
1

Code-Based Neighbor Discovery Protocols In
Mobile Wireless Networks

Tong Meng, Student Member, IEEE, Fan Wu, Member, IEEE, and Guihai Chen, Member, IEEE

Abstract—In mobile wireless networks, the emerging proximity-based applications have led to the need for highly effective and energy-
efficient neighbor discovery protocols. However, existing works cannot realize the optimal worst-case latency in symmetric case, and
their performances with asymmetric duty cycles can still be improved. In this work, we investigate asynchronous neighbor discovery
through a code-based approach, including the symmetric and asymmetric cases. We derive the tight worst-case latency bound in
the case of symmetric duty cycle. We design a novel class of symmetric patterns called Diff-Codes, which is optimal when the Diff-
Code can be extended from a perfect difference set. We further consider the asymmetric case, and design ADiff-Codes. To evaluate
(A)Diff-Codes, we conduct both simulations and testbed experiments. Both simulation and experiment results show that (A)Diff-Codes
significantly outperform existing neighbor discovery protocols in both the median case and worst-case. Specifically, in the symmetric
case, the maximum worst-case improvement is up to 50%; in both symmetric and asymmetric cases, the median case gain is as high
as 30%.

Index Terms—Neighbor Discovery, Mobile Wireless Network, Protocol Design

F

1 INTRODUCTION

NOWADAYS, the transfer of data between neighbor-
ing nodes in mobile wireless networks has been

increasingly indispensible owing to the rapid growth of
diverse demands in people’s everyday life. For instance,
a college student may want to discuss a math problem
with other students in the library using his/her tablet;
a video game fan is likely to have a car race on the
smartphone with other people in a Starbucks coffee
shop. These motivate the appearance of proximity-based
applications (e.g., Sony’s Vita [1]). Although central
servers can be employed, proximity-based applications’
potential can be better exploited providing the ability of
discovering nearby mobile devices in one’s wireless com-
munication vicinity due to four reasons. First, users can
enjoy the convenience of local neighbor discovery at any
time, while the centralized service may be unavailable
due to unexpected reasons. Second, a single neighbor
discovery protocol can benefit various applications, by
providing more flexibility than the centralized approach.
Third, communications between a central server and
different mobile nodes may induce problems, such as
excessive transmission overheads, congestion, and un-
expected reaction delay. Last but not least, searching for
nearby mobile devices locally is totally free of charge.

Therefore, a distributed neighbor discovery protocol
for mobile wireless networks is highly needed in prac-
tice. Generally, there are three challenges in designing
such a neighbor discovery protocol.

T. Meng, F. Wu, and G. Chen are with the Shanghai Key Laboratory of
Scalable Computing and Systems, Department of Computer Science and
Engineering, Shanghai Jiao Tong University, China.
E-mails: mengtong@sjtu.edu.cn, {fwu, gchen}@cs.sjtu.edu.cn.
F. Wu is the corresponding author.

• The first one is energy efficiency. It it known that
it takes the mobile devices almost similar amount
of energy to transmit and to listen to the wireless
media [2], [32]. Due to limited battery power, a mo-
bile node can only periodically turn on its wireless
interface with a certain duty cycle. In some applica-
tions, nodes may agree on the same duty cycle for
fast neighbor discovery (symmetric case). However,
mobile nodes may need to adopt different duty
cycles independently, according to their remaining
battery power levels (asymmetric case). Therefore,
both the symmetric and asymmetric neighbor dis-
covery should be considered.

• The second challenge is effectiveness, i.e., the neigh-
bor discovery protocol should not only guarantee
successful discovery between neighboring nodes,
but also realize a short latency at the same time. On
one hand, the probabilistic approach (e.g., Birthday
Protocol [21]) in static sensor networks does not
meet this requirement, because it fails to provide
a worst-case discovery latency bound, and thus
leads to confusion between discovery failure and
non-existence of neighbors. On the other hand, the
discovery latency should be short enough, so that
the users will not lose patience before finding a
neighbor, and the interval when two mobile nodes
are within each other’s communication range can be
captured.

• In an ideal case, neighboring nodes can discover
each other immediately if they turn to awake si-
multaneously upon synchronized clocks. Without a
central server, the synchronization can be achieved
through GPS [23]. Nevertheless, it is too energy
consuming for mobile devices. Thus, how to deal
with asynchronization is the third challenge to the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

design of a neighbor discovery protocol.

We consider asynchronous deterministic neighbor dis-
covery, aiming at high energy efficiency as well as
low discovery latency. Most existing neighbor discov-
ery protocols (e.g., Disco [8], U-Connect [14]) cannot
realize the optimal worst-case latency provided in [33].
Furthermore, although Searchlight [3] is approximate to
the optimum as in [33] with symmetric duty cycle, its
performance in the asymmetric case still need to be
improved.

In this work, through an in-depth study on the prob-
lem of asynchronous neighbor discovery, we derive a
tighter lower bound of optimal worst-case latency (or
duty cycle). Then, we adopt a code-based formulation of
the neighbor discovery problem, and design Diff-Codes
for the symmetric case, which is optimal when the Diff-
Code can be extended from a perfect difference set. Fur-
thermore, by considering the connection between awake
periods of two nodes, we extend Diff-Codes to ADiff-
Codes to deal with asymmetric neighbor discovery.

The detailed contributions of this work are listed as
follows.

• We demonstrate the feasibility conditions of an
asynchronous neighbor discovery protocol, from the
perspective of both 0-1 code and set theory.

• We formulate the problem of asynchronous neigh-
bor discovery with symmetric duty cycle mathe-
matically. By the formulation, we derive the lower
bound for optimal worst-case latency, and design
Diff-Codes. We show that a Diff-Code is optimal
when it can be extended from a perfect difference
set.

• We further investigate the feasibility conditions with
asymmetric duty cycles, and design ADiff-Codes,
which can be constructed as long as two pattern
codes’ lengths are relatively prime.

• To evaluate the performance of our designs in one-
to-one and clique scenarios, we not only conduct
comprehensive simulations, but also prototype them
using USRP-N210 testbed. Evaluation results show
that (A)Diff-Codes significantly reduce the discov-
ery latency in both the median case and worst-
case. Specifically, in symmetric case, the maximum
improvement is up to 50%; in both symmetric and
asymmetric cases, the median case gain is as high
as 30%; and ADiff-Codes outperform state-of-art
protocols in more than 99% situations.

The rest of the paper is organized as below. In Section
2, we briefly introduce the related works. In Section 3, we
explain the system model. The feasibility conditions for
symmetric neighbor discovery are presented in Section
4. Then in Section 5, we propose the construction of Diff-
Codes. In Section 6, we extend to the asymmetric case,
and design ADiff-Codes. In Section 7, we provide the
results of simulations and testbed experiments. Finally,
the paper is concluded in Section 9.

2 RELATED WORKS

The problem of neighbor discovery was initially studied
in static wireless sensor networks. Recently, it has also
been investigated in mobile wireless networks. Existing
neighbor discovery protocols generally fall into two
categories, including probabilistic protocols and deter-
ministic protocols.

2.1 Probabilistic Protocols

McGlynn et al. [21] introduced a family of “birthday pro-
tocols”, which forms the foundation of most probabilis-
tic neighbor discovery protocols. In birthday protocols,
time is slotted, and each node probabilistically deter-
mines the state for each slot from transmitting, listening,
and energy-saving, independently. A node makes itself
known by its neighbors when it is the only transmitting
node in its vicinity in a slot. Based on [21], Keshavarzian
and Uysal-Biyikoglu [16] proposed a random protocol
for link assessment. Vasudevan et al. [29] reduced the
probabilistic algorithm for neighbor discovery to the
Coupon Collector’s Problem. In [17], Khalili et al. further
realized the mechanism of channel status detection, and
designed algorithms providing feedback of reception.
Later, Vasudevan et al. [27] further analyzed the problem
of neighbor discovery in a general multi-hop setting.
Additionally, probabilistic neighbor discovery using di-
rectional antennas was discussed in [10], [28]. Zeng et
al. [30] extended the solution to multipacket reception
networks. Karowski et al. [15] dealt with multi-channel
neighbor discovery.

Birthday protocols support both symmetric and asym-
metric cases, and have satisfying median case perfor-
mance due to Birthday Paradox [22]. However, because
of the lack of worst-case latency bound, these probabilis-
tic protocols inevitably incur the problem of long tail.
The discovery latency may be arbitrarily long, which
makes the probabilistic protocols unsuitable for mobile
wireless networks. Therefore, deterministic approaches
are usually adopted for neighbor discovery by mobile
devices.

2.2 Deterministic Protocols

A deterministic protocol establishes a pattern scheduling
the periodical operations of each node. A code-based
protocol is presented in [16] utilizing constant-weight
codes [5], [7], but it assumes synchronization among
nodes. Moreover, Zheng et al. [33] applied optimal block
designs in the case of symmetric duty cycle. The au-
thors concluded that their approach reduces to an NP-
complete minimum vertex cover problem in asymmetric
case. Whereas we prove that the bound in [33] can
be further lowered. Besides, our designs fit for both
symmetric and asymmetric cases with low complexity.

In a class of quorum-based protocols [18], [26], a cycle
contains m2 consecutive slots, where m is a global param-
eter. A node is either awake or sleeping in a slot. Both

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

transmitting and listening happen during awake slots, so
that two neighboring nodes discover each other when
they are both awake. These m2 intervals are arranged
as an m × m matrix. Each node picks a row and a
column of slots, during which the node stays awake.
Such a protocol ensures that two different nodes will
have exactly two intersecting awake slots during each
cycle. However, quorum-based protocols are normally
restricted to the symmetric case. Although [18] allows
the existence of two different duty cycles, its application
is still limited.

