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ABSTRACT
Federated learningwas proposedwith an intriguing vision of achiev-

ing collaborative machine learning among numerous clients with-

out uploading their private data to a cloud server. However, the

conventional framework requires each client to leverage the full

model for learning, which can be prohibitively inefficient for large-

scale learning tasks and resource-constrained mobile devices. Thus,

we proposed a submodel framework, where clients download only

the needed parts of the full model, namely, submodels, and then

upload the submodel updates. Nevertheless, the “position” of a

client’s truly required submodel corresponds to its private data,

while the disclosure of the true position to the cloud server during

interactions inevitably breaks the tenet of federated learning. To

integrate efficiency and privacy, we designed a secure federated

submodel learning scheme coupled with a private set union pro-

tocol as a cornerstone. The secure scheme features the properties

of randomized response, secure aggregation, and Bloom filter, and

endows each client with customized plausible deniability (in terms

of local differential privacy) against the position of its desired sub-

model, thereby protecting private data. We further instantiated the

scheme with Alibaba’s e-commerce recommendation, implemented

a prototype system, and extensively evaluated over 30-day Taobao

user data. Empirical results demonstrate the feasibility and scala-

bility of the proposed scheme as well as its remarkable advantages

over the conventional federated learning framework, from model

accuracy and convergency, practical communication, computation,

and storage overhead.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies → Machine learning; •
Security and privacy → Distributed systems security.

KEYWORDS
federated submodel learning, recommendation systems, local dif-

ferential privacy, private set union, randomized response, secure

aggregation, Bloom filter
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1 INTRODUCTION
1.1 Motivating Industrial Scenario
The industrial scenario in Alibaba that drives federated submodel
learning (FSL) is the desire to provide accurate, customized, and

real-time e-commerce recommendations for billion-scale mobile

clients while keeping user data on local devices.

Currently, Alibaba’s recommendation systems are cloud based

(e.g., two-stage models with a matching stage [32, 49] for retrieving

candidates and a ranking stage [14, 55, 56] for generating final

recommendations, or unified models [57, 58]) and require the server

cluster to collect, store, and process massive amounts of user data.

Typical data fields involved in recommendations include user profile

(e.g., user ID, gender, and age), user behavior (e.g., the list of visited

goods IDs and relevant information, such as category IDs and shop

IDs), and context (e.g., time, page number, and display position).

More or less, these data fields are sensitive, and some clients who

value privacy highly may refuse to share their data. In addition,

according to the General Data Protection Regulation (GDPR), which

took effect onMay 25, 2018, any institution or company is prohibited

from uploading user data (e.g., collected by apps on local devices)

without the consent of European Union users [20]. Under such

circumstances, refining the recommendation models and further

providing accurate recommendations become practical demands.

Federated learning (FL), which decouples the ability to domachine

learning from the need to upload and store data in the cloud, is a po-

tential solution. However, the original framework of FL, proposed

by Google in [34], requires each client to download the full model

for training and then to upload the update of the full model, which

is impractical for complex learning tasks and resource-constrained

clients. Specifically, deep learning with a huge and sparse input

space (e.g., e-commerce goods IDs, natural language texts, and lo-

cations) requires an embedding layer to transform inputs into a

lower-dimensional space where similar inputs are close [11, 36].

In addition, the full embedding matrix tends to occupy a large

proportion of the whole model parameters (e.g., 98.22% in our eval-

uated recommendation model and more than two-thirds in the

language model of Google’s Android keyboard, called Gboard [24]).

Furthermore, as the largest online consumer-to-consumer platform

in China, Taobao (owned by Alibaba) has roughly two billion goods
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in total [49], which is far larger than the 10,000-word vocabulary

in Gboard’s natural language scenario [13, 24, 45]. This implies

that the full embedding matrix of goods IDs in Taobao’s deployed

recommendation models roughly has two billion rows and occu-

pies 134GB space when the embedding dimension is 18, and each

element adopts 32-bit representation. If each client directly uses the

full model for learning, it inevitably incurs unacceptable and unaf-

fordable overhead for one billion Taobao users with smart devices.

To improve efficiency, we observe that the input data of a certain

client normally involve a small subspace of the full feature space.

Thus, the client tends to need a tailored model rather than the full

model, especially in the practical applications that require person-

alization, such as recommendation systems and multi-task learning.

