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Abstract—The problem of dynamic spectrum redistribution
has been extensively studied in recent years. Auction is believed
to be one of the most effective tools to solve this problem. A
great number of strategy-proof auction mechanisms have been
proposed to improve spectrum allocation efficiency by stimulating
users/bidders to truthfully reveal their valuations of spectrum,
which are the private information of the bidders. However, none
of these approaches protect bidders’ privacy. In this paper, we
present SPRING, which is the first Strategy-proof and PRivacy
preservING spectrum auction mechanism. We not only rigorously
prove the properties of SPRING, but also extensively evaluate its
performance. Our evaluation results show that SPRING achieves
good spectrum redistribution efficiency with low overhead.

I. INTRODUCTION

The fast growing wireless technology is exhausting the
limited radio spectrum. Due to traditional static, expensive, and
inefficient spectrum allocation by government, the utilization
of radio spectrum is low in spatial and temporal dimensions.
On one hand, many spectrum owners are willing to lease out
or sell idle spectrum and receive proper payoff. On the other
hand, many new wireless applications, starving for spectrum,
would like to pay for occupying the spectrum. Therefore,
redistribution of idle radio spectrum is highly important. Open
markets, such as Spectrum Bridge [1], have already appeared
to improve the spectrum utilization by providing services for
buying, selling, and leasing idle spectrum.

Due to the fairness and allocation efficiency, auction has
become a popular marketing tool to redistribute radio spec-
trum. In recent years, a number of strategy-proof spectrum
auction mechanisms (e.g., [2]–[10]) have been proposed to
stimulate the bidders to truthfully bid their valuations of spec-
trum/channels in the auction. However, the spectrum/channel
valuations are private information of the bidders. Once the
valuations are revealed to the auctioneer, a corrupt auctioneer
may exploit such knowledge to her advantage, either in future
auctions or by reneging on the sale [11]. Therefore, privacy
preservation has been regarded as a major issue in the auction
design. Unfortunately, none of the existing spectrum auction
mechanisms provide any guarantee on privacy preservation.

In a privacy preserving auction mechanism (e.g., [11]), the
outcome of the auction should be the only information that any
party gains. Specifically, any party in the auction can only
know the winners and their charges for winning the goods,
and cannot identify any bid’s submitter. However, spectrum is
different from traditional goods, due to its spatial reusability,
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Fig. 1. Auction framework of SPRING.

by which two spectrum users can share the same wireless
channel simultaneously, if they are well-separated (i.e., out
of interference range of each other). Thus, existing privacy
preserving auction mechanisms cannot be directly applied to
spectrum auctions.

In this paper, we consider the joint problem of designing
both strategy-proof and privacy preserving auction mecha-
nisms for spatial reusable goods, such as radio spectrum.
We propose SPRING, which is a Strategy-proof and PRivacy
preservING spectrum auction mechanism. As shown in Fig. 1,
the main idea of SPRING is to separate the information known
by different parties in the auction, by introducing an agent,
who can interact with both the auctioneer and the bidders.
The information stored at both the auctioneer and the agent
is protected by cryptographic tools, such that neither of them
can infer any sensitive information without the help of the
other. As long as the agent and the auctioneer do not collude,
SPRING can guarantee both strategy-proofness and privacy
preservation.

We summarize the contributions made in this paper as
follows.

• To the best of our knowledge, SPRING is the first
strategy-proof and privacy preserving auction mecha-
nisms for spectrum redistribution.

• We propose a novel and practical technique, called
SPRING, to guarantee privacy preserving in a generic
strategy-proof spectrum auction mechanism. The generic
strategy-proof spectrum auction mechanism captures the
essential idea of a category of single channel auction
mechanisms, in which each bidder only requests a single
channel (e.g., [3], [4]).

• We also extend SPRING to adapt to the case, in which
the bidders are allowed to request multiple channels,
and it still achieves both strategy-proofness and privacy
preservation.



• We implement SPRING and extensively evaluate its
performance. Our evaluation results show that SPRING
achieves good efficiency on spectrum redistribution,
while inducing only a small amount of overhead.

The remainder of this paper is organized as follows. In
Section II, we briefly review the related works. In Section III,
we present technical preliminaries. In Section IV, we present
the detailed design of SPRING for the single channel request
case. In Section V, we extend SPRING to support multi-
channel bids. In Section VI, we show the evaluation results
of SPRING. Finally, we conclude our work and point out
potential directions for future work in Section VII.

II. RELATED WORK

Spectrum auction mechanisms have been studied exten-
sively in recent years. A number of works were presented
for market-driven dynamic spectrum auctions. For instance,
[2]–[4] all are auction-based spectrum allocation mechanism-
s, achieving both strategy-proofness and economic-robust.
Deek et al. proposed Topaz [5] to guard against time-based
cheating in online spectrum auctions. Al-Ayyoub and Gup-
ta [8] designed a polynomial-time truthful spectrum auction
mechanism with a performance guarantee on revenue. Xu et
al. [6], [7] proposed efficient spectrum allocations in multi-
channel wireless networks. TAHES [9] addresses both hetero-
geneous spectrums and interference graph variation. Dong et
al. [10] tackled the spectrum allocation problem in cognitive
radio networks via combinatorial auction. While eliminating
the overhead of strategy management, they fail to protect the
privacy of bidders.