Another important type of deterministic protocols that
can handle both the symmetric and asymmetric cases is
the prime-based protocol (e.g., Disco [8] and U-Connect
[14]). These neighbor discovery protocols are based on
the Chinese Remainder Theorem [12]. In Disco, each
node chooses a pair of prime numbers (p1, p2), and
turns awake only at multiples of p1 and p2. U-Connect
uses only one prime number p. Each node wakes up
at p’s multiples, as well as p+1

2 slots every p2 slots.
Although prime-based protocols improve the worst-case
latency bound, they underperform birthday protocols in
the median case. In response to that, Bakht et al. [3]
leveraged the regular relationship between the patterns
of two nodes, and designed Searchlight. Compared with
previous protocols, Searchlight [3] performs much better
in symmetric case, but it needs to be improved in the
case of asymmetric duty cycles. By contrast, our designs
in this work are superior to existing neighbor discovery
protocols regardless of duty cycle symmetry.

Additionally, Zhang et al. [31] proposed a scheme
for full-duplex neighbor discovery, which implemented
compressive sensing on basis of Reed-Muller Codes. Li
et al. [19] designed a localized discovery scheme using
recursive binary time partition. However, different from
our work, they require nodes to be synchronized.

3 SYSTEM MODEL

We focus on deterministic asynchronous neighbor dis-
covery for mobile wireless networks. Similar as existing
works (e.g., [3], [8], [14]), we assume that time is divided
into equal-size slots. Owing to restricted energy budget,
each node (i.e., a mobile device) performs duty-cycled
operations. That is, it sleeps during most slots, while
turning awake during a few remaining slots, which are
called active slots. To be specific, in a sleeping slot, a
node does not send or receive, and consumes negligible
energy. In contrast, in an active slot, a node transmits
beacons at the beginning and the end, respectively, and
listens for other nodes’ transmissions in between. Each
beacon contains the MAC address of its sender. A node
discovers its neighbors by decoding the received beacons
and extracting the contained MAC addresses. Thus, in
general, two neighboring nodes can discover each other
when their active slots overlap. Moreover, the neighbor
discovery problem involves two cases: the symmetric
case, where all the nodes have the same duty cycle,

and the asymmetric case, where different duty cycles are
adopted.

In deterministic neighbor discovery, there is an estab-
lished active-sleep pattern scheduling a node to alternate
its state periodically between active and sleeping, i.e., the
active-sleep pattern defines a periodic cycle of the state
transformation of a node. We formulate the active-sleep
pattern as a 0-1 code. A pattern code C = c0c1 · · · cn−1
determines an active-sleep pattern containing n slots in
a cycle. Specifically, bit ci corresponds to the slot whose
index is i,1 i.e., slot i is an active slot if ci = 1; otherwise,
ci = 0. The weight of code C with length n equals the
number of active slots in a cycle. This is to say, the duty
cycle is decided by the length and the weight of pattern
code C.

Node A 1 0 0 00 1 11 0 0 1 0 0 1

1 0 00 1 11 0 0 1 0 0

1 0 0 00 1 11 0 0 1 0 0

Node B

Node C

...

...

4 slots

2.5 slots

...

3 slots

Fig. 1. Example: the slot offset between two nodes

In asynchronous neighbor discovery, there is an offset
between a pair of neighboring nodes’ active-sleep pat-
terns. In the case of symmetric duty cycle, we define slot
offset dAB between node A and node B as the interval in
unit of slot between slot 0’s in their common pattern.
Assume code C is of length n. Then a slot offset dAB is
equivalent to dBA = n− dAB. For clarity, we take the slot
offset to be min(dAB, dBA), which is bounded by n

2 . Thus,
for the example in Fig. 1, given symmetric pattern code
“1010001”, the slot offset between node A and node B is
regarded as dAB = 3 slots instead of 4 slots. Besides, the
value of dAB is not necessarily an integer. For instance,
referring to Fig. 1, dAC equals 2.5.

Moreover, we define the cyclic shift, C(j), of pattern
code C, to compensate for slot offsets between neighbor-
ing nodes, where j is in unit of slot. For an integer j, C(j)

is calculated by cyclically shifting C right by j bits. For
example, in Fig. 2, where active slots are in gray, cyclic
right shift of 10100101 by 3 is 10110100.

C = 10100101

C

(3) = 10110100

C

(1.3) = (0.7)1(0.3)(0.7)(0.3)0(0.7)(0.3)

Fig. 2. Examples on Cyclic Shifts of a Pattern Code

Additionally, we relax the value of c(j)
i to a closed

interval [0, 1], to address the case of partial shift. Thus,

1. All the slot indices in this paper are taken module n. We omit
“mod n” for concise representation.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

c(j)
i denotes the active proportion of the node in slot i

regarding the shifted code C(j). After the cyclic shift by a
non-integer j, the value of c(j)

i is determined by both c(0)i−dje

and c(0)i−bjc. For instance, in Fig. 2, the result of cyclic right
shift of C by 1.3 slots is (0.7)1(0.3)(0.7)(0.3)0(0.7)(0.3).
In the following, we define two operators denoted by �
and ⊕ in (1) and (2), for the definition convenience of
partial cyclic shift as Equation (3).

a� C = (a · ci)i=0,1,··· ,n−1 , (1)

C⊕ C′ = (min(ci + c′i , 1))i=0,1,··· ,n−1 , (2)

C(j) =
[
(1 + bjc − j)� C(bjc)

]
⊕
[
(j− bjc)� C(dje)

]
. (3)

In this work, our designs exploit the power of non-
alignment of active slot boundaries. Like [3], we imple-
ment overflowed active slots, to avoid the rare case when
the slot boundaries of neighboring nodes are perfectly
aligned, which makes two adjacent active slots at two
nodes non-overlapping. As depicted in Fig. 3(a), an
active slot is made either to start a little bit earlier (which
we adopt in this work) or to end later. As a result, the
width of an active slot is increased by δ, while the pre-
ceding (or succeeding) slot is shortened correspondingly.
We note that owing to the time durations for beacon
transmission and listening, only when the active slots
of two nodes overlap by a long enough period, they can
discover each other. Specifically, for a 30-byte packet and
a bit rate of 6 Mbps, the transmission time of each beacon
is 40 µs. We can set the value of δ to be larger than 100 µs.
That is a long enough period, such that adjacent active
slots of two nodes can overlap and guarantee successful
discovery even in the case of perfect slot alignment
(as in Fig. 3(b)). Besides, the slot offset between two
neighboring nodes is irrelevant to the overflowed active
slots. We only consider the original slot boundaries when
calculating the slot offset.

Active

Beacon Beacon

BeaconBeacon

δ

δ

Active

(a) Overflowing
Schemes

Active

Beacon

Active

Beacon

δ

δ

(b) Active Slot Non-
Alignment

Fig. 3. Overflowed Active Slots

What’s more, utilizing the operator 	 as in (4), we
define C(j) in Equation (5) to indicate the actual active
proportion of the node in each slot after cyclic shift by
j, integrating the overflowed active slots.

a	 b = max(a− b, 0), (4)

C(j) = C(j) ⊕
[
(δ 	 (j− bjc))� C(bjc−1)

]
⊕
[
δ � C(dje−1)

]
.

(5)

4 PATTERN FEASIBILITY VALIDATION IN
SYMMETRIC NEIGHBOR DISCOVERY

In this section, we demonstrate the feasibility conditions
for the active-sleep pattern code in the case of symmetric
duty cycle. In addition, we look at the feasibility condi-
tions from a set theoretic perspective in order to direct
algorithm design.

4.1 Feasibility Conditions
If a pair of nodes has a slot offset d, slot 0 of one node
will coincide in time with both slot bdc and dde of the
other node. There comes the following lemma.

Lemma 1. Two neighboring nodes use the same pattern code
C, and their slot offset is d. They can discover each other if
and only if the following condition is satisfied,

∃i ∈ N, ci(0) + ci(d) ≥ 1 + δ, (6)

where ci(d) is the value of the dth bit in code C(d).

Proof: Whether d is an integer or not, bit ci(0) of one
node and bit ci(d) of the other always correspond to the
same period of time in each cycle. Because the value of
ci(0) and ci(d) are no larger than 1, the existence of such
an i satisfying (6) implies the overlapping of active slots
by at least δ. Therefore, the discovery is guaranteed to
be successful. The sufficiency is proved.

Otherwise, if (6) does not hold, then the two nodes
have no overlapping active slots, and hence cannot
discover each other. Thus condition (6) is necessary. This
completes the proof.

According to Lemma 1, there is the following corol-
lary, which is the basis of symmetric pattern feasibility
condition.

Corollary 1. A pattern code C of length n schedules the
operations of two neighboring nodes. If there exists an integer
i and an integer j ≤ bn2 c such that c(0)i = c

(j)
i = 1, the two

nodes can discover each other as long as their slot offset d
takes its value from the closed interval [j − 1, j + 1].

Proof: According to the given conditions, ci(0) +
ci(j) = 2. In addition, with overflowed active slots, the
following relation holds,

d ∈ [j− 1, j + 1]⇒ ci(0) + ci(d) ≥ 1 + δ.

The above situation is also demonstrated in Fig. 4.
What’s more, according to Fig. 4(c), the feasibility of
pattern code is not influenced by the corner case when
the overflowed active slot leads to aligned active slot be-
ginning boundary and slot ending boundary. By Lemma
1, the pattern is feasible for any d ∈ [j− 1, j + 1].

Furthermore, when random slot offset is considered,
works on quorum-systems (e.g., [13]) focus on such
feasibility that a pattern should suffice the condition in
Corollary 1 for any integer i. However, when active slots
are overflowed, the constraint for a feasible pattern can
be relaxed.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

Active

Active

Beacon Beacon

δ

δ

Beacon Beacon

(a) Slot Offset j

Active

Active

Beacon Beacon

δ

δ

(b) Slot Offset j − 1

Active

Beacon

Active

Beacon

δ

δ

(c) Slot Offset j+1−δ

Active

Beacon

Active

Beacon

δ

δ

(d) Slot Offset j + 1

Fig. 4. An Integer Slot Offset Cover a Range of Slot
Offsets

Theorem 1. A feasible pattern code C for symmetric neighbor
discovery should satisfy that,

∃i, (c
(0)
i + c

(j)
i = 2) ∨ (c

(0)
i + c

(j+1)
i = 2) = TRUE, (7)

for ∀j ∈ {0, 1, · · · ,
⌊
n
2

⌋
}.