For example, if a Taobao user’s historical data contain 300 goods,

he/she requires only the corresponding 300 rows, rather than the

entire two billion rows, of the full embedding matrix. Based on this

key observation, we propose a general and scalable FSL framework.

1.2 Federated Submodel Learning Framework
In each communication round of FSL, a cloud server first selects

some eligible clients to participate. Then, each chosen client down-

loads part of the global model as required, namely, a submodel,

from the cloud server. For example, in the e-commerce recommen-

dation, a client’s submodel mainly contains the embedding vectors

for the goods IDs in its historical data, as well as the parameters

of the other network layers. Then, the client trains the submodel

over its local data and uploads the submodel update. The cloud

server aggregates the submodel updates from live clients and forms

a consensus update to the global model. The process above is iter-

ated continuously in practice so that the global model on the cloud

server and the submodels on the clients are kept up-to-date.

If each client leverages the full model rather than its required

submodel for learning, FSL will degenerate to conventional FL. FSL

further decouples the ability to accomplish FL from the need to

use the prohibitively large full model, dramatically improving effi-

ciency. For example, in our evaluation, the size of a client’s desired

submodel is only 1.99% of the full model’s size. The generalization

of FSL also implies that almost all existing methods to improve the

efficiency and scalability of FL can still apply to FSL. For example,

the model compression algorithms not only can compress the full

model (update) but also can compress the submodel (update) to

reduce overhead. Therefore, FSL is more practical for distributing

industrial-strength learning tasks on ubiquitous mobile devices.

1.3 Newly Introduced Privacy Risks
Just as every coin has two sides, FSL not only provides efficiency

but also introduces two extra privacy risks.

First, compared with using the public full model in FL, the down-

load of a submodel and the upload of the submodel update would

require each client to provide an index set as auxiliary information,

specifying the “position” of its submodel. However, the real index

set normally corresponds to the client’s private data. For exam-

ple, to specify the required rows of the embedding matrix in the

e-commerce scenario, a client mainly needs to provide the goods

IDs in its user data as the real index set. Similarly, in the natural

language scenario, a client’s real index set to locate the desired

word embedding vectors is actually the vocabulary extracted from

the client’s typed texts. Thus, the disclosure of a client’s real index

set to the cloud server can still be regarded as the leakage of the

client’s private data, breaking the tenet of FL.

Second, compared with the aligned full model in FL, each client

chosen in one round of FSL submits only the update of its cus-

tomized submodel, which tends to be highly differentiated from

the other chosen clients’ submodels. As a result, the aggregation

of updates w.r.t. a certain index can come from a unique client

out of the chosen ones (e.g., with probability 86.7% for 100 clients

randomly chosen in our Taobao dataset). This implies that from the

aggregate update, the cloud server not only can ascertain that the

client has the index but also can learn its detailed update. Besides

the real index revealing a client’s private data, the client’s individ-

ual update can still memorize or even allow reconstruction of its

private data, namely, the model inversion attack [22, 59] on the

individual client. Further, as the goods IDs of different Taobao users

are more heterogeneous than the vocabularies of different Gboard

users, the misalignment of desired submodels and the privacy risk

in e-commerce are more severe than those in natural language.

1.4 Fundamental Problems and Challenges
To mitigate the privacy risks above, we need to jointly solve two

fundamental problems abstracted from the download and upload

phases of FSL: (1) How a client can download a row of a matrix,

which represents the global/full model and is maintained by an

untrusted cloud server, without revealing which row or the row

index to the cloud server; and (2) how a client can modify a row of

the matrix, still without revealing which row was modified and the

altered content. We analyze two problems in detail.

We start with the first problem. One naïve method is that the

client downloads the full matrix, as in conventional FL, and then

extracts the required row locally. This method perfectly hides the

fetched row index, but incurs immense communication overhead.

To avoid downloading the full matrix, private information retrieval
(PIR) [4, 12, 44] can be applied, which exactly matches the problem

settings, including the read-only mode and the concealment of

the retrieved elements. Therefore, if we consider the first problem

independently, PIR may be a good choice.

We next deconstruct the second problem. For a concrete row

of the full matrix, if clients modify the row one by one, the cloud

server definitely knows the clients who modified this row and their

detailed modifications. Thus, one feasible way is to first securely

aggregate (i.e., add up) all the modifications without revealing any

individual modification and then apply the aggregate modification

(i.e., the sum of the modifications) to the row of the full matrix once.

