefore, privacy preservation and strategy-proofness are
both important factors in designing spectrum auctions. How-
ever, there are several challenges. First, due to the spatial
reusability of spectrum, well-separated bidders can share
the same channel. Existing privacy preserving auctions (e.g.,
[4, 28]) are designed for traditional goods (e.g., paintings,
jewelry), where each commodity can only be allocated to one
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bidder. When it comes to spectrum auctions, they may either
fail or lead to significant degradation of spectrum utilization.
Second, strategy-proofness and bid privacy are somewhat con-
tradictory objectives. Strategy-proofness encourages bidders to
reveal their true valuations of the spectrum, while bid privacy
tends to prevent the auctioneer and other participants from
learning the bidders’ true valuations. Third, different from
conventional auctions, spectrum allocation is constrained by
geographic conditions. The allocation process should satisfy
the geographic constraints while preserving bidders’ cover-
age/interference area privacy.

In this paper, we consider the problem of privacy preser-
vation in spectrum auctions, and propose PISA, which is
a PrIvacy preserving and Strategy-proof Auction mechanism
for secondary spectrum markets. As shown in Figure 1, we
introduce a third party (e.g., [21, 22, 32]), namely an agent,
who acts as an intermediary between the bidders and the
auctioneer. The agent should be non-profit and we require the
agent to be a well-established organization. Therefore, some
trustworthy non-profit organizations are suitable to play the
role of the agent, such as Spectrum Bridge [26]. Although
the agent may be a well-established party, bidders are still
reluctant to share private information with any party, the
agent being no exception. Thus, in PISA, the agent and the
auctioneer cooperate to perform the auction, but neither of
them can infer any sensitive information about the bidders
without collusion. The essence of PISA lies in our privacy
preserving bid comparison protocol, and we further extend
the protocol to privately determine geographic conflict.

We summarize our contributions as follows:
1) To the best of our knowledge, PISA is the first strategy-

proof spectrum auction mechanism that protects both bid
privacy and coverage/interference area privacy without
sacrificing social welfare.

2) We present a protocol to perform efficient comparison
between integers without revealing their actual values.
Our protocol can compare arbitrary large integers and is
well applicable in other contexts.

3) We implement PISA and extensively evaluate its perfor-
mance. The evaluation results show that PISA achieves
good channel utilization, with low computation and
communication overhead.

The rest of the paper is organized as follows. In Section II,
we review technical preliminaries. In Section III, we present
the detailed design of basic PISA, which preserves bid privacy
of the winners. In Section IV, we enhance PISA to provide
stronger privacy protection (i.e., coverage/interference area

privacy and k-anonymous bid privacy for all bidders). We
present our evaluation results in Section V. In Section VI, we
briefly review related works. Finally, we conclude and point
out future research directions in Section VII.

II. PRELIMINARIES

In this section, we first briefly review some solution con-
cepts and present our auction model. Then, we define a
generic strategy-proof spectrum auction mechanism. Finally,
we introduce a useful homomorphic cryptosystem.

A. Solution Concepts

We recall the solution concepts used in our study. Let si
denote player i’s preference strategy and s−i denote the strat-
egy profile of all the players except for player i. ui(si, s−i) is
the utility of player i when the strategy of player i is si and
the strategies of all other players are s−i.

Definition 1 (Incentive Compatible [23]). A mechanism is
incentive compatible if for any strategy s′i ̸= si and any
other players’ strategy profile s−i, the utility ui of the player
i always satisfies the following condition:

ui(si, s−i) ≥ ui(s
′
i, s−i).

Intuitively, in an incentive compatible mechanism, players
can maximize their utilities by reporting truthful preference
information, regardless of other players’ strategy profiles.
Next, we introduce another related concept.

Definition 2 (Individual Rational [23]). For any strategy si
and any other players’ strategy profile s−i, the utility ui of
the player i always satisfies the following condition:

ui(si, s−i) ≥ 0.

A mechanism is individually rational if each player always
gets a non-negative utility, which means that each player
can gain no less utility from faithful participation than non-
participation. We now give the formal definition of strategy-
proof mechanism.

Definition 3 (Strategy-Proof Mechanism [19][30]). A mech-
anism is strategy-proof when it satisfies both incentive-
compatibility and individual-rationality.

In a strategy-proof mechanism, misbehavior cannot result
in any extra profit. Each player can maximize her utility by
truthful participation.

In the field of privacy preservation, k-anonymity [29] is
widely used to quantify the degree of privacy preservation
(e.g., [39]). A scheme provides k-anonymous protection when
a person cannot be distinguished from at least k − 1 other
individuals.

Definition 4 (k-anonymity [29]). A privacy preserving scheme
satisfies k-anonymity, if a participant cannot be identified by
the sensitive information with probability higher than 1/k.
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B. Auction Model

We model the procedure of spectrum allocation as a sealed-
bid auction, involving an auctioneer, an agent, and a number
of bidders. For clarity, we assume that there is a single channel
to be shared among the bidders1.

The auctioneer may be a primary user who tends to lease
her idle channel to a group of conflict-free secondary users,
in order to receive proper payoff during her idle time. The
auctioneer may also be a specialized third-party platform for
spectrum management, such as Spectrum Bridge [26]. Bidders
simultaneously submit their encrypted bidding tuples via the
agent to the auctioneer. The auctioneer decides the winners
and their charges.

We consider that there is a set B = {1, 2, · · · , z} of bidders.
Let v⃗ = (v1, v2, · · · , vz) denote the valuation profiles of the
bidders, which is their private information. Accordingly, the
bidders’ bidding profile is denoted by b⃗ = (b1, b2, · · · , bz).
Let x⃗ = (x1, x2, · · · , xz) and y⃗ = (y1, y2, · · · , yz) denote
the vector of bidders’ latitudes and longitudes, respectively.
Bidder i can share the channel with bidder j, if their cover-
age/interference areas do not overlap.

The auctioneer determines the charging profile
p⃗ = (p1, p2, · · · , pz) and the allocation profile
a⃗ = (a1, a2, · · · , az), where ai = 1 indicates that bidder i is
allocated the channel, while ai = 0 indicates not. The utility
of bidder i can be defined as

ui = (vi − pi)ai.

The goal of all bidders is to maximize their own utilities. Here,
we assume that the bidders do not collude with each other.