Proof: We assume that for a pattern code C, there
exists an integer slot offset d dissatisfying (7), i.e.,

∀i, c(0)i · c
(d)
i = c

(0)
i · c

(d+1)
i = 0. (8)

According to Lemma 1, if the pattern code C is feasible
for symmetric neighbor discovery, then under the slot
offset of d+ 1

2 , there should be

∃i ∈ N, ci(0) + ci(d+
1

2
) ≥ 1 + δ.

To guarantee that the inequality can hold, there are the
following possibilities of the value of ci(0) and ci(d+ 1

2).
• ci(0) = 1 and ci(d+ 1

2) = δ: This case is impossible,
because the value of ci(d+ 1

2) cannot equal δ for the
non-integer slot offset d+ 1

2 .
• ci(0) = 1 and ci(d + 1

2) = 1
2 : In such case, there is

c
(0)
i = c

(d)
i = 1, which contradicts with (8) on above.

Moreover, we can draw the similar contradiction
from the case of ci(0) = 1 and ci(d + 1

2) = 1
2 + δ,

and the case of ci(0) = ci(d+ 1
2) = 1.

• ci(0) = δ and ci(d+ 1
2) = 1: This case leads to c(1)i =

c
(d)
i = c

(d+1)
i = 1. Equivalently, there is c(0)i−1 = c

(d)
i−1 =

1 contradicting with (8) again.
Therefore, the pattern code C cannot guarantee suc-

cessful neighbor discovery under the slot offset of d+ 1
2 ,

and is infeasible. That proves that a feasible pattern
code for symmetric neighbor discovery should satisfy
the relation (7) under all the possible integer slot offsets.

Specifically, an algorithm for feasibility validation can
be built from Theorem 1. It examines all the possible
integer slot offsets with condition (7), yielding the com-
plexity of O(n2).

4.2 A Set Theoretic Perspective

An active-sleep pattern code C = c0c1 · · · cn−1 with length
n and weight w is equivalent to a set D(C(0)) = {i | c(0)i =
1} composed of the indices of w active slots in a cycle.
Besides, we define the set of feasible integer slot offsets
of a pattern code C as ∆(C) = {i−j | i, j ∈ D(C(0)), i 6= j}.2
Clearly, 0 6∈ ∆(C), and d ∈ ∆(C) implies that n − d ∈
∆(C). Then we can interpret Corollary 1 and Theorem 1
from the perspective of set theory.

Corollary 2. For a pattern code C, if d ∈ ∆(C), then C is
feasible for symmetric neighbor discovery, as long as the slot
offset between neighboring nodes is in the range of the closed
interval [min(d, n− d)− 1,min(d, n− d) + 1].

Corollary 3. A feasible pattern code C should satisfy that,

j ∈ {1, 2, · · · ,
⌊n

2

⌋
} ⇒ j ∈ ∆(C) ∨ j + 1 ∈ ∆(C). (9)

5 SYMMETRIC PATTERN CODE CONSTRUC-
TION

In this section, we formulate the design of symmetric
active-sleep patterns into a code construction problem,
aiming to minimize the code weight for a given code
length. We derive the lower bound for the formula-
tion, which breaks through the generally accepted result
presented in [33]. We also propose a novel class of
active-sleep patterns called Diff-Codes, and analyze its
theoretical performance. The construction of Diff-Codes
takes advantage of perfect difference sets [4], [25], and
guarantees optimality when the Diff-Code is extended
from a perfect difference set. Last, for comprehensive-
ness, we provide a heuristic algorithm for seeking the
Diff-Code with a target duty cycle.

5.1 Problem Formulation

The definition of the code construction problem is as
follows: for a given n, construct a 0-1 code C of length
n with as few 1-bits as possible, while ensuring that C
is feasible for symmetric neighbor discovery. According
to condition (7) in Theorem 1, the mathematical formu-
lation is as below.
Objective:

Minimize w =

n−1∑
i=0

ci, (10)

Subject to:

n−1∑
i=0

ci(ci+j + ci+j+1) ≥ 1, ∀j ∈ {0, 1, · · · ,
⌊n

2

⌋
}, (11)

ci ∈ {0, 1}, ∀i ∈ {0, 1, · · · ,n− 1}. (12)

2. The notation “mod n” is omitted. The same with the following
corollaries.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

The lower bound of the above primal problem can be
calculated via the Lagrange dual problem [6] by relaxing
constraint (12). We first define the Lagrangian L,

L(c,λ,ω,ν) =

n−1∑
i=0

ci +

n−1∑
i=0

ωi · (ci − 1)−
n−1∑
i=0

νi · ci

+

b n
2 c∑

j=0

λj

[
1−

n−1∑
i=0

ci · (ci+j + ci+j+1)

]
= (1 + ω − ν)Tc + 1Tλ− 1Tω

−
b n
2 c∑

j=0

λj
[
cT(Aj + Aj+1)c

]
, (13)

where the element of matrix Aj = (akl)n×n is defined as
below.

akl|Aj =

{
1, if k = l + j or k = l + j− n;

0, otherwise.
(14)

Hence, the Lagrange dual problem takes the following
form.
Objective:

Maximize g(λ,ω,ν) = infc L(c,λ,ω,ν),

Subject to:

λj ≥ 0, ∀j = 0, 1, · · · ,
⌊n

2

⌋
,

ωi, νi ≥ 0, ∀i = 0, 1, · · · ,n− 1.

Then Theorem 2 gives the optimal solutions to both
the above Lagrange dual problem and the relaxed pri-
mal problem. Its proof implements the KKT optimality
conditions (referring to [6] for the details).

Theorem 2. An optimal solution to the relaxed problem of
formulation (10) is c∗ = (1√

2n
)n×1, corresponding to the

objective function value of
√

n
2 ; an optimal solution to the

dual problem satisfies that
∑bn2 c
j=0 λ

∗
j =

√
2n
4 and ω∗i = ν∗i = 0.

Proof: First of all, we prove the strong duality. On
one hand, when c∗i = 1√

2n
, both constraint (11) and

(12) are satisfied. Hence, c∗ is feasible for the primal
problem and the objective can be calculated to be

√ n
2 .

On the other hand, the non-negative solution (λ∗,ω∗,ν∗)
is feasible for the Lagrange dual problem. Specifically,
c∗ leads to equality in constraint (11), which yields the
following equation,

b n
2 c∑

j=0

λ∗j

[
1−

n−1∑
i=0

c∗i · (c∗i+j + c∗i+j+1)

]
= 0. (15)

Next, with (λ∗,ω∗,ν∗), the differential of Lagrangian
L is,

∇cL(c,λ∗,ω∗,ν∗)
= (1 + ω∗ − ν∗)−

b n
2 c∑

j=0

λ∗j (Aj + An−j + Aj+1 + An−j−1)Tc

= 1− (
4
∑
λj√

2n
)n×1 = 0, (16)

which determines the objective g(λ∗,ω∗,ν∗) =
√ n

2 .
Therefore, with c∗ and (λ∗,ω∗,ν∗), the solution to the
relaxed primal problem equals to that of Lagrange dual
problem. The strong duality holds.

Second, the feasibility of c∗ and (λ∗,ω∗,ν∗), and equa-
tion (15) and (16) together satisfy the KKT conditions.
That verifies the optimality of c∗ and (λ∗,ω∗,ν∗).

Theorem 2 indicates that a symmetric active-sleep
pattern with a cycle length of n slots should have at
least

√ n
2 active slots each cycle. This lower bound is

tighter than that provided by Zheng et al. [33], because
we exploit the power of active slot non-alignment in
the asynchronous case. Consequently, compared with
the active-sleep patterns in [33], which is identical with
perfect difference sets, we achieve much better patterns.

5.2 Asymptotically Optimal Pattern via Perfect Dif-
ference Set
Referring to the set theoretic interpretation of pattern
feasibility in Section 4.2, and the definition below, an
(n,w, 1)-perfect difference set [4], [25] already corre-
sponds to a feasible symmetric pattern code of length
n and weight w.

Definition 1. An (n,w, λ)-difference set contains w ele-
ments. It is a subset of Zn = {0, 1, · · · , n − 1}, and each
d ∈ Zn\{0} appears exactly λ times as the difference of
two distinct elements from it under module n. Specifically,
a difference set with λ = 1 is called a perfect difference set.

However, being a perfect difference set is a stricter
constraint than condition (9) in Corollary 3. For example,
a pattern code C = 10100010000000 can be verified to be
feasible, whereas D(C(0)) is not a perfect difference set
since ∆(C) = {2, 4, 6, 8, 10, 12}. To this end, we propose
to double the length of a perfect difference set while
maintaining its weight. The details can be described as
below: an active slot is extended to two consecutive slots
including one active slot followed by another sleeping
slot; a sleeping slot is extended to two successive sleep-
ing slots. The following is an illustrating example.

1 1 0 1 0 0 0

1 0 1 0 0 0 1 0 0 0 0 0 0 0

(7, 3, 1)-perfect difference set

Pattern code C = 10100010000000

Fig. 5. Example: Extend Perfect Difference Set

According to the above definition, for a perfect differ-
ence set C′, there is ∆(C′) = {1, 2, · · · , n−1}. Therefore, if

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

we extend C′ of length n and obtain pattern code C, we
can calculate that ∆(C) = {2, 4, · · · , 2n− 2}. Considering
its length of 2n, C is hence feasible according to Corollary
3. In fact, such a pattern code C is the best integer
solution to our formulated problem, which is meanwhile
approximate to the lower bound given by Theorem 2.

