
QLEC: A Machine-Learning-Based Energy-Efficient Clustering
Algorithm to Prolong Network Lifespan for IoT in

High-Dimensional Space

Ke Li
†

Shanghai Jiao Tong University

Shanghai, China

like19971019@sjtu.edu.cn

Haowei Huang
†

Shanghai Jiao Tong University

Shanghai, China

H1270927224@sjtu.edu.cn

Xiaofeng Gao
∗†

Shanghai Jiao Tong University

Shanghai, China

gao-xf@cs.sjtu.edu.cn

Fan Wu
†

Shanghai Jiao Tong University

Shanghai, China

fwu@cs.sjtu.edu.cn

Guihai Chen
†

Shanghai Jiao Tong University

Shanghai, China

gchen@cs.sjtu.edu.cn

ABSTRACT
With the emergence of Internet of Things (IoT), many battery-

operated sensors are deployed in different applications to collect,

process, and analyze useful information. In these applications, sen-

sors are often grouped into different clusters to support higher

scalability and better data aggregation. Clustering based on en-

ergy distribution among nodes can reduce energy consumption and

prolong the network lifespan. In our paper, we propose a machine-

learning-based energy-efficient clustering algorithm named QLEC

to select cluster heads in high-dimensional space and help non-

cluster-head nodes route packets. QLEC first selects cluster heads

based on their residual energy through successive rounds. Besides,

we prove the optimal cluster number in a high-dimensional wire-

less network and adopt it in our QLEC algorithm. Furthermore,

Q-learning method is utilized to maximize residual energy of the

network while routing packets from sensors to the base station (BS).

The energy-efficient clustering problem in high dimensional space

can be formed as an NP-Complete problem and QLEC is proved to

solve it in the running time O(kX ), where k is the cluster number

and X is the number of updates Q-learning needs to converge. Ex-

tensive simulations and experiments based on a large-scale dataset

show that the proposed scheme outperforms a newly proposed

FCM-based algorithm and k-means clustering in terms of network

lifespan, packet delivery rate, and transmission latency. To the best

of our knowledge, this is the first work adopting Q-learning method

in clustering problems in high-dimensional space.
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1 INTRODUCTION
Internet of Things (IoT) is a new technology paradigm envisioned

as a global network of machines and devices capable of interacting

with each other. The main objective of the IoT is a common aspect

in our everyday life and depends on the behavior of users. There

are two technologies traditionally considered as key enablers for

the IoT paradigm: the radio-frequency identification (RFID) and

the wireless sensor networks (WSN). While RFID is well estab-

lished for low-cost identification and tracking [18], WSNs bring

IoT applications richer capabilities for both sensing and actuation.

IoT WSN systems have wide applications in air monitoring, water

monitoring, and forest monitoring [16].

However, WSNs suffer from many issues such as coverage, secu-

rity, energy-efficiency, localization, and etc. Among these issues,

energy-efficiency is the critical one, as sensor nodes are battery-

operated [9]. Moreover, it is established that most of energy is

consumed in the process of data transmission and reception. There-

fore, energy-saving routing protocols are required.

Energy-efficient protocols based on clustering can be designed

to adapt to various characteristics of wireless sensor networks, in

order to prolong the lifetime of the network. In WSN, nodes around

the base station (BS) will function as the relay for nodes which

https://doi.org/10.1145/3337821.3337926
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are far away from BS by using clustering algorithms to extend the

lifetime of sensors. A clustering technique transforms the global

communication into the local communication for saving energy.

Due to various energy conditions of different sensors, a tradi-

tional cluster-based routing protocol is not good enough to support

large wireless sensor networks. To make more progress, the hier-

archical cluster-based protocol is proposed. In this protocol, high

energy nodes are selected for processing and sending information,

while low energy nodes are used to sense and send data to the clus-

ter head (CH). In this way, energy is used more efficiently and the

lifespan of networks can be prolonged. Distributed Energy Efficient

Clustering (DEEC) is one of the cluster-based hierarchical protocol

used especially for multilevel communication in a heterogeneous

routing environment.

In DEEC protocol, the selection of cluster heads is based on the

ratio between the residual energy of each node and the average

energy of the network [11] so that high energy nodes are more

probable to be chosen as cluster heads than nodes with lower initial

and residual energy. Thus, DEEC protocol is more stable than other

heterogeneous protocols. However, existing works rarely focus on

the integration of DEEC clustering problems and the reinforcement

learning method which is designed to make choices according to

the reward function provided by the environment.

In most cases, people assume that wireless nodes are on a two-

dimensional plane. However, in many environment like mountain-

ous areas or underwater regions, node deployment is often not flat,

resulting in high dimensional space. Given that communication

between nodes in high dimensional space is more complicated and

restricted with the environment, clustering algorithms in high di-

mensional space tend to have higher time complexity. What is more,

many optimal algorithms in two-dimensional space can not directly

apply to high-dimensional situation. Therefore, it is challenging to

design an efficient clustering algorithm in high dimensional space.

In this paper, we focus on energy-efficient clustering in a 3-

dimensional wireless sensor network of IoT by adopting the Q-

learning method to make clustering choices for sensors. In order

to make energy consumption uniformly distributed to extend the

lifespan, we combine DEEC algorithm with Q-learning method and

design a novel clustering algorithm called QLEC algorithmwith two

phases: Cluster Head Selection and Data Transmission. In Cluster
Head Selection Phase, the improved DEEC algorithm is adopted

to select cluster heads for a network through successive rounds.