On the other hand, extensive efforts have been devoted
toward privacy preserving mechanism design. In [12], differen-
tial privacy [13] was introduced as a solution concept. It shows
that mechanisms with differential privacy approximate truth-
fulness with high probability even in the presence of collusion,
arbitrary utility functions and repeated runs of the mechanism.
[14] addresses efficiency and privacy tradeoffs in mechanism
design and provides a general framework for analyzing the
tradeoff. Brandt and Sandholm [15] investigated unconditional
full privacy in sealed-bid auctions. [16]–[19] employ vast
cryptography techniques to achieve security in various auction
schemes. Unfortunately, these existing solutions cannot work
in spectrum auctions. When applied in spectrum auctions, they
either require exponential complexity, or lead to significant
degradation of spectrum utilization.

III. PRELIMINARIES

In this section, we first briefly review some important so-
lution concepts from mechanism design, and then present our
auction model together with a generic strategy-proof auction
for the problem of spectrum allocation. Finally, we introduce
useful tools from cryptography.

A. Solution Concepts
We briefly review the solution concepts used in this paper.

A strong solution concept from mechanism design is dominant
strategy.

Definition 1 (Dominant Strategy [20] [21]). Strategy si is
player i’s dominant strategy in a game, if for any strategy
s′i ̸= si and any other players’ strategy profile s−i:

ui(si, s−i) ≥ ui(s
′
i, s−i).

Apparently, a dominant strategy of a player is a strategy
that maximizes her utility, regardless of what strategy profile
the other players choose.

The concept of dominant strategy is the basis of incentive-
compatibility, which means that there is no incentive for any
player to lie about her private information, and thus revealing
truthful information is a dominant strategy for each player. A
company concept is individual-rationality, which means that
for every player participating in the game/auction is expected
to gain no less utility than staying outside. We now can
introduce the definition of Strategy-Proof Mechanism.

Definition 2 (Strategy-Proof Mechanism [22] [23]). A mech-
anism is strategy-proof when it satisfies both incentive-
compatibility and individual-rationality.

In the field of privacy preservation, k-anonymity [24] is
commonly used criteria for evaluating a privacy preserving
scheme. A scheme provides k-anonymity protection when a
person cannot be distinguished from at least k−1 individuals.

Definition 3 (k-anonymity [24]). A privacy preserving scheme
satisfies k-anonymity, if no party can identify a particular
participant’s sensitive information with probability more than
1/k by itself.

In this paper, we consider the problem of privacy preserving
in a semi-honest model, in which each party correctly follows
the protocol specification, but attempts to infer additional
information by analyzing the messages received during the
execution [25]–[27].

B. Auction Model

As shown in Fig. 1, we model the process of spectrum allo-
cation as a sealed-bid auction, in which there is an auctioneer,
an agent, and a group of small service providers (bidders).
There are a number of orthogonal and homogenous spectrum
channels that can be leased out to a set of bidders, such as
WiFi access points, who want to temporarily lease channels
to serve their customers in particular geographic regions. In
contrast to existing work on spectrum auction (e.g., [2]–[4]),
we have an additional trustworthy authority, called agent, who
can communicate with both the auctioneer and the bidders.
The bidders simultaneously submit their bids (encrypted in this
paper) for channels via the agent to the auctioneer, such that
no buyer can know the other participants’ information. The
auctioneer decides the allocation of channels and the charges
for the auction winners based on the bids.

We consider that there is a set C = {1, 2, . . . , c} of orthog-
onal and homogenous channels. Different from allocation of
traditional goods, wireless channels can be spatially reused,
meaning that more than one well-separated bidders can work



on the same channel simultaneously, if they do not interfere
with each other.

We also consider that there is a set N = {1, 2, . . . , n} of
bidders. Each bidder i ∈ N requests a single channel (in
Section IV) or multiple channels (in Section V), and has a
valuation vi per channel. The per channel valuation can be
the revenue gained by the bidder for serving her subscribers,
and is private to the bidder herself, which is known as type in
the literature. Let v⃗ denote the valuation profile of the bidders

v⃗ = (v1, v2, . . . , vn).

In the auction, the bidders simultaneously choose their bids,
denoted by

b⃗ = (b1, b2, . . . , bn),

which are based on their types, and submit the encrypted bids
to the auctioneer via the agent.

The auctioneer determines the set of winning buyers W ⊆
N, channel allocation to the bidders a⃗ = (a1, a2, . . . , an), and
the charging profile p⃗ = (p1, p2, . . . , pn).

Then the utility ui of bidder i ∈ N can be defined as the
difference between her valuation on the channels won and the
charge pi:

ui = viai − pi.

We assume that the bidders are rational. The objective
of each bidder is to maximize her utility and she has no
preference over different outcomes with identical utility. We
also assume that the bidders do not collude with each other.

In contrast to the bidders, the overall objective of the auction
mechanism is to achieve good channel utilization and satisfac-
tion ratio, while guaranteeing strategy-proofness and privacy
preservation. Here, channel utilization is the average number
of radios/bidders allocated to each channel; satisfaction ratio
is the percentage of winning bidders in the auction.

C. Generic Strategy-Proof Spectrum Auction

In this section, we present a generic strategy-proof spectrum
auction mechanism, which is general enough to capture the
essence of a category of strategy-proof spectrum auction
mechanisms (e.g., [3], [4]). The generic spectrum auction
presented here works in the case of single channel bids. In
Section V, we will show how to extend it to adapt for multi-
channel bids.

In the generic spectrum auction, bidders are first divided
into non-conflicting groups in a bid-independent way:

G = {g1, g2, . . . , gm},

s.t.,
gj ∩ gl = ∅, ∀gj , gl ∈ G, j ̸= l

and
∪

gj∈G
gj = G.

Then, a group bid σj for each group gj ∈ G is calculated
as follows.