In contrast to the bidders, the overall objective of the auction
is to guarantee strategy-proofness, and to maximize channel
allocation efficiency subject to the conflicting conditions.

C. A Generic Spectrum Auction Scheme

As pointed out in [40], the spatial interference constraints
make the problem of finding the optimal allocation in the
above auction model NP-complete. A practical solution is to
resort to monotonic allocation in order to improve computation
efficiency, and to apply critical charging to guarantee strategy-
proofness. In this subsection, we present a representative
auction scheme that achieves both strategy-proofness and
computational efficiency.

We model the geographic conflicts of the bidders as a con-
flict graph G. On the conflict graph, each bidder is represented
by a vertex. Two bidders (vertices) are connected if their
coverage/interference areas overlap. Two important concepts
are critical neighbor and critical value.

Definition 5 (Critical Neighbor [40]). Given G \ {i}, the
critical neighbor CN(i) of bidder i is a neighbor of i where
if i bids lower than CN(i), i will not be allocated, and if i
bids higher than CN(i), i will be allocated.

1For multi-channel case, we can change the monotonic allocation algorithm
and the critical charging algorithm according to [40], and apply our privacy
preserving bid comparison protocol.

Definition 6 (Critical Value [40]). The critical value of bidder
i is defined as the bid of CN(i); if CN(i) does not exist, the
critical value of i is 0.

Algorithm 1 describes the monotonic allocation procedure,
where A denotes the set of available bidders and N(i) denotes
the set of neighbors of bidder i in G. Lines 2-6 iteratively
allocate the channel to the highest bidder i in A, and eliminate
i and her neighbors from further consideration. The algorithm
stops when there is no bidder left in A.

Algorithm 1 Monotonic Allocation Algorithm
Input: Conflict graph G, bidder set B, and bidding profile
b⃗.
Output: Allocation profile a⃗.

1: A← B; a⃗← 0z .
2: while A ̸= ∅ do
3: i← argmax

j∈A
(bj).

4: ai ← 1.
5: A← A \ (N(i) ∪ {i}).
6: end while

Return a⃗.

Algorithm 2 shows the critical charging procedure. Lines
5-11 determine the critical value of bidder i. Each winner is
charged with his/her critical value. In the case of a tie, we may
break the tie either randomly or by the bidders’ identifiers.

Algorithm 2 Critical Charging Algorithm

Input: Conflict graph G, bidder set B, bidding profile b⃗,
allocation profile a⃗, and bidder i.
Output: Payment pi.

1: if ai = 0 then
2: Return 0.
3: end if
4: A← B \ {i}.
5: while A ̸= ∅ do
6: k ← argmax

j∈A
(bj).

7: if k ∈ N(i) then ◃ CN(i) = k.
8: Return bk.
9: end if

10: A← A \ (N(k) ∪ {k}).
11: end while

Return 0.

Here we have the first theorem. Please refer to [40] for the
proof.

Theorem 1. The generic spectrum auction mechanism is
strategy-proof.

We note that the generic spectrum auction mechanism
may reveal the bidders’ private information to the auctioneer.
We present our approaches to protect bidders’ privacy in
Section III and Section IV.

D. Boneh-Goh-Nissim (BGN) cryptosystem
Homomorphic encryption is a form of encryption that

enables specific types of computations to be carried out
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on ciphertexts, and obtain a new ciphertext, which can be
decrypted to match the result of computations applied directly
to the original plaintexts.

In this work, we adopt Boneh-Goh-Nissim (BGN) cryp-
tosystem [3]. It supports computations of unlimited number of
additions with at most one multiplication. Thus it can evaluate
quadratic multi-variate polynomials on ciphertexts.

Before introducing the BGN cryptosystem, we recall bilin-
ear map and bilinear group, which are the bases of the BGN
cryptosystem.

Definition 7 (Bilinear Map [3]). Let G1 and G2 be two cyclic
groups of order n, for some large n. A map e : G1×G1 → G2

is said to be bilinear if

e(P a, Qb) = e(P,Q)ab,

for all P,Q ∈ G1 and a, b ∈ Z.

Definition 8 (Bilinear Group [3]). G1 is a bilinear group if
there exists a group G2 and a bilinear map e, s.t.,

1) G1 and G2 are two multiplicative cyclic groups of finite
order n.

2) g is a generator of G1.
3) e : G1 × G1 → G2 is a bilinear map and e(g, g) is a

generator of G2.

Given n, [3] presents an approach to constructing a bilinear
group of order n. Due to limitations in space, we do not
elaborate on it here. Next, we describe the three algorithms
making up the BGN cryptosystem.

KeyGen(τ ): Given a security parameter τ ∈ Z+, generate two
random τ -bit primes q1, q2, and set n = q1q2 ∈ Z. Generate
a bilinear group G1 of order n as described in [3]. Let e :
G1 ×G1 → G2 be the bilinear map.

Randomly pick two generators g, u from G1 and set h =
uq2 . Then h is a random generator of a q1-order subgroup of
G1. The public key is PK = (n,G1,G2, e, g, h). The private
key is SK = q1.

Encrypt(PK,m): We assume that the message space consists
of integers from {0, 1, · · · , T} with T < q2. To encrypt a
message m with the public key PK, pick a random integer r
from Zn, and compute

C = gmhr ∈ G1.

Here, C is the ciphertext of m.

Decrypt(SK, C): To decrypt a ciphertext C using the private
key SK = q1, note that

Cq1 = (gmhr)q1 = (gq1)m.

To recover m, it suffices to compute the discrete log of Cq1

in base gq1 . Although it appears inefficient to do decryption,
BGN cryptosystem is well suited to our scenario. In our
application, we only need to decide whether a ciphertext is
an encryption of 0 or not.