In Data Transmission Phase, non-cluster-head nodes dynamically

choose cluster heads for packet transmission and data fusion with

Q-learning method as to avoid direct communication with BS. This

problem is proved to be NP-Complete and QLEC can solve it in the

running time O(kX ), where k is the cluster number and X is the

number of updates Q-learning needs to converge. Our contributions

in this paper is summarized as follows.

• Since energy-efficiency is critical in wireless sensor net-

works, we provide some improvements to DEEC algorithm

to restrict the minimum energy that nodes need to be se-

lected as cluster heads. We also prove the optimal cluster

number in a 3-dimensional wireless network. To the best

of our knowledge, this is the first work demonstrating the

result.

• Based on the cluster heads already selected, we adopt Q-

learningmethod to help non-cluster-head nodes dynamically

choose the cluster head for packet transmission and data

aggregation. Our QLEC is proved to solve the problem with

an acceptable running time.

• Performance evaluation results validate the efficiency of our

algorithm, which outperforms a newly proposed FCM-based

algorithm and classick-means clustering in terms of network

lifespan, packet delivery rate, and transmission latency. We

also conduct experiments based on a large-scale dataset to

prove the efficiency of QLEC in the real world.

The rest of our paper is organized as follows. In Section 2, we

describe the related works in detail. Section 3 provides the improved

DEEC algorithm, the Q-learning method, and the description of

our problem. Motivated by the two algorithms above, we develop

our QLEC algorithm and analyze it theoretically in Section 4. The

performance evaluation is illustrated in Section 5 and finally we

come to an conclusion of the paper in Section 6.

2 RELATEDWORK
A number of different clustering methods are studied in previ-

ous works, such as partitioning clustering, hierarchical clustering,

graph-based clustering, and so on. Recent years, many energy-

efficient clustering methods based on routing protocols have been

proposed to save energy and prolong the network lifespan.

Low-Energy Adaptive Clustering Hierarchy (LEACH) is an self-

organizing, adaptive clustering protocol that uses randomization-

based probability to distribute the energy load equally to sensor

nodes in the network [5]. It is one of the most common and classic

energy-efficient protocols. However, LEACH does not take residual

energy of sensors into consideration and may lead to unevenly

distributed cluster heads. Hence, many improved algorithms have

been studied to solve these problems. Loscri et al. proposed a TL-

LEACH protocol in [10] to build a two-level hierarchy of cluster

heads in WSN. ED-LEACH protocol in [13] studied the Euclidean

distance between sensors to improve location of cluster heads in a

region. DEEC [11] is also based on LEACH protocol and designed

for heterogeneous wireless sensor networks. It uses residual energy

of nodes to choose the cluster heads and has been studied widely.

Fuzzy C-Means (FCM) clustering algorithm employs the concept

of maximizing residual energy when choosing cluster heads as

well. An FCM-based scheme in [14] divides the WSN into different

hierarchies based on the distance to the BS and a dynamic multi-hop

routing algorithm is designed. There are also some energy-efficient

clustering algorithms based on distributed approaches [15, 17].

Some recent works focus on using Q-learning method to design

routing protocols in WSN. QELAR algorithm in [6] took residual

energy of a node, as well as the energy distributed among its neigh-

bour nodes as the reward function to maximize residual energy of

the network when routing packets, following the Q-learning-based

approach. Basagni et al. proposed HyDRO in [2] to select routing

relay in a harvesting-aware underwater WSN using Q-learning.

However, with all the works about clustering algorithms and

Q-learning utilization in wireless networks introduced above, none

of them have adopted reinforcement learning algorithms to solve

the clustering problem in IoT WSN.
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3 SYSTEM MODEL AND PROBLEM
DESCRIPTION

In this section, we first give a brief introduction of Distributed

Energy Efficient Clustering (DEEC) algorithm with some improve-

ments. Then we demonstrate the proof of the optimal cluster num-

ber in 3-dimensional networks. Afterwards, we analyze the Q-

learning method. Finally, we describe the clustering problem in

high dimensional space in detail.

3.1 An Improved DEEC Algorithm
DEEC algorithm periodically selects cluster heads among all nodes

in a wireless network according to their residual energy to prolong

the lifetime of the network.

The algorithm can be divided into two phases. In the clustering

phase, the cluster heads are selected based on the ratio between

the energy of nodes and the average energy of the network. Each

cluster head represents a cluster for the network. Nodes that are

not selected as cluster heads dynamically choose the nearest cluster

head as its routing node and join in its cluster. Then for the stable

phase, nodes in a cluster send their sensing data to their cluster

head for data fusion. Finally, cluster heads directly transmit the ag-

gregated data to the base station. In DEEC, the energy consumption

of communication between sensor nodes and the sink is minimized

and nodes with more energy are more likely to be chosen as cluster

heads so that the chance for any sensor in the network to be out of

power is minimized as well.

Figure 1 depicts a simple 3-dimensional network structure after

implementing DEEC clustering algorithm. We assume N nodes are

randomly distributed in aM ×M ×M cube. The green node in the

center is the sink node while the black ones are the cluster heads

selected with DEEC algorithm. If non-cluster-head nodes like gray

ones intend to communicate with the sink node, they are supposed

to transmit data to their own cluster head for data fusion in the first

place. After that, the cluster head is responsible for the transmission

of all the data collected from its own cluster.

Figure 1: Network structure of clustering

As a result of the mobility of wireless sensor networks, DEEC

algorithm is conducted through successive rounds to dynamically

select nodes with the most residual energy to serve as cluster heads.

For a given network with N nodes bi (i = 1, 2, ...N ) randomly

distributed in a M × M × M cube, let ni denote the number of

rounds between bi being selected as a cluster head twice, and it is

referred to as the rotating epoch. Thus, pi = 1 / ni stands for the
average probability for bi to be a cluster head during ni rounds.