σj = |gj | ·min{bi|i ∈ gj}.

All the bidder groups are ranked by their group bids in a non-
increasing order with bid-independent tie breaking:

G′ : σ′
1 ≥ σ′

2 ≥ . . . ≥ σ′
m.

Bidders from the top w = min(c,m) groups are winners.
Each winning group is charged with σ′

w+1 (0, if σ′
w+1 does not

exist). The charge is shared evenly among the bidders in each
winning group. Formally, a bidder i from a winning group gj
is charged with price

pi =

{
σ′
w+1/|gj | if m > c,

0 otherwise.

Essentially, the generic spectrum auction guarantees
strategy-proofness, because the charge for a winner is inde-
pendent of her bid. Due to limitations of space, we do not
formally prove it.

Theorem 1. The generic spectrum auction is a strategy-proof
mechanism.

D. Cryptographic Tools

In this paper, we employ three cryptographic tools, includ-
ing order preserving encryption, oblivious transfer, and secure
multi-party computation.

1) Order Preserving Encryption: OPES [28] is a repre-
sentative scheme to encrypt numeric data while preserving
the order. It enables any comparison operation to be directly
applied on the encrypted data.

Intuitively, we can protect the privacy of bidders in the
auction by encrypting the bids in a way that preserves the
order of bids and carrying out comparison operations directly
on the cipher text/value.

2) Oblivious Transfer: Oblivious Transfer (OT) [29] de-
scribes a paradigm of secret exchange between two parties, a
sender and a receiver.

SPRING employs an efficient 1-out-of-z oblivious transfer
(OT 1

z ) of integers [30]. The receiver can access one of the z
secrets from the sender, without getting any information about
the remaining z−1 secrets, while the sender has no idea which
of the z secrets was accessed. Algorithm 1 shows the pseudo-
code of OT 1

z proposed in [30], where z is a large prime, g and
h are two generators of Gq , which is cyclic group of order
q, and Zq is a finite additive group of q elements. As long as
logg h is not revealed, g and h can be used repeatedly.

Algorithm 1 1-out-of-z Oblivious Transfer (OT 1
z )

Initialization:
System parameters: (g, h,Gq);
Sender’s input: s1, s2, · · · , sz ∈ Gq;
Receiver’s choice: α, 1 ≤ α ≤ z;

1: Receiver sends y = grhα, r ∈R Zq;
2: Sender sends ci = (gki , si(y/h

i)ki), ki ∈R Zq, 1 ≤ i ≤ z;
3: By cα = (d, f), receiver computes sα = f/dr.



3) Secure Multi-Party Computation (SMC): SMC, first pro-
posed by Yao [31], has recently become appropriate for some
realistic scenarios. We employ secure multi-party comparison
in SPRING to locate the lowest bid in each group, which
enables a number of parties to carry out comparisons while
preserving the privacy of their input.

IV. SPRING
In this section, we present SPRING, which is a strategy-

proof and privacy preserving spectrum auction mechanism.

A. Design Rational

SPRING integrates cryptographic tools with the gener-
ic spectrum auction mechanism to achieve both strategy-
proofness and privacy preservation. The main idea of SPRING
is to separate the information known by different parties in the
auction, so that no party in the auction has enough information
to infer any sensitive information with confidence higher
than 1/k, while maintaining the functionality of the generic
spectrum auction. We illustrate the designing challenges and
our idea in this subsection.

(1) Information Separation
If there is a single central authority (auctioneer) carrying

out the auction, it is inevitable that the sensitive information
(i.e., each particular bidder’s bid) is revealed to the auctioneer.
To prevent this threat, we introduce a new entity, called agent,
who can tell the auctioneer the minimal amount of information
necessary for deciding the winners and the charges, i.e., the
bidder grouping and the smallest bid in each group. Thus,
although the auctioneer knows the smallest bid in a group,
she does not know the bidder, to which the bid belongs.
Therefore, the bidder, having the smallest bid in a group, is
hidden among her company group members. However, the
information should not be fully accessed by the agent to
prevent sensitive information leakage. So, we apply an end-
to-end asymmetric encryption scheme between the auctioneer
and the bidders, so that the agent cannot decrypt the messages
from the bidders.

(2) Bid Encryption
Since the auctioneer need to find the smallest bid in each

bidder group without knowing the exact value of bids from the
group members, we need a method to map the bids from the
bidding space to another value space, while maintaining the
comparison relation. We integrate the idea of order preserving
encryption to enable such a mapping. However, the order
preserving encryption cannot be processed by the bidders, in
case that they may decrypt the bids of other bidders. So, we
let the agent do the order preserving encryption before the
auction. When bidding, the bidders contact the agent to get
the mapped bids, using oblivious transfer, which prevents the
agent from knowing which bids are chosen. Later, the agent
stores collected end-to-end encrypted bidding messages, while
only the auctioneer can decrypt the bidding messages, extract
mapped bids, and find the smallest bid in the mapping space.
The auctioneer can consult the agent to get the original value
of the smallest mapped bid.

(3) Outcome Verification
Different from traditional auctions, it is not easy for bidders

to verify the correctness of auction outcome in a privacy
preserving auction. We adopt the idea of Secure Multi-party
Computation (SMC) [31] to enable the bidders from the same
group to find the smallest bid, and thus verify the auction
outcome.

B. Design Details

SPRING works in four steps shown as follows.

Step 1: Initialization
Before running the spectrum auction, SPRING setups nec-

essary system parameters. SPRING defines a set of possible
bid values as

β = {β1, β2, . . . , βz},

in which
β1 < β2 < . . . < βz,

and requires that each bidder i’s bid bi ∈ β.
The agent maps each bid value βx ∈ β to γx, while

maintaining the order, using the order preserving encryption
scheme OPES.