Such a primitive of oblivious addition can be provided by many

cryptographic schemes (e.g., the protocol specific to the FL setting

in [8] and additively homomorphic encryption [9, 43]). With the

secure aggregation guarantee, if more than one client participates

in aggregation and at least one of their modifications is nonzero,

then the cloud server cannot know any individual modification and

thus cannot reveal which client(s) truly intend to modify this row.

Further, a larger number of involved clients imply better privacy.

One extreme case is in conventional FL with secure aggregation,

also called secure federated learning (SFL), which harshly lets all
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chosen clients in one round be involved for each row of the full ma-

trix, no matter whether they truly intend to modify this row or not.

Thus, SFL offers the best privacy but the worst efficiency. Another

extreme case is directly combining FSL with secure aggregation,

which simply lets those clients who really intend to modify a row

be involved. Thus, each chosen client needs to be involved only

for those rows that it truly intends to modify, implying the best

efficiency. However, different clients tend to modify highly differen-

tiated or even mutually exclusive rows. For joint modification w.r.t.

some row, chances are high that only one client is involved. Un-

der this circumstance, the secure aggregation guarantee no longer

works, while the client’s real intention and detailed modification

are disclosed. In a nutshell, trivial solutions to the second problem

cannot achieve a tunable balance between privacy and efficiency.

1.5 Solution Overview and Contributions
Considering the two fundamental problems above and several prac-

tical issues together, we propose secure federated submodel learning
(SFSL). We first determine the scope of joint modification in each

round of FSL, thereby aligning differentiated submodels. The key

obstacle is the need to conceal the position of any chosen client’s

desired submodel (alternatively, its real index set or private data).

The baseline SFL trivially uses the prohibitively large full index

set (i.e., the position of the full model) for alignment. In contrast,

our SFSL identifies a necessary and sufficient scope for alignment,

namely, the union of the chosen clients’ real index sets. The union

is efficiently obtained through our proposed private set union (PSU)
protocol without revealing any individual real index set. In addition,

because the union is (far in our application scenario) smaller than

the full index set, SFSL can significantly outperform SFL without

sacrificing privacy. Based on the union, each chosen client gener-

ates a randomized index set to replace and protect its real index set

for interactions in the download and upload phases. Specifically,

the randomized index set is generated by applying randomized

response twice with one memoization step between, and the pa-

rameter setting in randomized response is customized by the client.

Such a design with secure aggregation allows the client to hold self-

controllable deniability against whether it really intends or does

not intend to download some row and to upload the modification

of this row, even if the client participates in multiple rounds. The

strength of deniability is rigorously quantified using local differen-
tial privacy (LDP). Meanwhile, the probability of the cloud server

inferring the client’s real intention from the aggregate modifica-

tion is also thoroughly analyzed. Furthermore, the cardinality of

the randomized index set dominates the client’s overhead, and the

intersection of the client’s real and randomized index sets controls

its local training. Therefore, each client can fine-tune the tension

among privacy, efficiency, and effectiveness when using SFSL.

We summarize the key contributions of this work as follows:

• To the best of our knowledge, we are the first to propose the FSL

framework for industrial-strength, on-device intelligence, and

further to identify and remedy privacy risks.

• The proposed secure scheme SFSL empowers each client with

finely tunable deniability against its real intention of download-

ing the desired submodel and uploading the submodel update,

thereby protecting private data.

• As a moat, we designed an efficient and scalable PSU protocol

using Bloom filter, secure aggregation, and randomization, which

can have independent and significant value in practice.

• We instantiated SFSLwithAlibaba’s e-commerce scenario, adopted

the deep interest network (DIN) for recommendation, and imple-

mented a prototype system. We also conducted extensive eval-

uations using the data of Taobao users collected over a period

of 30 days. When the number of chosen clients per round is 100,

the major experimental results are presented as follows: (1) Com-

pared with conventional FL, which diverges in the end, SFSL

improves the highest area under the curve (AUC) by 7.22%; (2) at

the same security and privacy levels as SFL, SFSL reduces 80.05%

of the communication overhead on both sides of the client and

the cloud server, and reduces 85.02% (resp., 45.43%) and 72.51%

(resp., 63.77%) of the computation (resp., memory) overhead on

the sides of the client and the cloud server, respectively; and (3)

for the proposed PSU protocol, the communication overhead per

client is less than 1MB. The computation overhead of the client

and the cloud server is each less than 40s, even if the dropout

ratio of the chosen clients reaches 20%.