Energy is usually not distributed evenly among nodes in a net-

work. Thus, nodes with more energy should be given more proba-

bility to be chosen as cluster heads so that the energy consumption

of the network is reasonable. DEEC determines whether a node bi
can be selected as the cluster head according to its residual energy

at round r , which is denoted as Ei (r ). Then the probability pi is
given as

pi = popt [1 −
E(r ) − Ei (r )

E(r )
] = popt

Ei (r )

E(r )
(1)

where popt is the optimal probability and E(r ) is the average energy
of the network at round r . In order to reduce the time complexity

of the algorithm, we can give an estimate of E(r ) at round r with
the following equation:

E(r ) =
1

N
Einit ial (1 −

r

R
) (2)

where Einit ial is the initial energy of the whole network while

R denotes total rounds of the lifespan of the network. [7] gives a

detailed description of how to estimate R from energy consumption

model.

Equation (1) guarantees that the average number of cluster heads

in the network per round is equal to

N∑
i=1

pi =
N∑
i=1

popt
Ei (r )

E(r )
= Npopt = kopt

It is the optimal number of cluster heads we want to achieve.

With the probability of each node to be selected as a cluster head

at round r , a threshold T (bi ) is adopted to determine whether a

node can become a cluster head:

T (bi ) =


pi

1 − pi (r mod

1

pi
)

if bi ∈ C

0 otherwise

(3)

where C is the candidate nodes set consisting of nodes which are

qualified to be cluster heads at round r . If a node bi has not been
chosen as a cluster head in the recentni rounds, then it can be added
into the candidate nodes set C . At each round, if a node bi finds
that it is eligible to be a cluster head, it will compute its threshold

value T (bi ) and generate a random number between 0 and 1. If

the number is smaller than T (bi ), the node will be selected as the

cluster head.

The DEEC algorithm above is a randomized algorithm because

it produces a random number to decide whether a node can be a

cluster head so that it requires less time and space complexity to

solve the problem. However, it still has some problems so we would

like to propose some improvements.

Firstly, even though nodes with more energy are given a bigger

chance to become a cluster head in DEEC algorithm, nodes that

are about to be out of power are still possible to be chosen. It may

accelerate the process of running out of battery for these nodes,

shortening the lifespan of the network. Hence, we define a energy

threshold Ei,th to impose a restriction on the minimum energy of
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a node to be selected as the cluster head. The threshold should be

related to the initial energy of a node Ei,init ial and decrease with

the round r growing:

Ei,th (r ) = [1 − (
r

R
)2] × Ei,init ial (4)

With the energy threshold defined, nodes which are selected to

be cluster heads at round r with DEEC algorithm must have more

energy than the threshold, i.e. Ei (r ) > Ei,th (r ) to truly become the

cluster heads for this round. If a node possesses less energy than

needed, the improved DEEC algorithm will choose another node

up to the demand to replace it.

Another drawback of traditional DEEC algorithm is that the

number of cluster heads per round is uncertain. In reality, too many

clusters of a network is a waste of resources while too few will

aggravate the burden of the base station. It is very important to

set a certain cluster number for each round with specific cluster

coverage area to better allocate resources for the network. If we

choose k cluster heads per round, then we can define the cluster

coverage radius of each cluster dc as

dc =
3

√
3

4πk
M (5)

With the radius dc defined, each node which is selected as a

cluster head will immediately broadcast a message to the nodes in

its cluster coverage range indicating that it has been chosen as a

cluster head and how much energy it has. Every node receiving this

kind of message will compare the energy indicated in the message

with its own energy. If it has less energy than the cluster head,

it will exit the competition of being a cluster head in this round.

Otherwise, it will remain as the candidates to become a new cluster

head. This mechanism guarantees that no redundant nodes are

selected as cluster heads to save the overall energy resources of the

network.

3.2 Optimal Cluster Number in 3-D Wireless
Network

In the last section, we selected k cluster heads for each round to

determine the cluster coverage radius of each cluster. Many works

have been done to determine the optimal cluster number in 2-

dimensional wireless networks [4, 11]. However, there has not been

a paper explaining how to determine it in a 3-dimensional wireless

network, so we are going to prove it in this subsection. We assume

that each non-cluster-head node sends L bits data to the cluster

each round so that the total energy dissipated in the network during

a round is given by first-order radio model [4]:

Er = L(2NEelec + NEDA + kϵmpd
4

toBS + Nϵf sd
2

toCH ) (6)

where Eelec is the energy dissipated per bit to run the transmitter

or the receiver circuit, EDA is the data aggregation cost expended

in the cluster-heads, and ϵf s and ϵmp are two constants derived

from free space and multi-path fading channel models. ϵf s is the

free space constant and usually set as 10pJ/bit/m2
while ϵmp is

the multi-path constant and usually set as 0.0013pJ/bit/m4
. dtoBS

is the average distance between the cluster heads and the base

station (BS). According to [1], dtoBS can be approximated by the

average distance between the nodes and BS. dtoCH is the average

distance between the cluster nodes and the cluster head.

Lemma 1. The average distance dtoCH of nodes is determined by

the cluster number with d2toCH =
4π

5

(
3

4π
)
5

3

M2

k
2

3

.