Next, we show the homomorphic properties of BGN cryp-
tosystem. Given ciphertexts C1 = gm1hr1 ∈ G1 and C2 =
gm2hr2 ∈ G1,

C1⊕C2 = C1C2h
r = gm1hr1gm2hr2 ·hr = gm1+m2hr1+r2+r

is the ciphertext of m1 +m2 for a random r ∈ Zn.
Furthermore, BGN cryptosystem allows one multiplication

using the bilinear map. For h is of order q1, we rewrite h =
gαq2 for some unknown α ∈ Z. Set ĝ = e(g, g) and ĥ =
e(g, h) = ĝαq2 . Hence, ĝ is of order n and ĥ is of order q1.
Pick a random r′ ∈ Zn, then

C1 ⊗ C2 = e(C1, C2)ĥ
r′ = e(gm1hr1 , gm2hr2)ĥr′

= e(gm1+αq2r1 , gm2+αq2r2)ĥr′

= e(g, g)(m1+αq2r1)(m2+αq2r2)ĥr′

= e(g, g)m1m2e(g, g)αq2(m1r2+m2r1+αq2r1r2)ĥr′

= e(g, g)m1m2e(g, h)m1r2+m2r1+αq2r1r2 ĥr′

= ĝm1m2 ĥr̄ ∈ G2

is the ciphertext of m1 × m2, where r̄ = m1r2 + m2r1 +
αq2r1r2 + r′. We note that the system is still additively
homomorphic in G2.

III. BASIC PISA

In this section, we first introduce our privacy preserving
bid comparison protocol. Then we introduce our spectrum
auction mechanism, namely PISA, which preserves the win-
ners’ bid privacy and achieves strategy-proofness. Here we
assume that the auctioneer has full knowledge of bidders’
coverage/interference areas to construct the conflict graph.
In Section IV, we enhance our design to provide stronger
privacy protection, that is, coverage/interference area privacy,
k-anonymous bid privacy for both winners and losers.

A. Privacy Preserving Bid Comparison

To determine the auction winners, it suffices to let the
auctioneer know whether bi is higher than bj , for any i and
j from B, without revealing the exact values of bi and bj .
This problem is a variant of secure comparison. A generic
solution is based on Yao’s garbled circuits [38], which have a
predefined number of inputs. However, in spectrum auctions,
it is difficult to determine the number of bidders before the
bidding phase. Hence Yao’s approach is not practical here.
Therefore, we design a more flexible approach. Our protocol
is based on bit-wise comparison, allowing us to compare
arbitrary large integers. We describe it separately for clarity,
and it is well applicable in other contexts.

We consider two l-bit binary bids bi = (blib
l−1
i · · · b1i )2

and bj = (bljb
l−1
j · · · b1j )2, where b1i and b1j denote the least

significant bits, while bli and blj denote the most significant
bits. For each integer k ∈ [1, l], we define

ωk
ij = (bki − bkj )

2 = (bki )
2 + (bkj )

2 − 2bki b
k
j , (1)

λk
ij = ζkij [(b

k
i )

2 − (bkj )
2 + 1 +

l∑
r=k+1

ωr
ij ], (2)

where ζkij ∈R Z+ is a random positive number. In this
subsection, l, k and t are all integers. Then, we get the
following lemma.

Lemma 1. For any i, j ∈ B, we have bi < bj , if and only if
there exists exactly one k ∈ [1, l], where λk

ij = 0.
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Proof. For any t ∈ [1, l], we have ζtij > 0 and

ωt
ij = (bti − btj)

2 ≥ 0,

(bti)
2 − (btj)

2 + 1 ≥ 0− 1 + 1 = 0,

hence λt
ij ≥ 0. Next, we prove the necessary and sufficient

conditions.
• Given bi < bj , there exists k ∈ [1, l], such that bki = 0 <

bkj = 1 and bti = btj for any t ∈ [k + 1, l]. Consequently,

ωk
ij = (bki − bkj )

2 = 1,

and
ωt
ij = (bti − btj)

2 = 0, ∀t ∈ [k + 1, l].

Hence,
λk
ij = ζkij [0

2 − 12 + 1 + 0] = 0.

We further distinguish two cases.
– For t ∈ [1, k − 1], since ωk

ij = 1, we have

l∑
r=t+1

ωr
ij > 0.

Hence, λt
ij > 0.

– For t ∈ [k + 1, l],

(bti)
2 − (btj)

2 + 1 = 1 > 0.

Hence, λt
ij > 0.

Therefore, there exists exactly one k ∈ [1, l], where λk
ij =

0.
• Given λk

ij = 0, for ζkij > 0, we can infer that

(bki )
2 − (bkj )

2 + 1 = 0 ∧
l∑

r=k+1

ωr
ij = 0.

Hence, bki = 0 < bkj = 1 and bti = btj for any t ∈ [k+1, l].
Therefore, bi < bj .

This completes our proof.

We note that both Equation (1) and (2) are quadratic
polynomials in bki and bkj . Consequently, we can evaluate them
using the BGN cryptosystem. With Lemma 1, we can compare
two bids without knowing their exact values.

B. Design Details

In basic PISA, bidders submit their encrypted bidding tuples
to the agent who preprocesses them before transferring them
to the auctioneer. The auctioneer can decrypt the encrypted
tuples and find only the necessary information to run the
auction, without inferring any nonessential information. In this
subsection, we present the design details of basic PISA, which
comprises four phases shown as follows.

Phase 1: Initialization
Before the auction, the auctioneer sets up the parameters

for BGN cryptosystem and runs KeyGen(τ ) (as shown in
Section II-D). Then, the public key PK = (n,G1,G2, e, g, h)
is announced, while the private key SK = q1 is not revealed.

The auctioneer also sets the possible bidding range of integers
R = [bmin, bmax], where bmin and bmax are two l-bit binaries.

Phase 2: Bidding
In the bidding phase, each bidder i decides her bid bi ∈ R

according to her valuation vi. The bidder i encrypts every bit
bki from her bid bi with the auctioneer’s public key PK:

E(bki ) = Encrypt(PK, bki ), k ∈ [1, l],

where Encrypt() is the encryption function defined in Section
II-D. For ease of expression, we denote the series of encrypted
bits of bi as

E(b̃i) = (E(bki ))k∈[1,l].

Then, the bidder i sends [i, E(b̃i)] as her bidding tuple to
the agent.

Phase 3: Preprocessing
After receiving all the encrypted bidding tuples from the

bidders, the agent preprocesses the ciphertexts.
For each bidder i, the agent appends E(̃i) to the least

significant end of E(b̃i). Here, similar with E(b̃i), E(̃i) is
the series of encrypted bits of bidder i’s binary ID number.
Now the bidding tuple turns out to be:

[i, E(b̃i)||E(̃i)],

where || is the concatenation operator. The suffix does not
affect the comparison result of the two bids, except the case
of tie. With the suffix, the tie can be broken according to the
bidders’ ID number.