2 RELATEDWORK
In recent few years, FL has become an active topic in academic and

industrial fields. In this section, we focus on the related work about

security and privacy. For other focuses, we direct interested readers

to comprehensive surveys [26, 31, 54].

Bonawitz et al. [8] designed a secure aggregation protocol in both

honest-but-curious and actively adversarial settings, which will be

used as a building block of our SFSL. In particular, their design

was specific to the FL framework, where each resource-constrained

client cannot establish direct communication channels with other

clients and needs to rely on an untrusted cloud server as a relay,

while part of clients may drop out during the aggregation process.

To bound the leakage of each individual client’s training data from

the model updates, several differentially private mechanisms were

proposed. McMahan et al. [35] considered recurrent language mod-

els, let the trusted cloud server perturb the aggregate model update

in a single round with a Gaussian mechanism, and relied on the

celebrated moments account scheme [1] for multi-round privacy

composition. Agarwal et al. [2] studied how to integrate differential
privacy (DP) with model compression and proposed a Binomial

mechanism for each client to perturb its quantized model update.

The quantization [30, 48, 53] is to encode original float-type and

continuous parameters into integer-type and discrete values with a

few bits. In contrast to these defense mechanisms, Bagdasaryan et

al. [6] developed a model replacement attack launched by malicious

clients to backdoor the global model on the cloud server. Nasr et

al. [40] considered the membership inference attack in pure FL with-

out secure aggregation and leveraged a client’s individual model

update to uncover the membership of its training data.

Parallel to existing work in FL, where each client uses the same

global model for learning, we propose a novel FSL framework for

scalability. Under FSL, we focus on new privacy issues due to the

dependence between the position of a client’s desired submodel

and its private data, as well as the misalignment of the submodel

updates from heterogeneous clients in secure aggregation.
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3 PRELIMINARIES
In this section, we define security requirements corresponding

to the privacy risks introduced in Section 1.3. We also review a

primitive building block, called randomized response.

We first introduce some frequently used notations. We use a

two-dimensional matrix with𝑚 rows and 𝑑 columns to represent

the global/full model, denoted asW. We also let S = {1, 2, . . . ,𝑚}
denote the full (row) index set of W. In addition, we let C denote 𝑛

clients who are selected by the cloud server to participate in any

round of FSL. For a chosen client 𝑖 ∈ C, we let S (𝑖) ⊂ S denote

its real index set and let WS (𝑖 ) denote its desired submodel, which

imply that the user data of client 𝑖 involve (intuitively, after local

training may update) the rows in W with indices S (𝑖)
.

3.1 Security Requirements
First, for the disclosure of real index sets when clients interact with

the untrusted cloud server, we consider that each client should have

plausible deniability of whether a certain index is or is not in its

real index set. To measure the strength of plausible deniability, we

adopt LDP, which is a variant of standard DP in the local setting.

Specifically, the randomization in LDP is performed by clients in

a distributed manner, rather than relying on a data curator as a

trusted authority to conduct centralized perturbation in DP. Thus,

the privacy of an individual client’s data is protected not only from

external attackers but also from the untrusted data curator (e.g.,

the cloud server in FSL). LDP for various population statistics has

received industrial deployments (e.g., by Google [19, 21], Apple [5],

and Microsoft [16]) as well as extensive academic attention [18, 27,

50, 51]. We present the formal definition of LDP as follows:

Definition 3.1. A randomized mechanism 𝑀 satisfies 𝜖-LDP, if

for any pair of inputs from a client, denoted as 𝑥 and 𝑦, and for any

possible output of𝑀 , denoted as 𝑧, we have
Pr(𝑀 (𝑥)=𝑧)
Pr(𝑀 (𝑦)=𝑧) ≤ exp (𝜖) .

A smaller privacy budget 𝜖 offers a better LDP guarantee.