Proof. The volume occupied by each cluster is approximately

M3 / k . It is assumed that cluster nodes are uniformly distributed

in the area of a ball centered on the cluster head so the density of

nodes in this area is ρ = (1 / (M3 / k)). Thus, the expected squared

distance from cluster nodes to the cluster head is given by

E{d2toCH } = ρ

∭
(x2 + y2 + z2)dxdydz

= ρ

∭
r4 sinϕdrdϕdθ

= ρ

∫ dc

0

r4dr

∫
2π

0

dθ

∫ π

0

sinϕdϕ

(7)

where E{·} denotes the expected value. Substitute dc and ρ into

Equation (7), we can get the average d2toCH . □

Theorem 1. The optimal cluster number in a 3-dimensional wire-

less network is kopt =
3

4π
(
8πNϵf s

15ϵmp
)
3

5

M
6

5

d
12

5

toBS

.

Proof. Substitute Lemma 1 into Equation (6) and set the deriva-

tive of Er with respect to k to 0, and then we can obtain the optimal

cluster number kopt . □

3.3 Q-Learning Algorithm
After selecting cluster heads with improved DEEC algorithm in

Subsection 3.1, then the rest nodes need to choose a cluster head

and start to transmit sensing data to the cluster head for data fusion.

Nodes choosing the same cluster headwill form one cluster together

with the cluster head. In our QLEC clustering algorithm, we adopt

the Q-learning method to determine which cluster a node belongs

to. Thus, we will briefly introduce the Q-learning algorithm below.

Q-learning algorithm is an off-policy temporal difference ap-

proach that can yield near-optimal policies for reinforcement learn-

ing without much computations and the underlying model [6]. The

reinforcement learning problem is meant to be a straightforward

framing of the problem of learning from interaction to achieve a

goal [12]. Figure 2 depicts agent-environment interaction in rein-

forcement learning. The learner or the decision-maker is called

the agent. Anything outside the agent is called the environment. It
continually interacts with the agent and responds to its actions.

Besides, the environment presents new states to the agent for the

next step. Meanwhile, the environment provides rewards, special

numerical values that the agent tries to maximize over time, to the

agent policy decision mechanism to determine the next action of

the agent.

In detail, the agent and environment interacts at a sequence of

discrete time t = 0, 1, 2, .... At each time step t , the environment

provides the agent with its current state St ∈ S . S is the set of all

the possible states that the environment may belong to. The agent

then takes action At ∈ A(St ) under some agent policy πt based on
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Figure 2: The agent-environment interaction in reinforce-
ment learning

the state St . A(St ) represents the set of actions the agent can take

in state St . Finally, the action At stimulates the environment to

generate a reward Rt back to the agent and transform itself into a

new state St+1. The agent adapts the policy on the basis of Rt and
receives the new state St+1, entering the next step.

A reinforcement learning task that satisfies the Markov prop-

erty is called a Markov Decision Process (MDP). If the state and

action spaces are finite, then it is called a finite Markov Decision
Process (finite MDP) [12].

A typical finite MDP is defined by its state-action pair. Given the

state s and the action a, the state-transition probability of going to

state s ′ from state s after taking action a is denoted as

Pass ′ = Pr {St+1 = s
′ |St = s,At = a} (8)

and the expected rewards for state–action–next-state triples,

Rass ′ = E{Rt |St = s,At = a, St+1 = s
′} (9)

With state-transition probability and expected rewards defined

in Equation (8) and Equation (9), we can then give the expression

of Rt after taking an action At from the state St at time t :

Rt =
∑

St+1∈S
PAtSt St+1

RAtSt St+1
(10)

We have presented above that the goal of the agent in reinforce-

ment learning is to maximize the accumulated rewards in the long

term by adjusting its agent policy. Now we have the sequence of

rewards Rt ,Rt+1,Rt+2, ... after taking action At . Thus we want to
maximize the expected return Gt , which is a defined as a specific

function of the reward sequence. Typically, the agent tries to select

action At so that the discounted reward it receives in the future is

maximized. In particular, the reward is defined as:

Gt = Rt + γRt+1 + γ
2Rt+2 + ... =

∞∑
k=0

γkRt+k

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate. γ is used

to balance the influence current actions and future ones have on

current values. Usually, recent actions have a greater impact on

current values than future ones do. The typical value of γ is within

[0.5, 0.99] [6].

There are value functions estimation in the framework of almost

all reinforcement learning algorithms. The function of statesV π (s)
is often used to estimate how good it is for the agent to be in a given

state s under the policy π . It is defined as the expected total return

in the future when starting in the state s and following the policy

π thereafter. For MDPs, we can formally define V π (s) as:

V π (s) = Eπ {Gt |St = s} = Eπ {
∞∑
k=0

γkRt+k |St = s} (11)

where Eπ {·} denotes the expected value under the policy π .
The same as V π (s) in Equation (11), the function of state-action

pairs can also be defined to estimate how good it is to take a given

action in a given state. The function is denoted Qπ (s,a) and rep-

resents the value of taking action a in state s under the policy

π :

Qπ (s,a) = Eπ {Gt |St = s,At = a}

= Eπ {
∞∑
k=0

γkRt+k |St = s,At = a}
(12)

Equation (11) is called the Bellman Equation for V π
[12]. With

definitions above, we can safely obtain the optimal value of a state
under the optimal policy by solving the equation:

V ∗(s) = max

π
V π (s)

= max

π
Eπ {Rt +

∞∑
k=1

γkRt+k |St = s}

= max

a
[Rt + γ

∑
St+1∈S

PaSt St+1V
∗(St+1)|St = s]

(13)

Combining Equation (13) with Equation (12), we can get

V ∗(s) = max

a
Q∗(s,a) (14)

where Q∗(s,a) is the special case of Qπ (s,a) where the policy π is

the optimal policy. Q-learning algorithm adopts Equation (14) to

obtain near-optimal policies without too much computations and

the underlying model [6].