Then, for any pair of bidders i and j, the agent computes:

E(ωk
ij) = E((bki )

2 + (bkj )
2 − 2bki b

k
j )

= e(E(bki ), E(bki ))× e(E(bkj ), E(bkj ))

×e(E(bki ), E(bkj ))
−2,

E(λk
ij) = E((bki )

2 − (bkj )
2 + 1 +

l+⌈log2 z⌉∑
r=k+1

ωr
ij)

ζk
ij

= e(E(bki ), E(bki ))
ζk
ij × e(E(bkj ), E(bkj ))

−ζk
ij

×e(g, g)ζ
k
ij ×

l+⌈log2 z⌉∏
r=k+1

E(ωr
ij)

ζk
ij , (3)

for each k ∈ [1, l + ⌈log2 z⌉] and ζkij ∈R Z+. Here, ⌈log2 z⌉
is the length of bidders’ binary ID number, since there are z
bidders in total.

Finally, the bidder sends the following tuples to the auc-
tioneer:

[i, j, E(λ̃ij)], ∀i, j ∈ B ∧ i ̸= j,

where E(λ̃ij) is the list of E(λk
ij) for k ∈ [1, l+⌈log2 z⌉]. We

note that the elements in E(λ̃ij) can be randomly permuted.

Phase 4: Opening
(a) Conflict graph construction: The auctioneer can con-

struct the conflict graph G = (V,E) according to bidders’ geo-
graphic distribution, where each bidder is represented by a ver-
tex. Two vertices are connected if their coverage/interference
areas overlap. Here, N(f) = {h ∈ V|(f, h) ∈ E}.
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(b) Monotonic allocation: For each edge (f, h) ∈ E, the
auctioneer can decrypt E(λ̃fh), and check whether it contains
a λk

fh that is equal to 0 for k ∈ [1, l+⌈log2 z⌉]. If so, bf < bh;
otherwise, bf > bh.

We can update Algorithm 1 to protect the bidders’ bidding
values. Algorithm 3 shows the privacy preserving winner
allocation procedure. We define matrix S = [λ̃fh]f,h∈V. In
lines 2-6, we iteratively pick bidder f , who does not have 0
in λ̃fh, for any h ∈ A \ {f} (i.e., bidder f has the highest
bid in A); and eliminate f and her neighbors from A. When
the set A becomes empty, the algorithm outputs the allocation
profile a⃗.

Algorithm 3 Privacy Preserving Allocation Algorithm

Input: Conflict graph (V,E) and matrix S = [λ̃fh]f,h∈V.
Output: Allocation profile a⃗.

1: A← V; a⃗← 0z .
2: while A ̸= ∅ do
3: Pick f ∈ A, s.t., @h ∈ A\{f} and k ∈ [1, l+⌈log2 z⌉],

such that λk
fh = 0.

4: af ← 1.
5: A← A \ (N(f) ∪ {f}).
6: end while

Return a⃗.

(c) Critical charging: Since the auctioneer is not given
the encrypted bids from the agent, the charges to the winners
cannot be computed directly according to Algorithm 2. How-
ever, the auctioneer can determine the critical neighbor of each
winner.

Algorithm 4 Privacy Preserving Critical Neighbor Determi-
nation Algorithm— CN(f)

Input: Conflict graph (V,E), matrix S = [λ̃fh]f,h∈V, and
bidder f .
Output: Critical neighbor CN(f).

1: A← V \ {f}.
2: while A ̸= ∅ do
3: Pick f ′ ∈ A, s.t., @h ∈ A \ {f ′} and k ∈ [1, l +
⌈log2 z⌉], such that λk

f ′h = 0.
4: if f ∈ N(f ′) then
5: Return f ′.
6: end if
7: A← A \ (N(f ′) ∪ {f ′}).
8: end while

Return NULL.

Algorithm 4 shows our privacy preserving critical neighbor
determination procedure. In lines 2-8, we determine bidder f ’s
neighbor f ′, who would be allocated the channel if f is absent
from the auction. Then, the algorithm outputs f ′ as the critical
neighbor of f . If no such f ′ exists, the algorithm returns
NULL. We note that Algorithm 4 differs from Algorithm
2, because it outputs the bidder f ’s critical neighbor CN(f),
instead of the critical value.

(d) Outcome announcement: We denote the vector of crit-
ical neighbors by

−−→
CN = (CN(f))f∈V:af=1. The auctioneer

needs to resort to the agent for the encrypted bids of the critical
neighbors. Next, the agent replies with a vector of encrypted
bids of the critical neighbors

−→
C = (E(b̃i))i∈−−→

CN
.

Finally, the auctioneer can decrypt the encrypted critical bids
in
−→
C , and announce the winners together with their charges.

C. Analysis

We consider the computational complexity for the bidders,
the agent and the auctioneer, respectively: bidders have to
carry out BGN encryption for each bit in their bids. Thus,
each bidder has to carry out encryption l times, where l is
the number of bits in the bid; the agent has to carry out
pre-processing for each pair of bidders, so the computational
complexity of the agent is O

(
z2l

)
. Here, z is the number of

bidders; both the allocation algorithm and charging algorithm
run at O

(
z2l

)
, thus the computational complexity of the

auctioneer is O
(
z2l

)
.

The strategy-proofness of PISA is inherited from the generic
auction mechanism. We omit the proof here, and directly draw
the following conclusion.

Theorem 2. PISA satisfies strategy-proofness.

Besides privacy preservation and strategy-proofness, PISA
also achieves the following nice properties.

1) Compared with the generic spectrum auction scheme,
PISA protects bidders’ privacy without sacrificing spec-
trum allocation efficiency.

2) In PISA, bidders are allowed to choose their bids from
a contiguous integer range. Compared with existing
mechanisms (e.g., [15]), in which bids are limited to
a small set of predefined values, PISA provides bidders
with more bidding flexibility.

3) PISA preserves the communication pattern of an auction
protocol. In PISA, bidders are not required to communi-
cate with each other. After submitting the bidding tuples
to the agent, they are free from burdensome computation
and communication.

Basic PISA is based on our privacy preserving bid com-
parison protocol, hence the auctioneer can compare two bids
without knowing their values. As an intermediary, the agent
can not decrypt the encrypted bidding tuples to learn the bids.
Therefore, we protect the bid privacy of winners against both
the auctioneer and the agent. However, the bids of critical
neighbors are revealed as the charges of the winners. In the
next section, we enhance our design to thwart such privacy
breaches and provide protection for coverage/interference area
privacy.