Theorem 3. Pattern code C of length 2n and weight w, which
is resulted from extending a perfect difference set with length
n and weight w as shown above, is the optimal integer solution
to the code construction problem under code length 2n.

Proof: Because C is extended from a perfect dif-
ference set, its length 2n is even, and satisfies that
w(w− 1) + 1 = n. Apparently, n is odd.

For any pair of active slots in C(0), say, slot i1 and slot
i2 (i1 6= i2), there is i1−i2 ∈ ∆(C), as well as i2−i1 ∈ ∆(C).
In that sense, the total number of distinct active slot pairs
is 1

2w(w − 1). Note that (i1, i2) and (i2, i1) represent the
same pair. By Corollary 3, for any pattern code of length
2n, the weight w should satisfy the inequality,

1

2
· w(w− 1) ≥

⌊n
2

⌋
=

n
2
− 1

2
. (17)

Considering that the length and weight of C lead to
equality in (17), its optimality is verified.

Nevertheless, a perfect difference set requires specific
value of its length and weight [9]. When ps ≤ 1600,
where p is a prime number and s is a positive integer,
there only exists such form of perfect difference sets that
w = ps + 1. Thus, as w approaches 1600, the worst-case
discovery latency (i.e., the code length) of the extended
pattern code C′ will be bounded by 2n, with a magnitude
of as high as 106 slots. That is unbearable for realistic
applications. Hence a practical symmetric active-sleep
pattern should be based on such a perfect difference set
that w = ps + 1.

5.3 Diff-Code Construction

Although doubling the length of a perfect difference
set can generate the optimal schedule, it’s only suit-
able for specific code lengths. Therefore, we present the
construction of Diff-Codes for any target code length in
Algorithm 1. The core idea is to make use of the optimal
code with similar length.

The first step (lines 1-6) in the algorithm is to build an
initial, but not necessarily feasible code C of the target
length n. The active slots in C(0) are determined by the
optimal Diff-Code C(0)

1 , whose length n1 is the largest
among all the optimal Diff-Codes shorter than n.3 An
intuitive method of initializing C(0) is to assign slot i
active as long as slot i is active in C(0)

1 . However, we
notice that for i1 < i2 < n1, such that the i1th and i2th

3. The shortest optimal Diff-Code has the length of 14, and the duty
cycle of 21.4%. In practice, owing to limited battery power, we tend to
need a pattern code with smaller duty cycle and larger length. Thus,
the existence of optimal Diff-Codes shorter than the target length can
be guaranteed.

slots are active in both C(0) and C(0)
1 , if i2 − i1 ≤ b n1

2 c,
code C and C1 will both be feasible under the slot offset
of i2 − i1. Otherwise, C1 will satisfy the slot offset of
i1− i2 + n1, while C is not necessarily feasible under the
same slot offset. Therefore, the active slots of C(0) are
initialized as below: for any two active slots i1 and i2
in C(0)

1 (i1 < i2), they are made active in C(0), only if
i2 − i1 ≤ b n1

2 c.

Algorithm 1: Diff-Codes Construction
Input: An optimal code C1 of length n1.
Output: The Diff-Code C of length n (n > n1).

1 D(C(0))← Ø;
2 foreach i1, i2 ∈ D(C(0)

1), i1 < i2 do
3 if i2 − i1 ≤

⌊ n1

2

⌋
then

4 D(C(0))← D(C(0)) ∪ {i1, i2};
5 end
6 end
7 Q← {i | 1 ≤ i ≤ b n

2c, i ∈ N+};
8 foreach i1, i2 ∈ D(C(0)), i1 < i2 do
9 tmp← i2 − i1;

10 Q← Q\{tmp− 1, tmp};
11 end
12 while Q 6= Ø do
13 next, α← −1;
14 foreach i1 (mod n) 6∈ D(C(0)) do
15 Si1 ← Ø;
16 foreach i2 ∈ D(C(0)) do
17 tmp← (i1 − i2) mod n;
18 tmp← min(tmp,n− tmp);
19 Si1 ← Si1 ∪ (Q ∩ {tmp− 1, tmp});
20 end
21 if |Si1 | > α then
22 α← |Si1 |; next← i1;
23 end
24 end
25 D(C(0))← D(C(0)) ∪ {next};
26 Q← Q\Snext;
27 end
28 return C;

In the next step, we complete the construction greedily.
According to C(0), we determine the set Q of all the
unsatisfied integer slot offsets, i.e., slot offsets under
which the condition (9) in Corollary 3 is not satisfied
(lines 7-11). Then, Algorithm 1 iteratively checks each of
the remaining sleeping slots, and calculates the number
of newly satisfied integer slot offsets if the slot is active
(lines 15-20). In the end of each iteration, the slot that
brings the largest increment in the number of satisfied
integer slot offsets is assigned to be active (line 25), and
the set Q is updated accordingly (line 26).

The algorithm will return until C is a feasible Diff-
Code. The number of iterations is less than the code
weight. In each iteration, the algorithm traverses at most
n sleeping slots, and calculates their index offsets to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

those already assigned active slots, which is bounded
by the code weight. If considering that the code weight
is also smaller than n, Algorithm 1 seems to be in O(n3).
Then, referring to the lower bound of code weight (see
Section 5.4), it actually induces a time complexity of
O(n2).

In addition, there may exist more than one perfect
difference set with identical length and weight. As a
result, the performance of a Diff-Code is related to which
perfect difference set is chosen for construction. Accord-
ing to previous explanation, we prefer such element
pairs (i1, i2) (i1 < i2) that i2 − i1 is at most half the set
length, which we denote as offset preserving pair. Hence,
we need to determine the perfect difference set contain-
ing the most offset preserving pairs for each length. To
achieve that, we implement the multiplier property, i.e.,
multiplying each of the elements of an (n, w, 1)-perfect
difference set D by p also generates a perfect difference
set, as long as p is relatively prime to n. To be detailed,
we multiply D by such integer p that is relatively prime
to n, conduct cyclic shift after each multiplication, and
choose the set containing the most offset preserving
active slot pairs for Diff-Codes construction. To avoid
excessive computations, we only pick p from numbers
that are smaller than 50. The evaluation results show that
the above processing can achieve superior performance.

5.4 Theoretical Analysis

By fixing the code length to be n, we show the theoretical
bound of Diff-Codes’ duty cycle. An optimal pattern
code directly extended from a perfect difference set
with weight w will satisfy 2 [w(w− 1) + 1] = n. Thus,
the weight w of a Diff-Code with length n is at least
1+
√
2n−3
2 , which is approximately the lower bound of

√ n
2

in Theorem 2 when n is fairly large. Because an active
slot is overflowed by δ, the corresponding lower bound
of duty cycle is (1+δ) 1√

2n
. On the other hand, an optimal

Diff-Code whose duty cycle c = (1+δ)w
2[w(w−1)+1] ≈

1+δ
2w yields

that n ≈ (1+δ)2

2c2 for a large w. Therefore, a Diff-Code
should contain at least (1+δ)2

2c2 bits to realize a duty cycle
of c.

Duty Cycle
(worst-case latency

n)

Worst-Case Latency
(duty cycle c)

Disco 2√
n

4
c2

U-Connect 3
2
√

n
9

4c2

Searchlight-S (1 + δ) 1√
n

(1+δ)2

c2

Optimal Diff-Code (1 + δ) 1√
2n

(1+δ)2

2c2

TABLE 1
Worst-Case Bounds Comparisons

In Table 1, we compare Diff-Codes with existing pro-
tocols, e.g., Disco [8], U-Connect [14] and Searchlight [3],

where Searchlight-S is the stripped version of Searchlight
in [3]. The table indicates that in the best cases, Diff-
Codes can improve the worst-case latency bound by as
high as 50% compared with Searchlight-S. As for Disco,
the reduction of the worst-case latency is more than 80%.
What’s more, any Diff-Code constructed by Algorithm
1, even not optimal, can outperform other protocols, as
presented in Section 7.1.

5.5 Diff-Code Seeking with Fixed Duty Cycle
The construction of Diff-Codes discussed till now fo-
cuses on minimizing the code weight while the code
length is fixed. However, in practice, a user may prefer
selecting the appropriate pattern with whatever duty
cycle according to the remaining battery of his/her
mobile device. Thus it’s necessary to support Diff-Codes
construction that minimizes the worst-case latency with
a fixed duty cycle. We finish this section by a heuristic
algorithm accomplishing such a task.

Briefly speaking, given a duty cycle c, an interval
[nmin,nmax] is determined, which is expected to cover the
cycle lengths of the Diff-Codes whose duty cycle are
around c. Then, we utilize dichotomy to construct Diff-
Codes, until a pattern code whose duty cycle is close
enough to c has been obtained. Specifically, for interval
[nmin,nmax], we construct three Diff-Codes with lengths
nmin, nmax, and nmid = (nmin + nmax)/2, respectively. For
convenience, we assume the duty cycles of such three
Diff-Codes are cmin, cmax, and cmid. If cmid is closer to cmin,
we then turn to the interval [nmin,nmid]. Otherwise, we
turn to [nmid,nmax].

Obviously, the performance of the above algorithm is
determined by the initial estimations of nmin and nmax.
According to Table 1, we set nmin and nmax to be the
optimal worst-cast latency bounds under the duty cycles
of c and c − σ, respectively. Besides, the width of the
interval can be adjusted according to accuracy require-
ments, i.e., a larger σ is used for higher accuracy. For
example, the above heuristic algorithm achieves good
performance when σ ∈ [0.5%, 1.0%]. Because Algorithm
1 is in O(n2), this heuristic algorithm has the complexity
of O(n2 log n).

6 ASYMMETRIC PATTERN CODES DESIGN

We further extend Diff-Codes for symmetric neighbor
discovery to ADiff-Codes that deal with the asymmetric
case. We begin with the asymmetric feasibility condi-
tions, and then present the design of ADiff-Codes.