γx = OPES(βx),

s.t., γ1 < γ2 < . . . < γz.

Here, γ = {γ1, γ2, . . . , γz} is a set of secrets of the agent.
The agent also initializes the parameters of oblivious transfer
by determining the large prime q and two generators of cyclic
group Gq: (g, h).

SPRING employs an asymmetric key encryption scheme.
Suppose that the auctioneer holds a private key Keypriv , and
the matching public key Keypub is distributed to the bidders.
SPRING also employs a digital signature scheme, in which
each bidder i ∈ N holds a signing key ski, and publishes the
verification key pki.

Step 2: Bidding
Each bidder i ∈ N chooses a bid bi = βx ∈ β according

to her per channel valuation vi, and then interacts with the
agent through a 1-out-of-z oblivious transfer to receive b̂i =
γx, which is the order-preserving-encrypted value of βx, as
follows.

• Bidder i randomly picks r ∈ Zq , and sends

y = grhx

to the agent.
• The agent replies the bidder i with c = {c1, c2, . . . , cz},

in which

cl =
(
gkl , γl

(
y/hl

)kl
)
, kl ∈R Zq, 1 ≤ l ≤ z.

• The bidder picks cx = (d, f) from c, and computes

b̂i =
f

dr
=

γx (y/h
x)

kx

(gkx)
r =

γx (g
rhx/hx)

kx

(gkx)
r = γx.



Upon receiving b̂i, bidder i randomly picks a nonce ri, and
encrypts

[
b̂i, ri

]
using the auctioneer’s public key Keypub:

ei = Encrypt
([

b̂i, ri

]
,Keypub

)
,

where Encrypt() is the asymmetric encryption function. The
bidder i then submits the following tuple as a bid to the agent

[i, ei, Sign(ei, ski)] ,

where Sign() is the signing function.
For each tuple [i, ei, signi] received, the agent checks its

validity. If

V erify(ei, signi, pki) = True,

where V erify() is the signature verification function, the tuple
is accepted. Otherwise, it is discarded.

Group ID Bidder ID Encrypted Bid

1 11,12,. . .,1|g1| e1,1, e1,2, . . . , e1,|g1|
2 21,22,. . ., 2|g2| e2,1, e2,2, . . . , e2,|g2|
...

...
...

m m1, m2,. . ., m|gm| em,1, em,2, . . . , em,|gm|

TABLE I
INFORMATION PUBLISHED BY THE AGENT.

After collecting all the bids, the agent groups the bidders in
a bid-independent way, as in the generic strategy-proof spec-
trum auction, and publishes the grouping result and encrypted
bids, as shown in Table I. To satisfy k-anonymity, we require
that each of the valid bidder groups must contain at least k+1
bidders. In the table, bidder ji is the ith member in group
gj , and ej,1, ej,2, . . . , ej,|gj | are encrypted bids from bidders
in group gj . Note that the order of ej,i’s is irrelevant to the
sequence of buyers in group gj , which means that there is no
one-to-one correspondence between ej,i and buyers ji in any
group.

Step 3: Opening
For each group gl ∈ G, the auctioneer decrypts the bids

using her private key to get
{
b̂l,1, b̂l,2, . . . , b̂l,|gl|

}
:[

b̂l,i, rl,i

]
= Decrypt (el,i,Keypriv) , ∀i ∈ gl,

where Decrypt() is the asymmetric decryption function.
Since b̂l,i’s are computed by the order preserving encryption

scheme, the smallest bid in group gl must also result in the
smallest order-preserving-encrypted bid in gl. Therefore, the
auctioneer can locate the smallest bid b̂min

l in group gl by
finding the smallest one in

{
b̂l,1, b̂l,2, . . . , b̂l,|gl|

}
:

b̂min
l = min

{
b̂l,i|i ∈ gl

}
.

Then, the auctioneer resorts to the agent to fetch the original
value bmin

l of b̂min
l :

bmin
l = OPES−1(b̂min

l ),

where OPES−1() is the reverse function of the order pre-
serving encryption scheme.

The auctioneer now can calculate the group bid of gl:

σl = |gl| · bmin
l .

Similarly, the auctioneer calculates the group bids
σ1, σ2, . . . , σm and sorts them in non-increasing order:

σ′
1 ≥ σ′

2 ≥ . . . ≥ σ′
m.

Same as the generic strategy-proof spectrum auction, the
auction winners W are the bidders from first w = min(c,m)
groups:

W =

w∪
j=1

g′j ,

where g′j is the group with jth highest group bid. In order
to achieve strategy-proofness, each winning bidder group is
charged with the group bid σ′

w+1 of the (w+1)st group. (We
set σ′

w+1 = 0, if the (w+1)st group does not exist.) The charge
is shared evenly among all group members, hence each buyer
i in winning group gl is charged with

pi = σ′
w+1/|gl|.

Besides the set of winners W and their charges (pi)i∈W, the
auctioneer also announces σ′

w+1 for public verification.

Step 4: Verification
This is an optional step. Any bidder group gl, in which the

bidders doubt the outcome of the auction, can figure out the
smallest encrypted bid bmin = min {bi|i ∈ gl} in the group
by secure multi-party computation [31] without disclosing the
exact owner of it. Then the relation between bmin · |gl| and
σ′
w+1 can be verified.

Bidder i Agent Auctioneer

^
1( ) through i i zb OPES b OT=

Announce the outcome
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Fig. 2. Message flow.