IV. EXTENDED PISA

In this section, we intend to provide k-anonymous bid
privacy for both winners and losers, together with protec-
tion for coverage/interference area privacy. To preserve cov-
erage/interference area privacy, we generalize each bidder’s
coverage/interference area to a square with side length 2ri.
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As shown in Figure 2, bidder i and j are conflicting bidders
in case (a), while they can share the same channel in case
(b). Compare with the commonly used circular conflict areas,
this assumption may overestimate interference. To evaluate the
impact of this assumption on channel allocation, in Section V,
we compare our square conflict model with a conflict graph
obtained from a real measurement.

b
a

 

 

Bidder i Bidder i

Bidder j Bidder j

 2

2

 

 2

 

2

Fig. 2. Square coverage/interference area examples. In case (a), bidder i and
j have conflict. In case (b), the two bidders do not have conflict.

We define

x◃
i = xi + ri, x▹

i = xi − ri,

y△i = yi + ri, y▽i = yi − ri,

where x◃
i , x▹

i , y△i , and y▽i are t-bit binaries. Bidder i and j
are out of the coverage/interference range of each other, if the
following condition holds:

(x◃
i < x▹

j ∨x▹
i > x◃

j )∨ (y△i < y▽j ∨y▽i > y△j ) = TRUE. (4)

Given Lemma 1, we can evaluate x◃
i < x▹

j , x▹
i > x◃

j ,
y△i < y▽j , and y▽i > y△j privately. Due to limitations of
space, we only focus on the differences in phases of bidding,
preprocessing, and opening.

A. Design Details

Besides the processing of coverage/interference areas, the
key difference lies in the preprocessing phase, where the agent
performs a secret permutation to anonymize the bidders.

Phase 1: Initialization
It is similar to the basic PISA in Section III-B.

Phase 2: Bidding
In addition to E(b̃i), each bidder i also calculates E(x̃◃

i ),
E(x̃▹

i ), E(ỹ△i ), and E(ỹ▽i ). Then, the bidder sends

[i, E(b̃i), E(x̃◃
i ), E(x̃▹

i ), E(ỹ△i ), E(ỹ▽i )]

to the agent as the bidding tuple.

Phase 3: Preprocessing
For any pair of bidders i and j, the agent computes E(λ̃ij)

as specified in Section III-B. In addition, the agent calculates

E(αk
ij) = E((x◃k

i )2 − (x▹k
j )2 + 1 +

t∑
r=k+1

(x◃r
i − x▹r

j )2)ξ
k
ij ,

for each k ∈ [1, t] and ξkij ∈R Z+. Same as before, we
let E(α̃ij) = (E(αk

ij))k∈[1,t]. The agent also carries out the
calculations on (x▹

i , x
◃
j ), (y

△
i , y

▽
j ) and (y▽i , y

△
j ), and results in

E(β̃ij), E(γ̃ij), and E(δ̃ij), respectively.
After finishing the above calculations, the agent carries out

a secret permutation π on the results to make them anony-
mous to the auctioneer. Then, the agent sends the following
anonymous tuples to the auctioneer:

[π(i), π(j), E(λ̃ij), E(α̃ij), E(β̃ij), E(γ̃ij), E(δ̃ij)],

for each i, j ∈ B and i ̸= j.

Phase 4: Opening
The auctioneer decrypts E(α̃fh), E(β̃fh), E(γ̃fh), and

E(δ̃fh), to get α̃fh, β̃fh, γ̃fh, and δ̃fh, respectively. We note
that bidder f and h cannot share the channel, if the following
condition holds:

Ωfh =
(
0 /∈ α̃fh ∧ 0 ∈ β̃fh ∧ 0 /∈ γ̃fh ∧ 0 ∈ δ̃fh

)
= TRUE.

(5)
The auctioneer can construct the conflict graph G = (V,E),
where

V = {π(i)|i ∈ B} ,

E = {(f, h)|f, h ∈ V ∧ Ωfh = TRUE} .

Then the auctioneer carries out Algorithm 3 and Algorithm
4 on permuted bidders. Algorithm 3 outputs allocation profile
a⃗′ on permuted bidders, while Algorithm 4 returns the permut-
ed critical neighbors. Since the auctioneer is unaware of the
agent’s perturbation π : B→ V, the original identifiers of the
bidders remain anonymous. Let

−→
W = (f)f∈V:a′

f=1 denote the

vector of permuted winners, and
−−→
CN = (CN(f))f∈V:a′

f=1 de-
note the corresponding vector of permuted critical neighbors.
To prevent the agent from finding one-to-one correspondence
between the winners and their critical neighbors, the auctioneer
permutates

−−→
CN to get

−−→
CN ′. The auctioneer needs to resort to

the agent for the winners’ original identifiers and the encrypted
bids of the critical neighbors, by sending

−→
W and

−−→
CN ′ to

the agent. Next, the agent replies with a vector of winner
identifiers −→

W ′ = (i)
π(i)∈−→

W
,

and a vector of encrypted bids of the critical neighbors
−→
C ′ = (E(b̃i))π(i)∈−−→

CN ′ .

Finally, the auctioneer can decrypt the encrypted critical bids
in
−→
C ′, map the critical bids to the winners by reversing the

permutation done on
−−→
CN , and announce the winners together

with their charges.

B. Illustrative Example

The following example may help to illustrate how extended
PISA works. Suppose there are five bidders 1, 2, 3, 4 and
5, located at (6, 10), (10, 14), (10, 6), (14, 10) and (10, 16)
respectively. They are supposed to bid higher than 0, but lower
than 16. Each of them has a valuation of the channel in binary
form: b1 = 00102, b2 = 01002, b3 = 10102, b4 = 01012, b5 =
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01102. For simplicity, we assume r1 = r2 = r3 = r4 = r5 =
5.

In the auction, each bidder submits an encrypted bid-
ding tuple, which contains his/her encrypted bid and cover-
age/interference boundaries. The bidding tuple follows the for-
mat of [i, E(b̃i), E(x̃◃

i ), E(x̃▹
i ), E(ỹ△i ), E(ỹ▽i )]. For instance,

bidder 1 submits

[1, E(0̃010), E(1̃011), E(0̃001), E(1̃111), E(0̃101)]

to the agent. Here 1 is the identity,

b1 = 00102,

x◃
1 = 6 + r1 = 10112, x

▹
1 = 6− r1 = 00012,

y△1 = 10 + r1 = 11112, y
▽
1 = 10− r1 = 01012.