6.1 Feasibility Conditions in Asymmetric Case
In symmetric case, the slot offset is bounded by n

2 , where
n is the length of the symmetric pattern code. Never-
theless, with asymmetric duty cycles, two neighboring
nodes, who conform to pattern code C1 of length n1 and
pattern code C2 of length n2, will have their slot offset
up to min(n1,n2). This is because the slot offset of d and

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

n − d are equivalent in symmetric case, but with duty
cycle asymmetry, slot offset d is different from n1 − d or
n2 − d. Then referring to Theorem 1, we can illustrate
the condition for feasibility of asymmetric pattern codes
as below. The proof of Theorem 4 is straightforward
providing Theorem 1, and thus is omitted due to limited
space.

Theorem 4. Assume that there are two neighboring nodes
A and B. Node A uses pattern code C1 of length n1, while
B operates with C2 of length n2, where n1 ≤ n2. They can
discover each other in all the cases if the following condition
is satisfied,

∃i, (c
(0)
1i + c

(j)
2i = 2) ∨ (c

(0)
1i + c

(j+1)
2i = 2) = TRUE, (18)

where j ∈ {0, 1, · · · , n1 − 1}, and i < lcm(n1, n2). We note
again that (mod n1) and (mod n2) are omitted for clarity.

6.2 ADiff-Codes Construction

A series of ADiff-Codes contains several pattern codes.
Each of these patterns is feasible in symmetric case, and
any two of them guarantee asymmetric feasibility. By
Theorem 4, ADiff-Codes series can be constructed on
basis of symmetric Diff-Codes with a similar greedy al-
gorithm as Algorithm 1. However, inspired by Theorem
5 and Theorem 6 as below, we present a more elegant
method in this work.

Theorem 5. There are two distinct Diff-Codes, say, C1 with
length n1 and C2 with length n2 (n1 < n2). If n1 and n2 are
relatively prime, the two Diff-Codes are feasible for asymmetric
neighbor discovery.

Proof: For convenience, assume slot 0 with regard
to C(0)

1 is aligned with slot 0 of C(0)
2 . In such case, the

indices of C(0)
2 ’s slots, which are aligned with slot 0 in

C(0)
1 , form the set S represented as follow,

S = {(k · n1) mod n2 | 0 ≤ k < n2, k ∈ N}.

What’s more, there exists the following fact: under
module n, if we multiply each element in the set Zn =
{0, 1, · · · ,n − 1} by q, the resulted set, denoted by qZn,
is identical with Zn itself, as long as q is relatively prime
to n.

Therefore, S = n1Zn2
= Zn2

, which indicates that slot
0 in C(0)

1 witnesses all the slots of code C(0)
2 . Similarly,

every slot of C(0)
1 can overlap with all the slots of C(0)

2 .
It means that any two integer slot offsets are equivalent,
and thus, the assumption of aligned slot 0 for the two
pattern codes do not affect the correctness of the proof.
As a result, condition (18) holds for any value of j. Thus
Diff-Codes C1 and C2 are feasible in asymmetric case.

Theorem 6. Two distinct Diff-Codes, say, C1 with length n1
and C2 with length n2 (n1 < n2), are feasible for asymmetric
neighbor discovery, as long as n1

2 and n2

2 are relatively prime.

Proof: Because n1

2 is relatively prime to n2

2 , we have
the following condition,{

(k · n1

2
) mod

n2

2
| 0 ≤ k <

n2

2
, k ∈ N

}
=

n1

2
Z n2

2
= Z n2

2
.

Again we assume that slot 0’s in C
(0)
1 and C

(0)
2 are

aligned. Then the slot indices of C(0)
2 that are aligned

with slot 0 with regard to C
(0)
1 form the set S as below,

S = {(k · n1) mod n2 | 0 ≤ k < n2, k ∈ N}
= 2Z n2

2
= {0, 2, 4, · · · ,n2 − 2}.

In such a case, slot i in C
(0)
1 is aligned with the slots

of C(0)
2 , whose indices are in the following set,

{i, i + 2, i + 4, · · · , i + n2 − 2}.

Similar to the proof of Theorem 5, we have the con-
clusion that the slot offset of j is equivalent to any slot
offset of j + 2k (k ∈ Z). Therefore, condition (18) holds.
This completes the proof.

By the above theorem, it’s intuitive to construct an
ADiff-Codes series. The only task is to select a set of
numbers (e.g., n1,n2, · · ·), such that any two of them,
or the half of any two, are relatively prime. Then the
ADiff-Codes series will contain all the Diff-Codes with
corresponding lengths.

6.3 Worst-Case Bound of Discovery Latency

It can be drawed from Theorem 5 and 6 that, in the
asymmetric case, the worst-case latency bound of an
ADiff-Codes series is determined by its composing Diff-
Codes. Thus there is not a stable relation between the
worst-case bound and the lengths of the composing Diff-
Codes. In the following, we provide an algorithm for the
purpose of worst-case latency bound calculation.

Algorithm 2 takes the two Diff-Codes that form a
series of ADiff-Codes as inputs. According to Theorem
5, any two integer slot offsets i and j are equivalent,
provided that n1 and n2 are relatively prime. By Theorem
6, slot offset i is equivalent to (i + 2k) (k ∈ Z), if n1

2
is relatively prime to n2

2 . Therefore, the algorithm only
need to consider two slot offsets, which are 0 and 1
(line 2). With each slot offset, the algorithm traverses
N = lcm(n1,n2) consecutive slots, and calculates the
largest interval between two adjacent instances of over-
lapping active slots (line 4-20). It is enough to consider
N consecutive slots, because for two nodes that have the
corresponding patterns of C1 and C2, their slot indices
at the same instant change with a cycle of length N.
Finally, the worst-case latency bound is determined by
the largest interval in all cases. In Algorithm 2, the
number of iterations for each of the two slot offsets is
bounded by N , and it only involves several single-step
operations in each iteration. Therefore, the complexity of
Algorithm 2 is O(N) = O(n1 · n2).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

Algorithm 2: Worst-Case Latency Calculation
Input: Two Diff-Codes in an ADiff-Codes series,

which are C1 of length n1, and C2 of length
n2.

Output: The worst-case bound of discovery latency,
L, between C1 and C2.

1 L← 0; N← lcm(n1,n2) ;
2 foreach d ∈ {0, 1} do
3 l, l0 ← −1 ;
4 foreach s ∈ [0,N − 1] do
5 index1 ← s (mod n1);

index2 ← s+ d (mod n2) ;
6 if c1index1 · c2index2 + c1index1 · c2(index2+1) = 0 then
7 continue ;
8 end
9 if l0 = −1 then

10 l0 ← s ;
11 end
12 if l 6= −1 then
13 L← max(L, s− l) ;
14 end
15 l← s ;
16 end
17 L← max(L,N− l + l0) ;
18 if L = N then
19 break ;
20 end
21 end
22 return L;

7 EVALUATION

We not only conducted comprehensive simulations, but
also prototyped our designs on a USRP-N210 testbed,
to evaluate the discovery latencies with various specific
symmetric and asymmetric pattern codes. For compari-
son, we used deterministic protocols, including Disco [8],
U-Connect [14], and Searchlight-S [3], and a probabilistic
protocol, Birthday [21]. In this section, we first present
how the worst-case latency bound changes with the
symmetric duty cycle for various deterministic neighbor
discovery protocols. Then, we compare both symmetric
and asymmetric discovery latencies of different neigh-
bor discovery protocols in two scenarios: one-to-one
neighbor discovery and clique neighbor discovery. We
compare different neighbor discovery protocols using
similar duty cycles as in previous works (e.g., Disco [8],
U-Connect [14], and Searchlight [3]).

7.1 Worst-Case Bound of Symmetric Discovery La-
tency

Fig. 6 demonstrates the worst-case latency bound of
various neighbor discovery protocols restricted by sym-
metric duty cycle. Note that there may exist more than
one pattern yielding the same duty cycle for Disco
and Diff-Codes. We use adjacent prime numbers to

 0

5

 10

 15

1.5 2.0 2.5 3.0 3.5 4.0W
o
rs

t-
C

as
e

L
at

en
cy

 B
o
u
n
d

 (
1
0

3
 S

lo
ts

)

Duty Cycle (%)

Optimal Diff-Codes
Diff-Codes

Disco
U-Connect

Searchlight-S

Fig. 6. Worst-Case Latency Bound vs. Duty Cycle

generate Disco patterns, in which case Disco achieves
better symmetric case performance. As for Diff-Codes,
we select the pattern with the smallest worst-case bound
regarding to each duty cycle. We observe that Diff-Codes
achieve tremendously tighter worst-case latency bounds
compared with the other protocols.

0

20

40

60

80

100

1.5 2.0 2.5 3.0 3.5 4.0

R
ed

u
ct

io
n
 o

f
W

o
rs

t-
C

as
e

 L
at

en
cy

 B
o
u
n
d
 (

%
)

Duty Cycle (%)

Disco
U-Connect

Searchlight-S

Fig. 7. Reduction of Worst-Case Latency Bound

Fig. 7 shows the improvements of worst-case latency
bound achieved by Diff-Codes compared with the other
protocols. We note that we compare Diff-Codes with
other neighbor discovery protocols under exactly the
same duty cycles. Compared with Searchlight-S, with
the same symmetric duty cycle, Diff-Codes can lower
the worst-case latency bound by more than 20% in most
cases, and the maximum reduction is as high as 50%.
Specifically, those cases of maximum reduction in Fig.
7 correspond to optimal Diff-Codes, which are in corre-
spondence to Table 1, as well. The average worst-case
latency bound reduction of Diff-Codes over Searchlight-
S, U-Connect, and Disco are 23.9%, 65.7%, and 80.8%,
respectively. The above numerical results verify the ef-
fectiveness of Diff-Codes.