Intuitively, LDP says that the output distribution of the random-

ized mechanism does not change too much, given distinct inputs

from the client. Thus, LDP formalizes a sort of plausible deniability:

No matter what output is revealed, it is approximately equally as

likely to have come from one input as any other input. When LDP

applies to obscure the membership of a certain index in FSL, the

inputs and outputs are boolean values, where possible inputs (resp.,

outputs) are two states: a certain index “in” or “not in” a client’s

real (resp., revealed) index set. We can check that FL provides the

strongest deniability, where the level of LDP is 𝜖 = ln(1/1) = 0 for

each client. The reason is that no matter whether an index is or is

not in a client’s real index set (different inputs), this index will defi-

nitely be revealed (the same output “in”). In contrast, FSL provides

the weakest deniability, where the level of LDP is 𝜖 = ln(1/0) = ∞
for each client, because if an index is in (resp., not in) a client’s

real index set, this index will definitely (resp., definitely not) be

revealed, namely, output “in” with probability 1 (resp., 0).

Second, for the secure aggregation of misaligned submodel up-

dates in any round, we consider that the clients chosen in the round

should be enabled to tune the privacy level, rather than trivially

choosing extreme SFL or FSL with secure aggregation. We define a

client-tunable privacy protection mechanism as follows:

Definition 3.2. A privacy protection mechanism for aggregating

submodel updates is client tunable, if participating clients can con-

trol the probabilities of the following two events from the securely

aggregated submodel update.

• Event 1: The cloud server ascertains that an index belongs to

some client and learns its detailed update w.r.t. this index.

• Event 2: The cloud server ascertains that an index does not belong
to some client.

If we view the disclosure of a client’s real intention w.r.t. an

index (i.e., the occurrence of either Event 1 or Event 2) as a breach

of deniability about the index, then Definition 3.2 complements

Definition 3.1 for secure aggregation of submodel updates. If we

view the disclosure of a client’s individual submodel update as

the premise of the model inversion attack (resp., the membership

inference attack) to reveal the content (resp., the membership) of

the client’s private data, Definition 3.2 can also be interpreted from

mitigating the attack on each individual client.We first examine SFL.

If at least two clients participate, the probability of Event 1 is 0, and

the probability of Event 2 is still 0 for those indices in the union of

the chosen clients’ real index sets. For an index outside the union,

the probability of Event 2 approaches 1. Although each chosen

client submits a zero vector w.r.t. this index, from the aggregate

zero vector, the cloud server almost ascertains that all the chosen

clients do not have the index, despite of some rare cases. Regarding

directly combining FSL with secure aggregation, the probability of

Event 1 depends entirely on the heterogeneity of the user data on

the clients, and the probability of Event 2 is the same as that in SFL.

3.2 Randomized Response
Randomized response, due to Warner in 1965 [52], is a survey tech-

nique in the social sciences for collecting statistics about illegal,

embarrassing, or sensitive topics, where the respondents want to

preserve the privacy of their answers. A classic example for illustra-

tion is the “Are you a member of the Communist Party?” question.

For this question, each respondent flips a fair coin in secret and

tells the truth if it comes up tails; otherwise, he/she flips a second

coin and responds “Yes” if heads and “No” if tails. Thus, a commu-

nist (resp., non-communist) will answer “Yes” with probability 75%

(resp., 25%) and “No” with probability 25% (resp., 75%).

Randomized response can provide plausible deniability for both

“Yes” and “No” answers. A communist can contribute his/her re-

sponse of “Yes” to the event that the first and second coin flips

were both heads, which occurs with probability 25%. Meanwhile, a

non-communist can also contribute his/her response of “No” to the

event that the first coin was heads and the second coin was tails,

which still occurs with probability 25%. Furthermore, the plausible

deniability of a one-time randomized response can be rigorously

quantified by LDP, particularly at the level 𝜖 = ln(75%/25%) = ln 3,

irrespective of any attacker’s prior knowledge [17, 19].

4 DESIGN OF SFSL
4.1 Design Rationale
We illustrate key design principles mainly through demonstrating

how to handle the two fundamental problems raised in Section 1.4

and how to resolve several practical issues.



Billion-Scale Federated Learning on Mobile Clients: A Submodel Design with Tunable Privacy MobiCom ’20, September 21–25, 2020, London, United Kingdom

0 0 0 0
0 0 0 0

2 6 3 8
0 0 0 0

0 0 0 0

6 1 3 7

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

4 5 2 9

0 0 0 0

Cloud server asks “Do you 
have index j for j ∈ S Alice ⋃
S Bob ⋃ S Charlie = {1, 2, 3, 4}?”