Similarly, bidder 3 submits

[3, E(1̃010), E(1̃111), E(0̃101), E(1̃011), E(0̃001)].

After collecting all the bids, the agent carries out preprocessing
as specified in Phase 3. For simplicity, we omit the suffix.
Then, the agent anonymizes all the tuples, and sends the
permuted ones to the auctioneer. For example, the agent
sends the following information about bidders 1 and 3 to the
auctioneer:

[4′(3), 5′(1), E(2× 2, 4× 2, 1× 2, 3× 2),

E(4× 2, 5× 3, 3× 4, 1× 4), E(3× 0, 5× 3, 3× 2, 2× 4),

E(7× 2, 3× 1, 2× 4, 2× 4), E(3× 0, 3× 1, 2× 2, 2× 4)].

Here, the numbers inside parentheses in the first two terms
are the bidders’ true identifiers, which are hidden from the
auctioneer. Furthermore, π(1) = 5′ and π(3) = 4′ are the
anonymous identification after the secret permutation π. The
numbers in bold are the random numbers generated by the
agent (e.g., 2, 4, 1, 3 in the third term correspond to the random
number ζij in Equation (3)).

The auctioneer can decrypt the ciphertexts and do the
comparison. In this example,

Ω4′5′ = [0 /∈ (4× 2, 5× 3, 3× 4, 1× 4)]

∧ [0 ∈ (3× 0, 5× 3, 3× 2, 2× 4)]

∧ [0 /∈ (7× 2, 3× 1, 2× 4, 2× 4)]

∧ [0 ∈ (3× 0, 3× 1, 2× 2, 2× 4)]

= TRUE.

Thus bidder 4′ and 5′ cannot share the channel. The auctioneer
constructs the conflict graph based on the comparison results,
as shown in Figure 3. The term by each edge (f, h) ∈ E
denotes [f, h,E(λ̃fh)] (elements in E(λ̃fh) are multiplied
with random positive numbers and are randomly perturbed).

From Figure 3, the auctioneer can learn that

b1′ > b2′ , {b1′ , b3′} > b2′ > b5′ ,

b4′ > b3′ > b2′ , b4′ > {b3′ , b5′}, {b2′ , b4′} > b5′ .

[2',1',E(7,8,0,4)]
1'(5) 2'(2)

3'(4)

4'(3)

5'(1)

[1',2',E(2,6,2,4)]

[2',5',E(1,2,2,3)]

[5',2',E(9,0,6,9)]

[2',3',E(2,6,1,0)]

[3',2',E(8,3,4,6)]

[3',4',E(0,2,6,5)]

[4',3',E(4,2,4,9)]

[4',5',E(4,8,2,6)]

[5',4',E(0,2,6,4)]

Fig. 3. Conflict graph constructed by the auctioneer, without revealing actual
coverage/interference areas of the bidders.

Then the auctioneer can determine winners and their criti-
cal neighbors using Algorithm 3 and Algorithm 4, respec-
tively. The winners turn out to be bidder 1′ and 4′, and
the corresponding critical neighbors are bidder 2′ and 3′,
respectively. The auctioneer permutes

−−→
CN = {2′, 3′} to get−−→

CN ′ = {3′, 2′}.
Next the auctioneer consults the agent with

−→
W = {1′, 4′}

and
−−→
CN ′ = {3′, 2′}, and the agent replies with answer 5, 3,

E(b̃4), and E(b̃2). Finally, the auctioneer announces bidder 3
and 5 as winners, with charges 5 and 4, respectively.

C. Analysis

It is evident that extended PISA inherits the nice properties
from basic PISA, including strategy-proofness and the three
properties listed in Section III-C. To avoid redundancy, we
do not elaborate on them again here. In this subsection,
we demonstrate some other nice properties of our auction
mechanism.

Theorem 3. Extended PISA guarantees k-anonymity for bid
privacy, where k = |

−−→
CN |.

Proof. We distinguish the following two cases:

Case 1: Bidder i is a critical neighbor, i.e., π(i) ∈
−−→
CN .

We consider from the perspectives of both the agent and the
auctioneer.

On the one hand, the agent cannot decrypt bidder i’s bidding
tuple without the secret key SK, hence the agent cannot
find out what the bid is. When the auctioneer consults the
agent with

−−→
CN ′ in the opening phase, the agent learns that

bidder i is one of the critical neighbors. However, the order
of bidders in

−−→
CN ′ has been permutated by the auctioneer.

The agent does not know which bidder is which winner’s
critical neighbor. When the auctioneer announces the charges
for winners, bidder i’s bid is hidden among |

−−→
CN | charges.

Thus, the agent cannot identify bidder i’s bid with probability
higher than 1/|−−→CN |.

On the other hand, although the auctioneer can decrypt the
bidding tuples, they cannot be linked with the bidders, because
all the bidding tuples are anonymized by the agent. The true
identifier of a critical neighbor is hidden among z−|−→W | losers.
Thus, the auctioneer cannot identify bidder i with probability
higher than 1/(z − |

−→
W |).

For the set of critical neighbors is a subset of losers
(z − |

−→
W | ≥ |

−−→
CN |), both the agent and the auctioneer cannot

identify bidder i’s bid with probability higher than 1/|
−−→
CN |.

Case 2: Bidder i is not a critical neighbor, i.e., π(i) /∈
−−→
CN .
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For bidder π(i) /∈ −−→CN , the agent cannot decrypt the bidding
tuple, and the bid is never revealed to the auctioneer. We note
that with the suffix, all bids have different encrypted values.
There is no possibility that the auctioneer can infer a bid as
it happens to be equal to one of the critical values.

This completes our proof.

As for coverage/interference areas, the agent can not decrypt
bidders’ encrypted bidding tuples and can only perform homo-
morphic operations on the ciphertexts. Although the auctioneer
can decrypt the preprocessed tuples received from the agent,
the bidders’ coverage/interference areas remain unknown. The
auctioneer constructs the conflict graph based on Lemma 1,
without knowledge of the bidders’ exact coverage/interference
boundaries. Hence bidders’ coverage/interference areas are
revealed to neither the auctioneer nor the agent. Therefore,
we have the following theorem.