Comparing Equation (13) and Equation (14), we can derive

Q∗(St ,At ) = Rt + γ
∑

St+1∈S
PAtSt St+1

V ∗(St+1)

= Rt + γ
∑

St+1∈S
PAtSt St+1

max

a
Q∗(St+1,a)

(15)

Equation (15) is used in our QLEC algorithm to update V values

for each node, which will be illustrated in detail in Section 4, so

that V can converge very fast. By adopting Q-learning algorithm

to solve the reinforcement learning problem, nodes are capable

of computing the Q values of all the actions based on their own

knowledge to update V values rather than take real actions to all

cluster heads to get the optimal value of a state.

3.4 Problem Description
Generally, given a 3-dimensional wireless network with N nodes

distributed in aM ×M ×M cube, the objective of energy-efficient

clustering problem is to divide the whole space into k subspaces

and maximize the average lifespan of nodes in each subspace. Since

the lifespan of each node depends extremely on its residual energy

Ei (r ) and its distance to the cluster head dtoCH , we design lifespan

determined function
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LS(Ei (r ),dtoCH ) = 1 / f (Ei (r ),dtoCH )

where f (Ei (r ),dtoCH ) is a weighted integration where Ei (r ) repre-
sents its chance to become a cluster head and dtoCH stands for its

energy consumption to transmit data at round r . f (Ei (r ),dtoCH ) is

the lifespan decrease function which we want to minimize in order

to prolong network lifespan.

Definition 1 (Energy-Efficient Clustering Problem (EECP)). Given

a 3-dimensional wireless network withN nodes distributed in aM×

M×M cube, nodes are divided into several clusters and have lifespan

decrease function f (Ei (r ),dtoCH ). Our objective is to minimize

the average f (Ei (r ),dtoCH ) in each subspace to prolong overall

network lifespan with a specific clustering algorithm.

In order to analyze EECP, we present the definition of k-means

clustering problem [8] in Definition 2, which is a classic NP-hard

problem.

Definition 2 (k-means Clustering Problem). Given a network,

divide it into k subspaces and minimize the average distance to the

nearest center dtoCH in each subspace.

Theorem 2. Energy-Efficient Clustering Problem (EECP) is NP-

Complete.

Proof. Firstly, we prove that EECP is NP. The decision version of

EECP can be easily defined when given some constants to constrain

the problem. It is obvious that given any instance of the decision

problem, in polynomial time we are able to decide whether it is

desirable. Thus, EECP is NP.

Secondly, we notice that k-means clustering problem, a classic

NP-hard problem [8], in Definition 2 can be reduced to EECP. Given

any instancep1 of k-means clustering problem,p1 can be reduced to
an instance p2 of EECP by assigning the parameters of function f ,
such that f (Ei (r ),dtoCH ) = dtoCH . Thus, if a solution p in k-means

clustering problem gets a reasonable result, its converted version is

also available in EECP and vice versa. Hence, EECP is also NP-hard.

It means that EECP is NP-Complete. □

Since EECP is NP-Complete, we can hardly find an optimal so-

lution in polynomial time unless NP = P. In this case, we propose

a machine-learning-based energy-efficient clustering algorithm

called QLEC to prolong network lifespan in high dimensional space.

The important notations adopted in this section and the follow-

ing sections are summarized in Table 1.

4 QLEC ALGORITHM
This section presents our QLEC clustering algorithm in detail. Given

a 3-dimensional wireless network with N modes bi (i = 1, 2, ...N ),

our QLEC algorithm is divided into Cluster Head Selection Phase
and Data Transmission Phase.

Cluster Head Selection Phase. Given a 3-dimensional wireless

network with N modes bi (i = 1, 2, ...N ), the improved DEEC

algorithm introduced in Subsection 3.1 selects cluster heads through

successive rounds. At each round r , only when the node bi has not
been selected as the cluster head in the nearest ni rounds and
possesses more energy than the energy threshold Ei,th (r ), can it be

eligible to be the candidates for cluster heads. Besides, the cluster

Table 1: Symbol Description

Symbol Description
N Total number of nodes in a 3-dimensional network

M Side length of the cube where nodes are distributed

pi Average probability for node bi to be a cluster head
ni Rotating epoch for bi , which is the reciprocal of pi
r ,R Current round and total rounds of QLEC algorithm

Ei (r ) Residual energy of bi at round r

E(r ) Average energy of the whole network at round r
T (bi ) Threshold to determine whether bi can be the clus-

ter head

Ei,th (r ) Energy threshold for bi to be the cluster head at

round r
k,dc Number of cluster head and cluster coverage radius

H Set of cluster heads hj (j = 1, 2, ...k)
S(bi ) State space of Q-learning method for node bi
A(bi ) Action space of Q-learning method for node bi
Rt Reward function produced by environment to the

agent

P
aj
bihj
,R

aj
bihj

Packet successful transmission rate and reward

function from nodebi to cluster headhj after taking
action aj

xbi ,xhj Equal to the residual energy of bi and hj
y(bi ,hj ) Energy needed to transmit a packet from bi to hj

based on the distance d between them

γ Discount parameter to balance the influence of cur-

rent and future actions on current values

coverage radius dc guarantees that the number of selected cluster

heads k is very close to the optimal cluster number kopt proved in

Subsection 3.2.

Data Transmission Phase. With k cluster heads hj (j = 1, 2, ...k)
already been selected at each round, non-cluster-head nodes choose

a cluster head to transmit sensing data based on Q-learning algo-

rithm illustrated in Subsection 3.3 when they want to forward a

packet. At the end of each round, cluster heads perform data fusion

and send the processed data to the base station (BS).

In this section, we will give the description of our two-phase

QLEC algorithm in detail.