7.2 One-to-One Neighbor Discovery Latencies

In the one-to-one scenario, there are exactly two nodes
conducting neighbor discovery, or equivalently, a node
has only one neighbor in its proximity to discover.
The discovery latency is the number of slots for two
neighboring nodes to discover each other since they
enter each other’s transmission range. Suppose the two
nodes are A and B with cycle length of nA and nB,
respectively. Node A may be in any slot from index
0 to nA − 1, at the instant it enters B’s transmission
range. The case is similar for node B. Thus, there are

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

overall nAnB different combinations of the two nodes’
slot indices at the beginning of the discovery process.
Therefore, in the simulations, to get the cumulative
distribution function (CDF) of discovery latencies of a
deterministic pattern, we traverse all the possible initial
combinations, and determine the discovery latency for
each case. Moreoever, to achieve the worst-case latency
bound, we set the slot boundaries of different nodes to be
perfectly aligned for Disco and U-Connect, whlie setting
an interleaving of half the slot width for Searchlight-S
and (A)Diff-Codes. In addition, the CDFs of Birthday
protocol in simulations are calculated by the expression
of discovery latency and duty cycle in [21].

7.2.1 Discovery Latencies in Symmetric Case

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200 1400 1600

C
u
m

u
la

ti
v
e

F
ra

ct
io

n

Latency of Discovery (Slots)

Diff-Code(14/280)
Diff-Code(16/320)

Disco(37-43)
U-Connect(31)

Searchlight-S(40)
Birthday(5%)

Fig. 8. CDF of One-to-One Discovery Latencies for
Symmetric Duty Cycle 5%

In this set of simulations, we set the duty cycle at
5%, and compare the performance of two different Diff-
Codes with existing protocols. We set the cycle lengths
of the two Diff-Codes at 280 and 320, the pair of primes
in Disco at (37, 43), the prime of U-Connect at 31, the
probing period of Searchlight-S at 40 slots, and the
active probability of Birthday protocol at 5%. From the
cumulative distribution of discovery latencies (Fig. 8),
we can see that Diff-Codes perform the best in both
the median case and worst-case. Specifically, both of the
two evaluated Diff-Codes realize a median gain of nearly
30% over Searchlight-S; the minimum worst-case latency
of Diff-Codes is 280 slots, which is also 30% less than that
of Searchlight-S.

7.2.2 Discovery Latencies in Asymmetric Case
In the simulations for asymmetric one-to-one neighbor
discovery, we consider the asymmetric duty cycles of 5%
and 1%. The parameters of the evaluated protocols are
shown in Fig. 9. In addition, we compare multiple setups
of ADiff-Codes, which have the same set of asymmetric
duty cycles, as well.

Fig. 9 shows the evaluation results for various neigh-
bor discovery protocols. The simulated ADiff-Codes
outperform Searchlight-S, Disco all along. Specifically,
ADiff-Codes reduce the median discovery latency by
26.0% compared to Searchlight-S, and by 47.9% com-
pared to Disco. The worst-case gains of ADiff-Codes
are 15.9% and 28.2% over Searchlight-S and Disco, re-
spectively. What’s more, in comparison with U-Connect,

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000 6000 7000

C
u
m

u
la

ti
v
e

F
ra

ct
io

n

Latency of Discovery (Slots)

ADiff-Codes(15/298,50/4902)
Disco(37-43,191-211)

U-Connect(31,151)
Searchlight-S(40,200)

Birthday(5%,1%)

Fig. 9. CDF of One-to-One Discovery Latencies for
Asymmetric Duty Cycles 5%-1%

ADiff-Codes reduce the median case discovery latency
by as high as 59.3%, and achieve smaller latencies for
more than 99.9% of times, while having a worst-case
bound that is only 7.1% larger.

0

1000

2000

3000

4000

5000

6000

7000

Median-CaseAverage-Case Worst-Case

L
at

en
cy

 o
f

D
is

co
v
er

y
 (

S
lo

ts
)

(15/298,50/4902)
(17/341,50/4902)
(15/297,48/4514)
(15/298,48/4514)
(18/355,48/4514)
(15/297,75/7068)
(18/355,80/7732)

Fig. 10. One-to-One Discovery Latencies of Multiple
ADiff-Codes Series with Asymmetric Duty Cycles 5%-1%

In Fig. 9, there is only one single series of ADiff-
Codes. However, for the same set of asymmetric duty
cycles, many ADiff-Codes can be constructed. Hence, in
Fig. 10, we compare the discovery latencies of various
ADiff-Codes setups conforming to the same asymmetric
duty cycles of 5% and 1%. There are seven ADiff-Codes
series presented in the figure. Even though their worst-
case latencies show big differences, the latencies in the
median and the average cases are fairly close. That
indicates ADiff-Codes can achieve a relatively stable
discovery latency, despite of the combination of duty
cycles. Furthermore, from the perspective of practical
implementation, it tends to be acceptable in mobile
wireless networks as long as enough neighbors are
found. For example, even though there may be more
than 10 mobile device users in a coffee bar, a guest
is satisfied to discover only 4 of them to start a card
game. It is different from neighbor discovery in sensor
networks, where failing to discover a neighbor can result
in unreachable nodes in transmission. This means that if
a neighbor discovery protocol has short latencies in most
cases, it can satisfy user’s demands well most of the
times in practice. Considering the tremendous latency
gain in the median case, and the superior performance
in most of the times, i.e., all along in symmetric case, and
more than 99% according to the one-to-one asymmetric
simulation results, our design of (A)Diff-Codes should
have great advantage in reality.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

7.3 Clique Neighbor Discovery Latencies

Besides the one-to-one discovery latencies, we also ex-
amine the performance of our design, when there are
multiple neighbors within a nodes transmission range.
The discovery latency in the scenario of clique neighbor
discovery is the number of slots for a node to discover
all its neighbors. What’s more, as explained in Section
7.2, practical applications can be satisfied by discovering
enough number of neighbors. Thus, we also compare dif-
ferent neighbor discovery protocols using 90%-latency,
i.e., the latency of discovering 90% of neighbors.

We assume that a node A has M neighbors, and
the cycle lengths of A and its neighbors are nA and
ni(1 ≤ i ≤ M), respectively. Then, there are overall
nA ·

∏M
i=1 ni combinations of the initial slot indices for

neighbor discovery. In such case, even for M = 10 and
nA = ni = 100, there are as many as 1020 different
combinations. Therefore, it is impractical to go through
all those probabilities as in the evaluation of one-to-one
neighbor discovery. Instead, we calculate the cumulative
distribution of discovery latencies out of as many as 105

random initial combinations. Furthermore, with multiple
neighbors, the beacons from different neighbors may
collide at node A, leading to that node A cannot decode
any one of them. For simulation, we set one of the
M neighbors to have the identical slot interleaving as
in the one-to-one case, which reflects the worst-case
performance. In addition, the other neighbors have ran-
dom slot interleaving compared with A. As explained in
Section 8.2, each time slot is of length 20 ms, and the
difference between slot interleaving of two neighboring
nodes should exceed 50 µs to avoid interference.

7.3.1 Discovery Latencies in Symmetric Case

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

0 400 800 1200 1600 2000

C
u
m

u
la

ti
v
e

F
ra

ct
io

n

Latency of Discovery (Slots)

Diff-Code(14/280)
Diff-Code(16/320)

Disco(37-43)
U-Connect(31)

Searchlight-S(40)
Birthday(5%)

Fig. 11. CDF of Clique Discovery Latencies with 50
neighbors for Symmetric Duty Cycle 5%

For symmetric neighbor discovery with the existence
of multiple neighbors, we set the duty cycle of all the
nodes at 5%. Fig. 11 presents the CDF of discovery laten-
cies when a node has 50 neighbors overall. The two sim-
ulated Diff-Codes outperform other neighbor discovery
protocols significantly. Specifically, the two Diff-Codes
achieve median gains of 30.7% and 20.8% compared
with Searchlight-S, respectively. However, in the worst-
case, the evaluated neighbor discovery protocols cannot
always discover all the 50 neighbors. For example, the

two Diff-Codes can discover all the neighbors in 71.6%
and 72.7% simulations, respectively, and Searchlight-S
only converges at 66.7%. This is because the interference
of concurrent discovery signals cannot be ignored in the
clique scenario. Therefore, as stated in Section 7.2, we
focus on the 90%-latency in the following simulations of
clique neighbor discovery.

40 80 120 160 200

Number of Neighbors

 0

 100

 200

 300

 400

9
0
%

-L
at

en
cy

 (
S

lo
ts

)

0

20

40

60

80

100

C
u
m

u
la

ti
v
e

F
ra

ct
io

n
 (

%
)

(a) Diff-Code (14/280)

40 80 120 160 200

Number of Neighbors

 0

 100

 200

 300

 400

9
0
%

-L
at

en
cy

 (
S

lo
ts

)

0

20

40

60

80

100

C
u
m

u
la

ti
v
e

F
ra

ct
io

n
 (

%
)

(b) Searchlight-S (40)

Fig. 12. CDF of 90%-Latency with up to 200 neighbors
for Symmetric Duty Cycle 5%

To obtain how the cumulative distributions of 90%-
latencies change as the number of neighbors in-
creases, we compare the CDFs of Diff-Code(14/280) with
Searchlight-S, which is the best among existing protocols.
As shown in Fig. 12, Diff-Code has better performance
than Searchlight-S in all cases. The figures also indicate
that both neighbor discover protocols can discover at
least 90% of all the neighbors, regardless of the num-
ber of neighbors. Thus, although there are interferences
among nodes in clique neighbor discovery, user can still
discover enough neighbors with high possibility.