Theorem 4. Extended PISA prevents the agent and the auc-
tioneer from learning the bidders’ coverage/interference areas.

We also analyze the computational complexity: in extended
PISA, besides bids, we have to process the four cover-
age/interference area boundaries. Each bidder has to carry out
BGN encryption for (l + 4t) times. Here, t is the number
of bits in the four boundaries; similarly, the agent has to
carry out pre-processing for each pair of bidders, so the
computational complexity of the agent is O

(
z2(l + 4t)

)
; for

each pair of bidders, the auctioneer has to judge whether their
conflict squares overlap. Thus, the auctioneer has to carry out
(4z2t) times of decryption to construct the conflict graph.
The allocation algorithm and charging algorithm still run at
O
(
z2l

)
, thus the computational complexity of the auctioneer

is O
(
z2(l + 4t)

)
.

V. EVALUATION

We have implemented PISA and evaluated its efficiency and
overhead through simulations. In this section, we show our
evaluation results.

A. Methodology

In our evaluations, we implement the BGN cryptosystem
with security parameter τ = 80, using the Stanford pairing-
based cryptography library (PBC), which is a C library built
on the GMP library to perform the mathematic operations
underlying pairing-based cryptosystems.

In each set of evaluations, we vary a factor among bidder
number, the size of the terrain, and the number of digits in a
bid, while fixing the other two. The number of bidders varies
from 20 to 200, and the bidders are randomly distributed in
the terrain. The size of the terrain ranges from 256 meters
× 256 meters to 2048 meters × 2048 meters, such that
the coordinates can be represented by 8 to 11 bits. The
coverage/interference range is randomly selected from 50 to
150 meters, and hence the mean value is 100 meters, which
is the transmission range of 802.11b. The bid of each bidder
ranges from 2 to 1023, which can be represented by at most 10
bits. The default values for bidder number, the size of terrain,

and the number of digits in a bid is 200, 2048 meters × 2048
meters, 10, respectively.

We measure the following metrics in our evaluation:
• Channel utilization: The average number of bidders allo-

cated to the channel.
• Computational overhead: The processing time required

by each party to run the auction.
• Communication overhead: The size of data that must be

sent to convey information.
We run a series of evaluations on a PC with Intelr Core(TM)
i5 3.1GHz processer and 4GB memory under Ubuntu 10. All
the results on performance are averaged over 100 runs.

B. Allocation Efficiency
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Fig. 4. Channel utilizations of the generic spectrum auction scheme, basic
PISA (Section III) and extended PISA (Section IV).

In this section, we compare PISA with VERITAS [40], i.e.,
the generic spectrum auction without privacy preservation.

Figure 4(a) shows the channel utilizations achieved by the
generic spectrum auction scheme, basic PISA and extended
PISA as a function of the number of bidders, when the terrain
area is 2048 meters × 2048 meters. We can see that the
channel utilizations achieved by all the mechanisms are non-
decreasing concave functions of the number of bidders.

Figure 4(b) shows the case, in which we vary the size
of the terrain and fix the number of bidders at 200. Again,
we can see that the generic auction scheme, basic PISA and
extended PISA all have increasing channel utilization. Bidders
are randomly distributed over the terrain, a larger terrain results
in less conflicts, and hence higher channel utilization.

Figure 4 validates our claim that, compared with the generic
spectrum auction scheme, PISA protects bidders’ privacy
without sacrificing channel utilization.

To show the impact of square conflict area assumption, we
compare it with a conflict graph obtained from real measure-
ments. We utilize the data collected by Zhou et al. [41]. This
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dataset contains 78 APs of the Google WiFi network, covering
a 7km2 residential area in Mountain View, California.

We obtain two conflict graphs: one from the real measure-
ment [41], and the other one constructed by the square conflict
model. Here, we set the interference range to be 150 meters.
The two conflict graphs are shown as follows. Figure 5(a) is
from [41] and Figure 5(b) is constructed by the square conflict
model. In Figure 5(a), there are 151 edges, whereas is Figure
5(b), there are 171 edges.
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(a) Conflict graph from real measurement
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(b) Conflict graph from square conflict model
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Fig. 5. Conflict graphs by real measurement and square conflict model

We use these two different conflict graphs as input and
run the spectrum allocation algorithm. Bids are randomly
distributed over [50, 100]. We repeat the experiments for 1000
runs. The average channel utilization for Figure 5(a) is 26.2,
whereas the number for Figure 5(b) is 26.1. The two numbers
are quite close. This is reasonable as there are only minor
differences between the two conflict graphs. Thus, we can
conclude that the assumption of the square conflict areas has
a minor impact on channel utilization.

C. Overhead

PISA integrates cryptographic tools to protect bidders’ pri-
vacy. An efficient privacy preserving mechanism should have
a low overhead. We evaluate the computation and communi-
cation overheads, by varying the number of bidders, the size
of the terrain, and the number of bits in the bid.

Figure 6 shows the computational overhead of the agent
and the auctioneer. We do not plot the bidders’ computational
overhead, because each bidder just encrypts several bits of
information, and the computational overhead is only about 25
milliseconds. We can see that the computational overhead is
mainly from the agent, because the agent is responsible for a
large number of encryption operations. Furthermore, we can
find that the agent spends far more time in extended PISA
than in basic PISA. This is because in basic PISA, the agent
spends most of the time processing bids. However, in extended
PISA, the agent also needs to preprocess the four cover-
age/interference boundaries between bidders. Similarly, the
auctioneer in extended PISA has to decrypt more ciphertexts

to construct the conflict graph, hence the higher computational
overhead than in basic PISA.