4.1 Cluster Head Selection Phase
Our QLEC clustering algorithm is demonstrated in Algorithm 1. In

our algorithm, we firstly compute the optimal cluster number kopt
of a given network we try to achieve from Theorem 1. Substituting

kopt into Equation (5), we can derive the cluster coverage radius dc
which will be used to reduce redundant cluster heads later in the

algorithm. In the Cluster Head Selection Phase, the improved DEEC

algorithm starts selecting cluster heads through successive rounds

until it reaches a setting number of total rounds of the lifespan of

the network R in Line 4-16. In each round r , the average energy of

the whole network is estimated from Equation (2) and the set of all

cluster heads is initialized to ∅. popt is the expected probability of

a node to be selected as the cluster head and can be given by kopt .
With parameters calculated above, Algorithm 2 and Algorithm 3
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work together to form the final set of cluster heads H for round r
in Line 8-9.

Afterwards, the algorithm goes to the Data Transmission Phase,
where non-cluster-head nodes dynamically choose cluster heads to

send data to for data fusion if they possess a packet taking the base

station (BS) hBS as the destination in Line 10-12. Finally, the cluster

heads perform data fusion with all the data they have received in

this round to compress the data size and lower the transmission

energy consumption. After the cluster heads send processed data

directly to the base station, they update their own V values in Line

15 and the system goes to the next round.

Algorithm 1: QLEC Algorithm

1 Compute the optimal cluster number kopt of the network

according to Theorem 1;

2 Substitute kopt into Equation (5) and calculate the cluster

coverage radius dc of each cluster;

3 r = 0;

4 while r < R do
5 Compute E(r ) of the whole network according to

Equation (2);

6 H = ∅; /* Initialize the set */

7 popt = kopt / N ;

8 Call Function Cluster-Head-Selection(H );

9 Call Function Reduce-Redundancy(H );

10 while it is still in round r do
11 foreach bi ∈ B ∩ bi < H do
12 if bi has a packet to transmit to BS then Call

Function Send-Data(bi );

13 foreach hj ∈ H do
14 Transmit processed data directly to BS;

15 V ∗(hj ) = Q
∗(hj ,aBS ) =

Rt + γ (P
aBS
hjhBS

V ∗(hBS ) + P
aBS
hjhj

V ∗(hj ))

16 r = r + 1; /* Go to next round */

17 return;

The operations for selecting k cluster heads hj (j = 1, 2, ...k) are
implemented in Algorithm 2. For each node in the wireless network,

we compute the probability and energy threshold of it to be selected

as the cluster head in Line 2-3. At each round r , only when the node

bi has not been selected as the cluster head in the nearest ni rounds
and possesses more energy than the energy threshold Ei,th (r ), can
it be eligible to be the candidates for cluster heads.

If a node is eligible to be the cluster head, it will calculate a

threshold T (bi ) and compare it with a randomly generated number

z ∈ [0, 1]. z < T (bi ) makes bi become one cluster head of the

network inH and send aHELLOmessage to all nodes in the range of

its cluster coverage radius dc , indicating that it has been selected as

a cluster head and how much energy it possesses. This mechanism

guarantees that the number of selected cluster heads k is very close

to the optimal cluster number kopt proved in Subsection 3.2.

When a node which has been selected as the cluster head hears

such a HELLO message, it realizes immediately that there is another

Algorithm 2: Cluster-Head-Selection(H )

1 foreach bi ∈ B do
2 pi = poptEi (r ) / E(r );

3 Compute Ei,th (r ) according to Equation (4);

4 if bi has not been selected as the cluster head for the last
ni rounds ∩ Ei (r ) > Ei,th (r ) then

5 Compute T (bi ) according to Equation (3);

6 Generate a random number z ∈ [0, 1];

7 if z < T (bi ) then
8 bi becomes one cluster head in H ;

9 Send a HELLO message to all nodes in the range

of dc from bi with energy information

EHELLO = Ei (r );

10 return;

cluster head in the range of dc from it. As a result, it compares its

own eneygy with the energy of its neighbour cluster head, indicated

in the HELLO message. If it possess less energy that its neighbour

cluster head, it will quit the competition of being a cluster head. Oth-

erwise, it remains inH to be a cluster head. This method guarantees

that there are no redundant cluster heads in the network and nodes

with more energy will be selected as cluster heads, prolonging the

lifespan of the network.

Algorithm 3: Reduce-Redundancy(H )

1 foreach bi ∈ H do
2 if bi receives a HELLO message then
3 Get the energy information EHELLO from the

message;

4 if Ei (r ) < EHELLO ∩ bi ∈ H then Remove bi from

H ;

5 return;

4.2 Data Transmission Phase
We now have a wireless network with k cluster heads selected. In

the Data Transmission Phase, non-cluster-head nodes dynamically

choose cluster heads as a relay for forwarding a packet to BS. The

concept of how to choose a better cluster head is basically based

on the Q-learning method introduced in Subsection 3.3. At the

beginning, all the V values and Q values are initialized to 0. For

each non-cluster-head node bi , the state space S(bi ) includes itself,
the base station, and all the cluster heads, i.e. S(bi ) = {bi ,hBS } ∪H .

H represents all the possible cluster heads it may choose while bi
stands for the unsuccessful packet transmission and state transition.