Fig. 2 shows the message flow in SPRING.
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C. Illustrative Example

The following example may help to illustrate our mechanis-
m. Fig. 3 shows the interference range of seven buyers (A -
G). They are competing for one channel available. Assume
that β = {1, 2, 3, 4, 5} and the number beside each buyer
represents her bid. For clarity and simplicity, we ignore the
nonce r.

In the initialization, the agent applies OPES on β to get
γ = {3, 7, 10, 11, 15}. Seven buyers interact with the agent
through 1-out-of-5 oblivious transfer to receive their order-
preserving-encrypted bids: b̂A = 15, b̂B = 11, . . . , b̂G = 11.
Then they encrypt their corresponding b̂i with the auctioneer’s
public key Keypub and submit the result ei to the agent.

According to their conflicting conditions, seven buyers are
split into two groups: g1 = {A,D,G}, g2 = {B,C,E, F}.
The agent publishes the grouping result and encrypted bids
from each group for public verification.

Group ID Bidder ID Encrypted Bid

1 A, D, G eD, eA, eG
2 B, C, E, F eE , eF , eB , eC

TABLE II

The auctioneer decrypts the encrypted bids, and locates the
lowest bid in each group, which turns out to be b̂min

1 = 3,
b̂min
2 = 7. Then she resorts to the agent for the original values

of b̂min
1 and b̂min

2 , resulting in bmin
1 = 1, bmin

2 = 2. σ1 =
3× 1 = 3, σ2 = 4× 2 = 8, thus σ2 > σ1. Therefore, g2 is the
winning group and B, C, E, F each is charged with

pB,C,E,F = σ1/4 = 3/4.

D. Analysis

In this section, we show the strategy-proofness, k-
anonymity, as well as some other attractive properties of
SPRING.

The strategy-proofness of SPRING is inherited from the
generic strategy-proof spectrum auction. Therefore, we omit
the proof here and directly draw the following conclusion,
due to the limitations of space.

Theorem 2. SPRING is a strategy-proof spectrum auction
mechanism.

Next, we focus on the k-anonymity of SPRING.

Theorem 3. SPRING guarantees k-anonymity.

Proof: In SPRING, there are two central authorities,
including the auctioneer and the agent. The auctioneer knows

the smallest bid in each group, but does not know which bidder
it belongs to. The agent knows the encrypted bids, but has no
way to decrypt any of them. Since no other party can get even
more information than the auctioneer or the agent, we focus
on the privacy protection against the auctioneer and the agent
in this proof.

We distinguish the following two cases:

• Case 1: Bidder i belongs to a bidder group gl that is
satisfied with the outcome of the auction.

On one hand, the bidder i gets b̂i = γx through 1-out-
of-z oblivious transfer from the agent, who is unaware
of which γx has been accessed by the bidder. Bidder
i then sends the encrypted bid ei to the agent, who
cannot decrypt ei without knowing the private key of
the asymmetric encryption scheme. Although the agent
may know the smallest bid in group gl later when the
auctioneer consults her for calculating the group bid,
she still cannot infer the encrypted bid or the bidder, to
which the smallest bid corresponds. So, the agent can not
distinguish the smallest bid of group gl out of at least k
bidders.

On the other hand, although the auctioneer can decrypt
a ciphertext ei to get b̂i, she can only reversely map
the lowest b̂min to the original bid bmin for each group,
resorting to the agent. However, the auctioneer still cannot
infer the bidder, to which bmin belongs out of at least k
members in group gl, since the mapping between bidder’s
ID and the encrypted bid is hidden by the agent.

So, neither the agent, nor the auctioneer, can identify
any bidder’s bid with probability higher than 1/k.

• Case 2: Bidder i belongs to a bidder group gl, who wants
to verify the auction outcome. This case only diverges
from the previous one in the public verification step.
Therefore, we focus on the verification step here.

Since secure multi-party computation is applied to
find the smallest bmin

l in group gl, even a group member
cannot distinguish the owner of bmin

l from the rest k
bidders.

Therefore, we can conclude that SPRING guarantees k-
anonymity.

Besides strategy-proofness and k-anonymity, SPRING also
achieves the following nice properties.

• Public Verifiability: It enables bidder groups to verify the
outcome of the auction in public verification step.

• Non-Repudiation: No bidder can deny her bid after the
auction, since her signature is required to be verified when
the bidder submits her bid to the agent.

• Low Communication Overhead: When z is constant, the
communication overhead induced by SPRING is O(n),
where n is the number of bidders.

• Low Computation Overhead: The cryptographic tools
adopted by SPRING are light weighted schemes, which
only induce small amount of computation overhead. Our
evaluation results show that the computation overhead of
SPRING is rather low.



V. EXTENSION FOR MULTI-CHANNEL BIDS

In the previous section, we propose a strategy-proof and
privacy preserving auction mechanism, in which each bidder
bids for a single channel. In this section, we extend our
mechanism SPRING to adapt to the scenario, in which each
bidder can bid for multiple channels. Same as before, our
extension achieves both strategy-proofness and k-anonymity.

We now allow each bidder i ∈ N to demand di channels.
Let d⃗ denote the demand profile of the bidders:

d⃗ = (d1, d2, . . . , dn).

We assume that each bidder has identical valuation on different
channels. In the auction, each bidder i submits not only her
encrypted bid per channel vi, but also the number of channels
demanded di. We also assume that the bidders do not cheat
the demands for two reasons. On one hand, the auction only
allocates the channels to the bidders up to their demands. A
bidder’s demand definitely cannot be contented if she lowers
the demand. On the other hand, over demanding may result
in winning more than enough channels. Although the bidder
has no valuation on the extra channels, she still need to pay
for them.