7.3.2 Discovery Latencies in Asymmetric Case
Because the duty cycle of a mobile device is indepen-
dently determined by its energy budget, there may exist
various duty-cycled neighbors in a node’s proximity.
That is to say, the node may have both symmetric
neighbors with the same duty cycle, and asymmetric
neighbors that have different duty cycles. Hence, in our
simulations, we set the duty cycle of node A to be 5%
and 1%, respectively, and node A has 20 neighboring
nodes. For each duty cycle of node A, we consider two
cases: (1) all of the 20 nodes are asymmetric neighbors
of node A, and (2) half of the neighbors have duty cycle
of 1% and the other half have 5%.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

0.0

0.2

0.4

0.6

0.8

1.0

1000 3000 5000 7000

C
u
m

u
la

ti
v
e

F
ra

ct
io

n

Latency of Discovery (Slots)

10x1% / 10x5%

1000 3000 5000 7000

Latency of Discovery (Slots)

20x1%

ADiff-Codes
Disco

U-Connect
Searchlight-S

Birthday

(a) 5% Duty-Cycled Node A

0.0

0.2

0.4

0.6

0.8

1.0

1000 3000 5000 7000

C
u

m
u

la
ti

v
e

F
ra

ct
io

n

Latency of Discovery (Slots)

10x1% / 10x5%

1000 3000 5000 7000

Latency of Discovery (Slots)

20x5%

ADiff-Codes
Disco

U-Connect
Searchlight-S

Birthday

(b) 1% Duty-Cycled Node A

Fig. 13. CDF of 90%-Latency for Clique Neighbor Discov-
ery with 20 neighbors

Fig. 13 presents the CDFs of 90%-latency in different
cases. We note that all the deterministic neighbor dis-
covery protocols adopt the same active-sleep patterns
as in one-to-one case, with duty cycles of 5% and 1%.
The performance of Disco and U-Connect is better than
that in one-to-one case. This is because in our setups
for clique neighbor discovery, most neighbors have non-
aligned time slots with node A. What’s more, it is
apparent and reasonable that the 90%-latencies in the
worst-case are smaller than the worst-case bound of dis-
covery latencies (as shown in Fig. 9). Besides, we can see
from the figures that the ADiff-Codes series outperforms
all the other protocols except Disco, which performs
only slightly better than ADiff-Codes. In addition, both
Fig. 13(a) and 13(b) show that the 90%-latency in the
median case becomes smaller as the number of neighbors
with 5% increases. Specifically, in Fig. 13(a), ADiff-Codes
achieve the median case 90%-latencies of 1842 and 1273
slots, corresponding to the cases where there are 0
and 10 neighbors with duty cycle of 5%, respectively.
That corresponds to our common sense that in clique
neighbor discovery, the latencies to discover neighboring
nodes tend to decrease when the neighboring nodes have
higher duty cycles.

7.4 Experiment Results
To examine the performance of (A)Diff-Codes in prac-
tice, we have prototyped our designs as well as other
existing protocols using Ettus USRP-N210 testbed. In
our experiments, we set the length of each slot to be
20 ms, and use a 30-byte packet that contains the MAC
address as beacon for neighbor discovery. The USRP
node should decode the incoming packets to discover
neighboring nodes. The discovery latencies are measured

by a pre-specified node in each discovering pair/clique.
As in simulations, we consider both one-to-one and
clique neighbor discovery. In the one-to-one scenario, the
duty cycle in the symmetric case is set at 5%, while the
asymmetric duty cycles are set at 5% and 1%. For the
clique neighbor discovery, the pre-specified node has the
duty cycle of 5%, with 3 neighboring nodes of 5% and 2
neighboring nodes of 1%.4 In each set of experiments, we
randomly generate the initial indices of the USRP-N210
nodes, and compute the CDF over 200 runs. We note that
overflowed active slots are adopted in all the realization
of neighbor discovery protoocls. Therefore, we strip the
consecutive active slots, which may appear in Disco
and U-Connect. In Birthday protocol, the USRP node
generates random number in each slot, which is used to
determine the state of the next slot. Additionally, in the
clique scenario, we consider the latencies to discovery all
the neighbors, because the number of neighbors is quite
limited. Thus, in our experiments, interfering discovery
signals are rare, and only have a very minor impact.

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200 1400 1600

C
u
m

u
la

ti
v
e

F
ra

ct
io

n

Latency of Discovery (Slots)

Diff-Code(14/280)
Diff-Code(16/320)

Disco(37-43)
U-Connect(31)

Searchlight-S(40)
Birthday(5%)

Fig. 14. Implementation: CDF of Discovery Latencies for
Symmetric Duty Cycle 5%

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000 6000 7000

C
u
m

u
la

ti
v
e

F
ra

ct
io

n

Latency of Discovery (Slots)

ADiff-Codes(15/298,50/4902)
Disco(37-43,191-211)

U-Connect(31,151)
Searchlight-S(40,200)

Birthday(5%,1%)

Fig. 15. Implementation: CDF of Discovery Latencies for
Asymmetric Duty Cycles 5%-1%

Fig. 14 shows the experiment results for symmetric
one-to-one neighbor discovery. The overall trends of
CDFs in the figure cord with the simulation results (Fig.
8). The two Diff-Codes both perform apparently better
than the other protocols. Compared with Searchlight-S,
the reduction of discovery latency in the median case
is 27.7%, which is approximate to the median gain of
nearly 30% in simulations. Next, with the asymmetric
duty cycles set at 5% and 1%, ADiff-Codes perform the

4. In our experiments, the link between two USRP nodes has good
quality, and we do not manage to handle collisions. Thus, packet loss
is possible with a small probability.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

best in a majority of one-to-one cases. As illustrated in
Fig. 15, the gain of discovery latency in the median case
reaches 25.5%, compared with Searchlight-S, and the
evaluated ADiff-Codes series is superior to U-Connect
before the 98-th percentile.

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000 6000 7000

C
u
m

u
la

ti
v
e

F
ra

ct
io

n

Latency of Discovery (Slots)

ADiff-Codes
Disco

U-Connect
Searchlight-S

Birthday

Fig. 16. Implementation: CDF of Clique Discovery Laten-
cies

Fig. 16 presents the CDFs of discovery latencies in
clique neighbor discovery experiments. The performance
of ADiff-Codes is similar to that of Disco. The median
case gain compared to Searchlight-S is as high as 38.6%.
What’s more, although according to simulation results
(Fig. 9), the worst-case discovery latency of U-Connect is
slightly smaller than ADiff-Codes, the experiment results
in Fig. 16 turn out that ADiff-Codes even achieve slightly
better worst-case latency than U-Connect.

Finally, we notice that in all the experiments, the
performance of Disco turns out to be much better than
that in the one-to-one simulations. For example, in
Fig. 15 and 16, Disco outperforms Searchlight-S, and
achieves similar CDFs as ADiff-Codes. This is because
the asynchronous USRP-N210 nodes always lead to slot
non-alignment in experiments. However, in simulations
of one-to-one neighbor discovery, we set aligned slot
boundaries so as to get the worst-case latencies of Disco.
Owing to the similar reason, the performance of different
protocols corresponds to the simulation results in the
clique scenario. Such effects are observed in [3], due to
the power of slot non-alignment, as well.

8 DISCUSSION

In this section, we discuss several improtant issues on
the implementation of Diff-Codes.

8.1 MAC/PHY Compatibility
Most deterministic neighbor discovery protocols, includ-
ing (A)Diff-Codes in this work, design the active-sleep
patterns that schedule the state transformation of nodes
between active and sleeping. Previous works (e.g., [8],
[14], etc.) propose to implement active-sleep patterns in
wireless sensor networks with existing low-power listen-
ing protocols, such as B-MAC [24]. For the application
of (A)Diff-Codes, we can use a counter that counts from
0 to n − 1 repeatedly, where n is the code length. The
counter increases by one every time slot, and the node
can turn active at corresponding slot indices. In practice,

each node can store a whole ADiff-Codes series locally,
and turn to a Diff-Code in the series according to its
requirement on the duty cycle. The counter will be tuned
accordingly.

In mobile wireless networks, neighbor discovery is
conducted among wireless devices. Although according
to [3], the slot duration on the order of seconds is needed
on the application level, we can reduce the duration to
the order of milliseconds by turning on/off the WiFi
interface in the kernel level [11]. Hence, we have adopted
time slots of 20 ms for evaluations in this work. In ad-
dition, as explained in Section 1, one of the objectives of
neighbor discovery in mobile wireless networks is to find
neighboring devices to enjoy various proximity-based
applications. In that case, neighbor discovery tends to be
an on-demand service, and does not need to operate all
the time. Hence, it is acceptable to use a relatively high
duty cycle, as evaluated in this work and most existing
works.

Furthermore, neighbor discovery relies on the WiFi
radios on wireless devices, which work on the 2.4/5G
frequency band. Consequently, it will not impact or
interrupt most cellular services such as phone call and
cellular data service (e.g., GSM on 1.9G band, LTE on
700M band, etc.). However, most of the existing neigh-
bor discovery protocols cannot co-exist with other WiFi
transmissions. In practice, we can alleviate the problem
of interference by choosing a less-busy channel in 2.4
GHz band, or turning to 5 GHz band, where there are
not heavy WiFi transmissions. Whats more, the beacons
for neighbor discovery adopted in existing protocols can
be replaced with correlatable symbol sequences, which
have been proved to be robust under the SNR of −6 dB
[20].

8.2 Clique Neighbor Discovery

In the scenario of clique neighbor discovery, the possi-
bility of interference between the beacons from different
neighboring nodes increases with the number of nodes
in the network. For a 30-byte packet, its transmission
time is 40 µs under the bit rate of 6 Mbps, and even
shorter under other bit rates. If we further take the
hardware jitter into consideration, the interval between
two beacons needs to be at least 50 µs, so that a node
can receive both of them without interference. Equiva-
lently, when a node A has two neighbors, the slot offset
between those two neighbors should be no less than 50
µs. In the evaluation, we use the time slot of 20 ms.
With such slot duration, the slot offset between any two
nodes is below 50 µs in only 0.25% of time. In addition,
when the slot offset between the two neighboring nodes
is below 50 µs, they still cannot cause interference at
node A if they do not turn active at the same time with
node A. Considering that there are only limited active
slots within each cycle under the relatively low duty
cycle, the possibility that the two neighboring nodes may
interfere with each other is actually even lower. What’s

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

more, as claimed in Section 7.2, instead of discovering all
the neighbors, it is acceptable in practical applications to
discover a high enough proportion of them. Therefore, in
practice, a node can discover enough neighbors in most
cases.