Besides, bi can also directly communicate with the base station hBS .
Node bi makes clustering choices based on the set of possible

actions it can take from the state bi , denoted asA(bi ). Each action aj
in set A(bi ) means forwarding the packet to cluster head hj . P

aj
bihj

is the packet successful transmission rate from node bi to cluster

head hj after taking action aj . Poor communication environment
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or limited storage caches of cluster heads may lead to packet loss so

P
aj
bihj
= 1 does not always hold. Similar to the mechanism adopted

by TCP/IP protocol, an ACK message will be delivered from the

cluster head hj to the node bi indicating that the packet sent by bi
is successfully received and processed by hj . Hence, the link proba-

bility P
aj
bihj

can be estimated by the ratio between the successfully

transmitted packets and all the packets sent by bj recently [2]. It

is obvious that P
aj
bibi

= 1 − P
aj
bihj

. Besides, γ is the discount rate
set between [0, 1] to balance the impact current actions and future

ones have on current V and Q values.

Next, we analyze the reward function Rt produced by the en-
vironment when the agent takes an action aj in state bi , which
is critical to our QLEC algorithm. Derived from Equation (10), Rt
can be calculated as follows when node bi tries to take action aj
sending the packet to cluster head hj :

Rt = P
aj
bihj

R
aj
bihj
+ P

aj
bibi

R
aj
bibi (16)

where R
aj
bihj

and R
aj
bibi

stand for the reward function for taking

action aj in state bi and ending in state hj and bi respectively.

Specifically, R
aj
bihj

is the reward of transmitting the packet success-

fully while R
aj
bibi

is the reward of unsuccessful packet transmission.

The reward function R
aj
bihj

for state-action pair (bi ,aj ) in our

QLEC algorithm is defined as:

R
aj
bihj
= −д + α1[x(bi ) + x(hj )] − α2y(bi ,hj ) (17)

where −д is a constant punishment when a node tries to send a

packet because any transmission consumes energy of the network.

x(bi ) and x(hj ) are equal to the residual energy of node bi and
cluster head hj at round r . In this way, non-cluster-head nodes

tend to send packets to the cluster head with more residual energy

because it can give more positive rewards to the agent. y(bi ,hj )
represents energy needed to transmit the packet from bi to hj based
on the distance between them. We adopt the communication energy
consumption model in [4] to estimate the energy consumed to send

a packet consisting of L bits data at a distance d from bi to hj :

y(bi ,hj ) =

{
Lϵf sd

2 d < d0
Lϵmpd

4 d ≥ d0
(18)

where d0 =
√ ϵf s

ϵmp
is the distance threshold.

It takes more energy to transmit packets at a longer distance

so the larger y(bi ,hj ) is, the smaller R
aj
bihj

will be. x(bi ), x(hj ), and

y(bi ,hj ) are introduced to take the lifespan of the network into

consideration. α1 and α2 are the weights of them respectively.

As we mentioned before, non-cluster-head nodes may join in

no cluster and communicate directly with the base station. It will

aggravate the burden of BS and is what we want to avoid. Thus,

we add a penalty l to Equation (17) if a node bi tries to send data

directly with the base station hBS . The revised reward function is

as follows and l is set to be an arbitrarily large number:

RaBSbihBS
= − д + α1[x(bi ) + x(hBS )]

− α2y(bi ,hBS ) − l
(19)

If node bi attempts to transmit data to hj and fails, the reward

function is defined as:

R
aj
bibi
= −д + β1x(bi ) − β2y(bi ,hj ) (20)

where β1 and β2 are the weights that we can assign to show different

importance of different parts of energy.

Substituting Equation (17)-(20) into Equation (16), we can calcu-

late Q values for each action aj in state bi in Line 1 of Algorithm 4.

Then we update theV values of statebi with the maximumQ values

in Line 2 and choose the corresponding cluster head hjopt for data
transmission in Line 3-4.

Algorithm 4: Send-Data(bi )

1 foreach hj ∈ H and hBS do
Q∗(bi ,aj ) = Rt + γ (P

aj
bihj

V ∗(hj ) + P
aj
bibi

V ∗(bi ));

2 V ∗(bi ) = maxaj ∈A(bi )Q
∗(bi ,aj ); /* Update */

3 jopt = arдmaxaj ∈A(bi )Q
∗(bi ,aj );

4 Forward the packet to cluster head hjopt
5 return;

4.3 Analysis of QLEC
We respectively analyze the performance and complexity of QLEC

in two phases under our model.

Lemma 2. The total time complexity of cluster head selection phase
isO(RN ), whereN is the number of sensors andR is the total rounds

of QLEC algorithm.

Proof. Since cluster head selection phase of QLEC extremely

relies on Algorithm 2 and Algorithm 3, we mainly analyze their

running time. In Algorithm 2, we only computeT (bi ) for each node

and compare it with z to determine whether it can be a cluster head

so it runs in O(N ) time. Similarly, Algorithm 3 runs in Q(k) time.

Considering k is the number of clusters and k < N , the total time

complexity of cluster head selection phase isO(RN ) forR rounds. □

Lemma 3. Q-learning algorithm runs in O(kX ) time until it con-

verges, where k is the cluster number and X is the times of calcula-

tions to make V values converge.

Proof. We establish a matrix to store theV values of each node

in the network. As we can see in Algorithm 4, we update k + 1

elements of V matrix each time until it converges. If we assume

that it takes X updates for the matrix to converge, the total time

complexity of Q-learning algorithm to help non-cluster-head nodes

choose clusters runs in O(kX ) time. □

Theorem 3. QLEC is a machine-learning-based energy-efficient

clustering algorithm with the running time O(kX ).

Proof. Combining Lemma 2 and Lemma 3, we can get that

QLEC runs in O(RN + kX ) time. However, it usually takes many

times to update all V values in a large-scale wireless sensor net-

works. Hence, X tends to be much larger than N or R. As a result,
QLEC runs in O(kX ) time in general. □
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(a). Packet Delivery Rate (b). Total Energy Consumption (c). Lifespan

Figure 3: Simulation results of QLEC algorithm compared with FCM-based algorithm and k-means clustering

5 PERFORMANCE EVALUATION
In this section, we first present our experiment settings. Then we

show our evaluation results with corresponding analysis. Finally, a

large-scale dataset in the real world is adopted to test the efficiency

of QLEC clustering algorithm.