To extend SPRING to adapt to multi-channel bids, we
introduce virtual group, and update bidding and opening steps
of SPRING. Note that the basic version of SPRING presented
in Section IV is a special case of the extended SPRING.

A. Virtual Group

In the extended SPRING, the bidders from the same group
may demand different numbers of channels. To represent the
various demands in a bidder group, we introduce the concept
of virtual group.

Given a bidder group gl ⊆ N, let d̂l be the maximum
channel demand in group gl:

d̂l = max{di|i ∈ gl}.

A virtual group g̃jl ⊆ gl is the set of bidders, who demand at
least j channels, in bidder group gl:

g̃jl = {i|i ∈ gl ∧ di ≥ j}, 1 ≤ j ≤ d̂l.

Algorithm 2 Virtual Group Generation— vgrouping(gl)

Input: Bidder group gl, demand profile d⃗.
Output: Set of virtual groups Gl.

1: Gl ← ∅; d̂l ← 0;
2: for all i ∈ gl do
3: d̂l ← max(d̂l, di);
4: end for
5: for j ← 1, . . . , d̂l do
6: g̃jl ← {i|i ∈ gl ∧ di ≥ j};
7: Gl ← Gl ∪ {g̃jl };
8: end for

Return Gl;

Algorithm 2 shows the pseudo-code of virtual group gener-
ation. We find the maximum channel demand d̂l in group gl
(lines 2-4), and iteratively pick the bidders demanding at least
j channels to form virtual group g̃jl , which is added into the
set Gl of virtual groups generated from group gl (lines 5-8).
Fig. 4 may help to better illustrate the idea of virtual group.
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Fig. 4. A toy example.

In the extended SPRING, an original bidder group gl is
replaced by d̂l virtual groups. The group bid σ̃j

l of virtual
group g̃jl is defined as

σ̃j
l =

∣∣∣g̃jl ∣∣∣ ·min{bi|i ∈ gl}.

Note that the smallest bid in group gl, instead of virtual group
g̃jl , is used to calculate the group bids of virtual groups, in
order to guarantee k-anonymity.

B. Extension Details

The procedures of initialization and verification are same as
those in the basic SPRING. Due to limitations of space, we
focus on the differences in the steps of bidding and opening.

Step 1: Initialization
Please refer to Section IV-B for details.

Step 2: Bidding
In order to include the information of channel demands, the

tuple submitted by bidder i to the agent must has one more
element di:

[i, ei, di, Sign(ei||di, ski)] ,

where || is a concatenation operation.
The agent collects the bidding messages, verifies the va-

lidity, and publishes the grouping results and encrypted bids.
This time, beside each bidder’s ID, there is a corresponding
channel demand, as shown in Table III.

Group ID Bidder ID & Demand Encrypted Bid

1 [11, d11 ],. . .,
[
1|g1|, d|g1|

]
e1,1, . . . , e1,|g1|

2 [21, d21 ],. . .,
[
2|g2|, d|g2|

]
e2,1, . . . , e2,|g2|

...
...

...
m [m1, dm1 ],. . .,

[
m|gm|, d|gm|

]
em,1, . . . , em,|gm|

TABLE III
INFORMATION PUBLISHED BY THE AGENT.

Step 3: Opening
The auctioneer is informed the information of grouping and

encrypted bids from Table III published by the agent, and
decrypts the encrypted bids to get

{
b̂l,1, b̂l,2, . . . , b̂l,|gl|

}
for



each gl ∈ G. Resorting to the agent, the auctioneer retrieves
the original value of the smallest bid bmin

l of each gl ∈ G.
Then, the auctioneer invokes Algorithm 2 to form the virtual

groups:
G̃ =

∪
gl∈G

Gl.

For each virtual group g̃jl ∈ G̃, the auctioneer calculates the
virtual group bid:

σ̃j
l =

∣∣∣g̃jl ∣∣∣ · bmin
l .

Next, the auctioneer sorts all the virtual groups according
to their virtual group bids in non-increasing order:

σ̃′′
1 ≥ σ̃′′

2 ≥ . . . ≥ σ̃′′∑
gl∈G d̂l

.

The auction winners W′ are the bidders in the first w′ =
min(c,

∑
gl∈G d̂l) virtual groups:

W′ =

w′∪
j=1

g′′j ,

where g′′j is the jth highest bid virtual group. The number of
channels each winner i ∈W′ wins is

ai =
∑

1≤j≤w′∧i∈g′′
j

1.

Since a bidder may be in multiple virtual groups, the
previous method of charging can no longer be applied. We
present a new charging method as shown by Algorithm 3.

Algorithm 3 Charging Algorithm— charging(i)

Input: Set of virtual groups G̃ and corresponding virtual
group bids

(
σ̃j
l

)
g̃j
l ∈G̃

, winner i ∈ gl.