At last, each node needs to select the duty cycle for
neighbor discovery according to their remaining battery
power. Our designs can guarantee that any two of
such Diff-Codes are feasible for symmetric/asymmetric
neighbor discovery. Therefore, (A)Diff-Codes can adapt
to the complex scenario where each node in the network
has different neighborhood as well as specific duty cycle.
In this work, we consider the evaluation of some simple
clique cases for clarity.

9 CONCLUSION

In this paper, we have presented a systematic study of
designing highly effective and energy-efficient neighbor
discovery protocols in mobile wireless networks. We
have designed Diff-Codes for the case of symmetric
duty cycle, and extended it to ADiff-Codes to deal
with the asymmetric case. We have derived a tighter
lower bound for the worst-case latency, by exploiting
active slot non-alignment. Both of our simulation, and
experiment results have shown that (A)Diff-Codes can
achieve significantly better performance in both one-to-
one and clique neighbor discovery, compared with state-
of-art neighbor discovery protocols. Specifically, in the
one-to-one scenario, Diff-Codes can reduce the worst-
case latency by up to 50%, and achieve a median gain
of around 30%; while ADiff-Codes are also 30% better
in the median case, and outperform existing neighbor
discovery protocols in more than 99% simulations and
experiments. In the clique scenario, both Diff-Codes and
ADiff-Codes have smaller latencies to discover 90% of
all the neighbors.

ACKNOWLEDGEMENTS

This work was supported in part by the State Key
Development Program for Basic Research of China (973
project 2012CB316201), in part by China NSF grant
61422208, 61472252, 61272443 and 61133006, in part by
CCF-Intel Young Faculty Researcher Program and CCF-
Tencent Open Fund, in part by the Scientific Research
Foundation for the Returned Overseas Chinese Scholars,
State Education Ministry, and in part by Jiangsu Fu-
ture Network Research Project No. BY2013095-1-10. The
opinions, findings, conclusions, and recommendations
expressed in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies
or the government.

REFERENCES
[1] “Sony ps vita - near,” http://us.playstation.com/psvita.
[2] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin, and

R. Gupta, “Wireless wakeups revisited: energy management for
voip over wi-fi smartphones,” in MobiSys, 2007.

[3] M. Bakht, M. Trower, and R. H. Kravets, “Searchlight: won’t you
be my neighbor?” in MOBICOM, 2012.

[4] L. D. Baumert, Cyclic difference sets. Springer-Verlag New York,
1971.

[5] S. Bitan and T. Etzion, “Constructions for optimal constant weight
cyclically permutable codes and difference families,” IEEE Trans-
actions on Information Theory, vol. 41, no. 1, pp. 77–87, 1995.

[6] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[7] F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal
codes: Design, analysis, and applications,” IEEE Transactions on
Information Theory, vol. 35, no. 3, pp. 595–604, 1989.

[8] P. Dutta and D. E. Culler, “Practical asynchronous neighbor
discovery and rendezvous for mobile sensing applications,” in
SenSys, 2008.

[9] T. Evans and H. Mann, “On simple difference sets,” Sankhyā: The
Indian Journal of Statistics, vol. 11, pp. 357–364, 1951.

[10] E. Felemban, R. Murawski, E. Ekici, S. Park, K. Lee, J. Park, and
Z. Hameed, “Sand: Sectored-antenna neighbor discovery protocol
for wireless networks,” in SECON, 2010.

[11] H. Han, Y. Liu, G. Shen, Y. Zhang, and Q. Li, “Dozyap: power-
efficient wi-fi tethering,” in MobySys, 2012.

[12] G. G. H. Hardy and E. M. Wright, An introduction to the theory of
numbers. Oxford University Press, 1979.

[13] J.-R. Jiang, Y.-C. Tseng, C.-S. Hsu, and T.-H. Lai, “Quorum-
based asynchronous power-saving protocols for ieee 802.11 ad
hoc networks,” Mobile Networks and Applications, vol. 10, no. 1-2,
pp. 169–181, 2005.

[14] A. Kandhalu, K. Lakshmanan, and R. Rajkumar, “U-connect:
a low-latency energy-efficient asynchronous neighbor discovery
protocol,” in IPSN, 2010.

[15] N. Karowski, A. C. Viana, and A. Wolisz, “Optimized asyn-
chronous multi-channel neighbor discovery,” in INFOCOM, 2011.

[16] A. Keshavarzian and E. Uysal-Biyikoglu, “Energy-efficient link
assessment in wireless sensor networks,” in INFOCOM, 2004.

[17] R. Khalili, D. Goeckel, D. F. Towsley, and A. Swami, “Neighbor
discovery with reception status feedback to transmitters,” in
INFOCOM, 2010.

[18] S. Lai, B. Ravindran, and H. Cho, “Heterogenous quorum-based
wake-up scheduling in wireless sensor networks,” IEEE Transac-
tions on Computers, vol. 59, no. 11, pp. 1562–1575, 2010.

[19] D. Li and P. Sinha, “RBTP: Low-power mobile discovery protocol
through recursive binary time partitioning,” IEEE Transactions on
Mobile Computing, vol. 13, no. 2, pp. 263–273, 2014.

[20] E. Magistretti, O. Gurewitz, and E. W. Knightly, “802.11 ec:
collision avoidance without control messages,” in Mobicom, 2012.

[21] M. J. McGlynn and S. A. Borbash, “Birthday protocols for low
energy deployment and flexible neighbor discovery in ad hoc
wireless networks,” in MobiHoc, 2001.

[22] M. Mitzenmacher and E. Upfal, Probability and computing: Random-
ized algorithms and probabilistic analysis. Cambridge University
Press, 2005.

[23] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive
gps-based positioning for smartphones,” in MobiSys, 2010.

[24] J. Polastre, J. Hill, and D. Culler, “Versatile low power media
access for wireless sensor networks,” in SenSys, 2004.

[25] J. Singer, “A theorem in finite projective geometry and some
applications to number theory,” Transactions of the American Math-
ematical Society, vol. 43, no. 3, pp. 377–385, 1938.

[26] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh, “Power-saving protocols
for ieee 802.11-based multi-hop ad hoc networks,” in INFOCOM,
2002.

[27] S. Vasudevan, M. Adler, D. Goeckel, and D. Towsley, “Efficient
algorithms for neighbor discovery in wireless networks,” IEEE
Transactions on Networking, vol. 21, no. 1, pp. 69–83, 2013.

[28] S. Vasudevan, J. F. Kurose, and D. F. Towsley, “On neighbor
discovery in wireless networks with directional antennas,” in
INFOCOM, 2005.

[29] S. Vasudevan, D. F. Towsley, D. Goeckel, and R. Khalili, “Neigh-
bor discovery in wireless networks and the coupon collector’s
problem,” in MOBICOM, 2009.

[30] W. Zeng, S. Vasudevan, X. Chen, B. Wang, A. Russell, and W. Wei,
“Neighbor discovery in wireless networks with multipacket re-
ception,” in MobiHoc, 2011.

[31] L. Zhang and D. Guo, “Neighbor discovery in wireless networks
using compressed sensing with reed-muller codes,” in WiOpt,
2011.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16

[32] X. Zhang and K. G. Shin, “E-mili: energy-minimizing idle listen-
ing in wireless networks,” IEEE Transactions on Mobile Computing,
vol. 11, no. 9, pp. 1441–1454, 2012.

[33] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous wakeup for ad
hoc networks,” in MobiHoc, 2003.

Tong Meng is a graduate student from the De-
partment of Computer Science and Engineering
at Shanghai Jiao Tong University, P. R. China.
He received his B.S. in Computer Science from
Shanghai Jiao Tong University in 2013. His re-
search interests encompass neighbor discovery,
routing in wireless networks and mobile social
networks. He is a student member of ACM and
CCF.

Fan Wu is an associate professor in the De-
partment of Computer Science and Engineering,
Shanghai Jiao Tong University. He received his
B.S. in Computer Science from Nanjing Univer-
sity in 2004, and Ph.D. in Computer Science and
Engineering from the State University of New
York at Buffalo in 2009. He has visited the Uni-
versity of Illinois at Urbana-Champaign (UIUC)
as a Post Doc Research Associate. His research
interests include wireless networking and mobile
computing, algorithmic network economics, and

privacy preservation. He has published more than 70 peer-reviewed
papers in leading technical journals and conference proceedings. He
is a receipt of China National Natural Science Fund for Outstanding
Young Scientists, CCF-Intel Young Faculty Researcher Program Award,
CCF-Tencent Rhinoceros bird Open Fund, and Pujiang Scholar. He has
served as the chair of CCF YOCSEF Shanghai, on the editorial board
of Elsevier Computer Communications, and as the member of technical
program committees of more than 40 academic conferences. For more
information, please visit http://www.cs.sjtu.edu.cn/~fwu/.

Guihai Chen obtained his B.S. degree from
Nanjing University, M. Engineering from South-
east University, and Ph.D. from University of
Hong Kong. He visited Kyushu Institute of Tech-
nology, Japan in 1998 as a research fellow, and
University of Queensland, Australia in 2000 as
a visiting Professor. During September 2001 to
August 2003, he was a visiting Professor in
Wayne State University. He is a Distinguished
Professor and Deputy Chair with the Depart-
ment of Computer Science, Shanghai Jiao Tong

University. Prof. Chen has published more than 200 papers in peer-
reviewed journals and refereed conference proceedings in the areas
of wireless sensor networks, high-performance computer architecture,
peer-to-peer computing and performance evaluation. He has also
served on technical program committees of numerous international
conferences. He is a member of the IEEE Computer Society.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2015.2388534

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