5.1 Experiment Settings
To evaluate the performance of our QLEC clustering algorithm, we

randomly generate N = 100 nodes with the same initial energy 5J
on a space of 200 × 200 × 200 units. According to Theorem 1, the

optimal cluster number kopt is approximately 5. Thus, we adopt

our QLEC, a newly proposed FCM-based algorithm in [14], and

classic k-means algorithms respectively to cluster the nodes and

conduct data transmission in R = 20 successive rounds. Other

various system parameters are demonstrated in Table 2.

Table 2: Simulation Parameters

System Parameters Settings
discount rate γ 0.95

free space constant ϵf s 10pJ/bit/m2

multi-path constant ϵmp 0.0013pJ/bit/m4

weights α1,α2, β1, β2 0.05, 1.05, 0.05, 1.05

compression ratio at cluster heads 50%

We focus on the lifespan, total energy consumption, and packet

delivery rate of the network to evaluate the performance of our

algorithm. It is assumed that the network dies when there exists one

sensor possessing less energy than a given energy death line. To

achieve a stable network condition, we lower the energy death line

while measuring the total energy consumption and packet delivery

rate.

5.2 Experiment Results
The packet generation time in the network follows the poisson

distribution. λ is the average packet inter-arrival time for the net-

work. The smaller λ is, the more congested the network is. We

simulate four network conditions with different λ and compare the

network indexes under different conditions after clustering with

QLEC, FCM-based algorithm, and k-means.

First, we evaluate the packet delivery rate of the network. Poor

communication environment or limited storage caches of cluster

heads may lead to packet loss. Figure 3(a) exhibits the packet de-

livery rate of three networks clustered with QLEC, FCM-based

algorithm, and k-means under different network conditions. As we

can see, QLEC can maintain a packet delivery rate equal to 1 while

other two algorithms will lose some packets when the network is

relatively idle. As networks get congested, all three packet delivery

rate decreases because the long queue at cluster heads leads to

discarding more packets. However, QLEC is capable of retaining

a higher rate than other two algorithms under all circumstances.

What is more, FCM-based algorithm tends to discard more than 10%

packets when the network is congested because it takes multi-hops

to transmit a packet to the BS under this model.

Next, Figure 3(b) compares the total energy consumption in

the three networks above. QLEC clustering consumes less energy

than other two algorithms to transmit packets in 20 rounds. k-
means clusters nodes based on the distance between them while

QLEC attaches some importance to the energy distribution as well

as distance. FCM-based algorithm also takes residual energy into

consideration, but hierarchical network in it consumes more energy

to deliver packets. As a result, QLEC can save more energy when

transmitting a packet in a given network.

Finally, Figure 3(c) demonstrates the lifespan of networks. Since

QLEC adopts the DEEC algorithm to select nodes with relative more

residual energy as the cluster heads and uses Q-learning method to

lower the energy dissipation in data transmission, it can definitely

prolong the lifespan of the network as we see in Figure 3(c). A

longer lifespan is critical to a given network because it may be

difficult to charge the sensor nodes under some environmentally

harsh conditions like mountainous area or underwater monitoring.

Hence, QLEC is quite practical for a 3-dimensional wireless sensor

network.

5.3 Experiment based on a Large-scale Dataset
In this subsection, we conduct experiments based on a large-scale

dataset of nodes with given energy in China from Global Power

Plant Database [3] to prove the efficiency of our QLEC clustering

algorithm in reality. Note that this dataset is not strictly a dataset

of IoT, but we can utilize the data of energy in it to simulate a WSN.

Besides, we randomly assign a height value to each node to convert
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the 2-dimensional network of the dataset into a 3-dimensional one.

In the dataset, we have 2896 nodes in China in total, not counting

the base station (BS). According to Theorem 1, kopt = 272 cluster

heads are selected to perform data fusion and transmission for the

network.

We adopt QLEC in such a network based on the large-scale

dataset. Figure 4 shows how the ratio between energy consumption

and initial energy is for all nodes in the network. As shown in the

figure, nodes with high energy consumption rate that are marked

in red are evenly distributed in the network, which means QLEC

tends to make energy equally dissipated among nodes to prevent a

few nodes from running out of energy too early. In this way, the

lifespan of the network is guaranteed and sensors can function as

long as possible.

Figure 4: Energy consumption rate in the network based on
a large-scale dataset after clustering with QLEC

Generally speaking, QLEC performs efficiently not only in a

simulation network, but also in a real-world network based on a

large-scale dataset.

6 CONCLUSION
In this paper, we propose a machine-learning-based two-phase

algorithm called QLEC for clustering problems in high dimensional

heterogeneous wireless sensor networks.

First, we improve traditional Distributed Energy-Efficient Clus-

tering (DEEC) algorithm with some constraints of energy and prove

the optimal cluster number in a 3-dimensional wireless network

to select nodes with more residual energy as the cluster heads for

data fusion. Then we give a detailed analysis to Q-learning method

and adopt it in the network to help non-cluster-head nodes choose

cluster heads for data transmission. In this way, energy consump-

tion is distributed evenly in the network and the lifespan of it is

prolonged. We prove that our QLEC algorithm has the running

time O(kX ). Finally, numerical simulations and experiments based

on a large-scale dataset validate the efficiency of our design. To the

best of our knowledge, we are the first work to design an energy-

efficient clustering algorithm combined with Q-learning method in

high dimensional space of IoT.
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