Output: Charge pi.
1: G̃′ ← G̃ \

{
g̃jl |1 ≤ j ≤ d̂l

}
;

2: Sort the virtual groups in G̃′ by virtual group bid in non-
increasing order σ△

1 ≥ σ△
2 ≥ . . . ≥ σ△∑

gk∈G∧i/∈gk
d̂k

;

3: pi ← 0;
4: for h← 1, . . . , ai do
5: t← min

(
c− h+ 1,

∑
gk∈G∧i/∈gk

d̂k

)
;

6: if t = c− h+ 1 then
7: pi ← pi + σ△

t /|g̃hl |;
8: end if
9: end for

Return pi;

In Algorithm 3, we remove all the virtual groups generated
from the bidder group, to which the winning bidder i belongs
to, and sort the rest virtual groups by virtual group bids in non-
increasing order (lines 1-2). Then, for each channel h won by
bidder i, we locate the virtual group in the sorted list, after
which wins a channel, bidder i cannot win channel h. If such
a virtual group does not exist, then channel h is free of charge

for bidder i. Otherwise, the located virtual group’s bid is used
to calculate the charge for bidder i on channel h. The charge
on channel h is set to σ△

t /|g̃hl |. The total charge for bidder i
is the sum of charges on all the channels won (lines 3-9).

Finally, the auctioneer releases the set of winners W′, the
channel allocation profile a⃗, and the charge profile p⃗.

Step 4: Verification
Please refer to Section IV-B for details.

C. Analysis

Again, we show that SPRING satisfies both strategy-
proofness and k-anonymity, in the case of multi-channel bids.

Theorem 4. SPRING is a strategy-proof spectrum auction
mechanism, despite of multi-channel bids.

Proof: We consider an arbitrary bidder i ∈ gl in the
auction. Her utility is

ui = viai − pi

= viai −
ai∑

h=1

phi ,

where

phi =

{
σ△
c−h+1/|g̃hl | if

∑
gk∈G∧i/∈gk

d̂k ≥ c− h+ 1,
0 otherwise.

Since phi ’s are independent of the bidder i’s bid bi, the utility
is a function on the number of allocated channels ai.

Suppose ai is the number of channels won by bidder i,
when she bids truthfully, i.e., bi = vi. We then distinguish
two cases:

• The bidder i wins more channels (i.e., a′i > ai) by
bidding another value b′i ̸= bi. This happens only when
the bidder i holds the smallest bid in group gl when
bidding truthfully, and wins more channels by raising her
bid (i.e., b′i > bi) to increase the virtual groups’ bids.
Let h(ai < h ≤ a′i) be the hth additional channel won
by the bidder i. Then phi > 0, because otherwise the
bidder would win this channel, when bidding truthfully.
The utility got on this channel is

uh
i = vi − phi

= vi − σ△
c−h+1/|g̃hl |

= vi − b′min
l |g̃hl |/|g̃hl |

= vi − b′min
l

≤ vi − bi

= 0.

Therefore, getting any more channel does not increase
the bidder i’s utility.

• The bidder i wins less channels (i.e., a′i < ai) by bidding
another value b′i ̸= bi. Since the charging algorithm
guarantees that

phi ≤ bi, ∀1 ≤ h ≤ ai,



the utility got on the hth channel is always non-negative

uh
i = vi − phi ≥ vi − bi = 0.

Therefore, losing any channel cannot benefit bidder i.
Consequently, bidding truthfully is every bidder’s dominant
strategy, and thus SPRING satisfies incentive-compatibility.

Furthermore, since any bidder who loses in the auction
is free of charge, and also since any winner is charged on
each channel with price not exceeding her bid, SPRING also
satisfies individual-rationality.

Therefore, we can conclude that SPRING is a strategy-proof
spectrum auction mechanism, despite of multi-channel bids.

Since SPRING does not reveal any more information to any
party, in the case of multi-channel bids, we have the following
theorem.

Theorem 5. SPRING guarantees k-anonymity, despite of
multi-channel bids.

Besides strategy-proofness and k-anonymity, SPRING for
multi-channel bids also has good properties, including public
verifiability, non-repudiation, and low communication and
computation overhead. Due to limitations of space, we do not
illustrate the details again.

VI. EVALUATION

We have implemented SPRING and evaluated its perfor-
mance on efficiency of the spectrum auction and overheads
introduced. In this section, we present our evaluation results.

A. Efficiency

In the evaluation, we measure two metrics on spectrum allo-
cation efficiency, including channel utilization and satisfaction
ratio.

• Channel utilization: Channel utilization is the average
number of radios/bidders allocated to each channel.

• Satisfaction ratio: Satisfaction ratio is the percentage of
bidders, who get at least one channel in the auction.

We vary the number of bidders from 50 to 500, the number
of channels from 5 to 50, and the terrain area from 500
meters × 500 meters to 2000 meters × 2000 meters. In each
set of evaluations, we vary a factor among bidder number,
channel number, and terrain area, and fix the other two. The
default/fixed value for bidder number, channel number, and
terrain area, is 200, 20, and 2000 meters × 2000 meters,
respectively. The bidders are randomly distributed in the
terrain area, and the interference range is set to 425 meters.
In the case of multi-channel demand, we randomly generate
the demand of each bidder from {1, 2, 3, 4, 5}.

1) Results on Channel Utilization: Fig. 5 shows the evalu-
ation results of SPRING on channel utilization, when bidders
can bid for single channel (SPRING-SINGLE) and multiple
channels (SPRING-MULTIPLE).

Fig. 5(a) shows the channel utilizations achieved by
SPRING, when we fix the number of channels and the terrain
area, and vary the number of bidders. Here we observe that,

when the number of buyers is less than 200, the channel
utilization of SPRING-SINGLE is lower than that of SPRING-
MULTIPLE. This is because the channels are over supplied.
When we allow the bidders to demand multiple channels, the
channels can be better exploited. However, with the growth of
the number of bidders, especially when the number of bidders
is larger or equal to 200, the channels supplied become more
and more scarce compared with the number of bidders, and
the competition among the bidders become more and more
intense. The introduction of virtual group makes the average
(virtual) group size smaller than the single-channel bid case,
and thus results in lower channel utilizations.