Specifically, Figure 6(a) shows the run time against the
number of bidders with 10-bit bids and a 2048 meters × 2048
meters terrain area. We find that the computational overhead
of the agent grows as a quadratic polynomial of bidders’
number. This is reasonable, because in Phase 3: Preprocessing,
the agent has to carry out preprocessing for each pair of
bidders. As shown in Figure 6(b), the computational overhead
of the agent in basic PISA changes slightly as the size of
terrain area grows. However, in extended PISA, the agent has
to process the ciphertexts of coordinates for the auctioneer
to build the conflict graph, thus her computational overhead
increases with the size of the terrain. Figure 6(c) shows that
the run time of the agent increases almost linearly with the
number of bits in a bid. This is reasonable, as for each pair
of bidders, the agent has to compute Equation (3) k times,
where k is the number of bits in the bids. Generally, in our
evaluations, the time required by the agent in basic PISA is less
than 50 seconds while in extended PISA, the agent requires
about a few minutes’ processing time (less than 5 minutes).
To speed up computation, we can use parallel computing
to save computation time. Since bidders are not involved in
burdensome computation after submitting bids, they are not
required to stay connected with the agent nor the auctioneer.
They can simply wait for the auctioneer to broadcast the
results, hence, we believe this time gap is acceptable.

Figure 7 plots the communication overhead induced by
basic PISA and extended PISA. The communication overhead
of each bidder is about 96 bytes in basic PISA and 546
bytes in extended PISA. It is trivial compared with the total
communication overhead, hence we do not show them on the
figures. As shown in Figure 7, the communication overhead
of extended PISA is much higher than basic PISA. This is
because, in addition to transmitting the preprocessed results
of bids, the agent in extended PISA has to transmit the
preprocessed results of four coverage/interference boundaries
to the auctioneer.

Similar to Figure 6(a), the communication overhead in
Figure 7(a) grows as a quadratic polynomial of bidders’ num-
bers. As shown in Figure 7(b), the communication overhead
of extended PISA grows almost linearly with the size of
the terrain. With the increases in terrains, we need more
bits to represent bidders’ coverage/interference areas. Thus,
communication overheads increase linearly with the number
of bits needed to represent the terrain. Similar to the computa-
tional overhead, the communication overhead increases almost
linearly with the number of bits in a bid, which is shown in
Figure 7(c). Generally, the communication overhead of basic
PISA is less than 4 MB, while the communication overhead
of extended PISA is less than 25 MB.

From Figure 6 and Figure 7, we can conclude that PISA
protects bidders’ privacy with tolerable computation and com-
munication overheads. Since bidders are not engaged in bur-
densome computation and communication, both the computa-
tion and communication overheads for bidders are negligible,
which is an appealing property in auction design.
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Fig. 6. Computational overheads induced by basic PISA (Section III) and extended PISA (Section IV).
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VI. RELATED WORK

We briefly review related works in this section.

A. Privacy Preserving Mechanism Design

Some works have been devoted to privacy preserving mech-
anism design. Wang et al. [31] incentized SUs to contribute
their sensing data for collaborative sensing by providing differ-
ential privacy protection in the presence of malicious service
providers and SUs. Naor et al. [22] proposed Yao’s garbled
circuits for use in auctions. However, the number of bidders
in spectrum auctions cannot be known before the bidding
phase, hence Yao’s garbled circuits are not applicable here.
Sui and Boutilier [27] studied efficiency and privacy tradeoffs
in mechanism design. Their results show that sacrifices in
efficiency can provide gains in privacy. Similarly, Feigenbaum
et al. [11] proposed a general framework to analyze the
tradeoff between communication cost and privacy. In [7], the
authors present a protocol based on homomorphic encryption
for secure comparison of integers, which is well applicable
for auctions. There are a great number of existing works on
privacy preserving auctions (e.g., [1, 5, 17, 25, 28]), which
are designated for traditional goods (e.g., paintings, jewelry),
where each commodity can only be allocated to one bidder.
When it comes to spectrum auctions, they may either fail or
lead to significant degradation of spectrum utilization. Assume
that we directly apply one of the existing privacy preserving
auction schemes to spectrum auctions, each channel will be
allocated to only one bidder, which cannot fully exploit the
spatial reusability of spectrum, resulting in extremely low
channel utilization.

B. Dynamic Spectrum Auction

Auctions are widely used to handle spectrum allocation, and
researchers have proposed various spectrum auction mecha-
nisms (e.g., [35, 36, 40, 43]). TAHES [12] and TRUST [42]
are both truthful double spectrum auctions. Dong et al. [9]

and Zhu et al. [46] applied combinatorial auctions to allocate
spectrum. Deek et al. [8] and Xu et al. [37] investigated
various forms of cheating in online auctions. Al-Ayyoub and
Gupta [2] and Jia et al. [16] aimed at maximizing the revenue
of primary users. Most of the existing literature mainly focuses
on the economic aspects of the auction.

Pan et al. [24] proposed a secure spectrum auction leverag-
ing paillier cryptosystem. Their design requires multiple auc-
tioneers, which is normally considered to be impractical. Liu et
al. [18] studied location privacy in spectrum auctions, however,
their auctions are not strategy-proof. In a closely related
study, Huang et al. [15] proposed a novel spectrum auction
mechanism to preserve bid privacy. However, SPRING [15]
is based on bid-independent bidder grouping, and thus may
result in terribly poor spectrum utilization in extreme cases.
Furthermore, in [15], bidders are only allowed to choose bids
from a small set of predefined values. PISA differs significant-
ly from [15] as PISA is based on monotonic allocation and
critical charging instead of bidder grouping. Moreover, PISA
allows bidders to choose bids from a continuous integer range,
which is more flexible. Furthermore, PISA protects both bid
privacy and coverage/interference area privacy. Recently, Zhu
et al. [44, 45] extended the exponential mechanism in [20] and
proposed the first differentially privacy preserving spectrum
auction with approximate revenue maximization, under the
assumption that the auctioneer is trustworthy. However, as
mentioned before, bidders are reluctant to share their bidding
information with anyone else, including the auctioneer. Thus,
this assumption is not always true. In other related works
[6, 14, 34], the authors adopted the similar system architecture.
They mainly focused on protecting bid privacy, but did not
consider bidders’ coverage/interference area privacy.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented PISA, which is the
first privacy preserving and strategy-proof spectrum auction
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mechanism that can protect both bid privacy and cover-
age/interference area privacy, without sacrificing social wel-
fare. PISA is based on our novel and efficient privacy p-
reserving integer comparison protocol, which can compare
arbitrary large integers and is well applicable in other con-
texts. Analytical results have demonstrated PISA’s privacy
preserving properties and evaluation results have shown that
PISA achieves good spectrum allocation efficiency, with light
computation and communication overheads.

As for future work, it will be interesting to study potential
attacks against our model. Yet another possible direction is
to provide privacy protection for both buyers and sellers in
double spectrum auctions.
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