Fig. 5(b) shows the channel utilizations achieved by
SPRING, when varying the number of channels and fixing the
other two factors. When the number of channels is no more
than 20, SPRING-MULTIPLE has lower channel utilization
than SPRING-SINGLE, due to smaller average (virtual) group
size. However, with more than 20 channels supplied, SPRING-
MULTIPLE has higher channel utilization than SPRING-
SINGLE, due to higher demands from the bidders.

Fig. 5(c) shows the case, in which we vary the terrain
area and fix the other two factors. When the terrain area is
500 meters × 500 meters or 1000 meters × 1000 meters,
most of the (virtual) groups contain only 1 or 2 bidders, and
thus the difference between SPRING-SINGLE and SPRING-
MULTIPLE is very small. However, with the increment of
terrain area, the difference on average size of (virtual) groups
become larger and larger between SPRING-SINGLE and
SPRING-MULTIPLE, and thus result in the channel utilization
of SPRING-MULTIPLE lower than that of SPRING-SINGLE.

2) Results on Satisfaction Ratio: Fig. 6 shows the evalua-
tion results of SPRING on satisfaction ratio.

Fig. 6(a) shows the satisfaction ratio achieved by SPRING,
when varying the number of bidders and fixing the other
two factors. We can see that when the number of bidders
is less than 200, SPRING-SINGLE’s satisfaction ratio ap-
proximates to 1, meaning that almost every bidder gets a
channel in the auction. With the increasing number of bidders,
satisfaction ratios of both SPRING-SINGLE and SPRING-
MULTIPLE decrease as a result of more interferences.
SPRING-MULTIPLE always achieves lower satisfaction ratio
than SPRING-SINGLE, because SPRING-MULTIPLE allows
bidders to win multiple channels, leading to the fact that more
bidders cannot even obtain a single channel at all.

Fig. 6(b) shows the case, in which we vary the number
of channels and fix the other two factors. We can see that
20 channels satisfy almost all buyers in case of SPRING-
SINGLE. We also find that the satisfaction radio of SPRING-
SINGLE with 10 channels is almost equal to that of SPRING-
MULTIPLE with 30 channels. This is because the demands
of bidders in SPRING-MULTIPLE is almost triple of that in
SPRING-SINGLE, given the same number of bidders.

Fig. 6(c) shows the case, in which we vary the terrain area
and fix the other two factors. Again, we can see that SPRING-
SINGLE always has higher satisfaction radio than SPRING-
MULTIPLE in the evaluation.
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Fig. 5. Channel utilizations of SPRING, when bidders can bid for single and multiple channels.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

Sa
tis

fa
ct

io
n 

R
at

io

Number of Bidders

SPRING-SINGLE
SPRING-MULTIPLE

(a) Effect of number of buyers.

 0

 0.5

 1

 0  10  20  30  40  50

Sa
tis

fa
ct

io
n 

R
at

io

Number of Channels

SPRING-SINGLE
SPRING-MULTIPLE

(b) Effect of number of channels.

 0

 0.5

 1

2000×20001500×15001000×1000500×500

Sa
tis

fa
ct

io
n 

R
at

io

Terrain Area (meter×meter)

SPRING-SINGLE
SPRING-MULTIPLE

(c) Effect of terrain area.

Fig. 6. Satisfaction ratios of SPRING, when bidders can bid for single and multiple channels.
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Fig. 7. Computation and communication overheads induced by SPRING.

SPRING integrates cryptographic tools to protect bidders’
privacy. A practical privacy preserving scheme should have
low overheads, including computation and communication
overheads, that can be afforded by wireless devices.

We implement SPRING using JavaSE-1.7 with packages
java.security and javax.crypto, and use RSA with modulus
of 1024 bits to do encryption/decryption and signature sign-
ing/verfication. Bidders can choose one out of 1000 predefined
bids in the auction, and get 128 bits of order-preserving-

encrypted value through oblivious transfer with the agent. The
running environment is Intel(R) Core(TM) i7 2.67GHz and
Windows 7.

Fig. 7(a) shows the computation overhead on the agent, the
auctioneer, and each bidder, as a function of the number of
bidders. We can see that the computation overhead is mainly
on agent, because the agent is responsible for oblivious transfer
and bidder grouping. The computation overhead of agent is
about 0.515 seconds for 50 bidder, and about 6.520 seconds for
500 bidders. The auctioneer has lower computation overhead
than the agent. The computation overhead on each bidder is
very small.

Fig. 7(b) shows the overall communication overhead in-
duced by SPRING. The communication overhead induced is
mainly from the oblivious transfer. In the oblivious transfer,
the agent needs to transfer 128 bits for each of the 100 possible
bids to each bidder.

Observing the computation and communication overheads
shown above, we can conclude that the overheads induced by
SPRING is small enough to be applied on wireless devices.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented the first strategy-proof and
privacy preserving auction mechanism for spectrum redistri-
bution, namely SPRING. SPRING is good for both single-
channel request and multi-channel request auctions. For both
cases, we have theoretically proven the properties of SPRING.
We have implemented SPRING and extensively evaluated
its performance. Evaluation results have demonstrated that
SPRING achieves good efficiency on spectrum redistribution,
in terms of channel utilization and satisfaction radio, while
inducing only a small amount of computation and communi-
cation overhead.



As for future work, one possible direction is to design a
strategy-proof and privacy preserving double spectrum auc-
tion, which protects the privacy of both bidders and sellers.
Another possible direction is to provide privacy preservation
for combinatorial spectrum auctions.
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