Each client uses randomized 
response to answer and generates 
a randomized index set for 
downloading its submodel and 
uploading the submodel update.

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0

Alice

2 6 3 8

6 1 3 70 0 0 0

0 0 0 0 4 5 2 9

Bob

Charlie

2 6 3 8
4 5 2 9

6 1 3 7

2 6 3 8
4 5 2 9
0 0 0 0
6 1 3 7
0 0 0 0

S’’ Alice = {2, 4}

S’’ Charlie = {1, 4}

S’’ Bob = {1, 2}

Global Model

Succinct Submodels
for Local Training

Succinct Submodel
Updates

Aggregate 
Submodel Update

Updated 
Global Model

4 5 2 9

0 0 0 0

At least one of 
Alice and Bob has 

index 2. Don’t 
know either of 
their updates. 

No client 
has index 5.

Downloaded 
Submodels

Uploaded Submodel
Updates

Client i Real Index Set 
S(i)

Randomized Index Set 
S’’(i)

Succinct Index Set
S(i) ⋂ S’’(i)

Alice {2} {2, 4} {2}
Bob {1} {1, 2} {1}
Charlie {3, 4} {1, 4} {4}

S(i) is kept secret by client i, S’’(i) is for interacting with the cloud
server, and S(i) ⋂ S’’(i) is for locally training the succinct submodel. 

Our private set union protocol, 
based on Bloom filter and secure 
aggregation, enables the cloud 
server to obtain a union without 
revealing any individual set.

S(i) ⋂ S’’(i) S’’(i)

SGD

Each client can 
provide plausible 
deniability of its 
real index set.

Figure 1: An illustration of SFSL. The gray rounded rectangle denotes secure aggregation. The randomized index sets of Alice,
Bob, and Charlie are {2, 4}, {1, 2}, and {1, 4}, respectively. For index 2, Alice submits the update (4, 5, 2, 9), Bob pretends to submit
a zero vector, while Charlie does not submit. Secure aggregation ensures that the adversarial cloud server obtains only the
sum of Alice’s and Bob’s updates (4, 5, 2, 9), but does not know either update. Thus, the cloud server can only infer that at least
one of Alice and Bob has index 2. Due to plausible deniability, the cloud server also cannot ascertain the state of Charlie.

As shown in Figure 1, we handle two fundamental problems in

a unified manner rather than in separate ways. During the down-

load and upload phases, a client consistently uses a randomized

index set in place of its real index set. In contrast, during the local

training phase, the client leverages the intersection of its real and

randomized index sets (called the client’s succinct index set) to

prepare the succinct submodel and the user data involved. With

the blind of the randomized index set to interact with the outside

world, the client holds plausible deniability of some index being

in or not in its real index set. Specifically, the client generates its

randomized index set locally with randomized response as follows.

The sensitive question asked by the cloud server is “Do you have a

certain index?”. Then, the client answers “Yes” with two customized

probabilities, conditional on whether the index is or is not in the

client’s real index set, and puts the index into the randomized index

set if it receives a “Yes” answer. The two probabilities allow the

client to fine-tune the balance between deniability and utility.

We further examine the feasibility of index set randomization

in handling two problems. For the first problem in the download

phase, if a client intends (resp., does not intend) to download a

certain row, and it actually downloads (resp., does not download),

it can blame its action to randomization, i.e., the occurrence of

the event that the index not in (resp., in) a client’s real index set

returns a “Yes” (resp., “No”) answer. Regarding the second problem

in the upload phase, the usage of the randomized index set still

empowers a client to deny its real intention of modifying or not

modifying some row, even if the cloud server observes its binary

action of modifying or not modifying. Additionally, for a concrete

row, there are two different groups of clients involved in the joint

modification: (1) One group consists of those clients who intend to

modify the row and contribute nonzero modifications; and (2) the

other group comprises those clients who do not intend tomodify the

row and pretend to modify by submitting zero modifications. With

the secure aggregation guarantee, even though the adversarial cloud

server observes the aggregate modification, it is hard to identify any

individual modification and further to infer whether some client

originally intends to perform a modification or not. The hardness is

controlled by the sizes of two groups, alternatively, the probabilities

of an index in and not in the real index set returning a “Yes” answer,

which are fully tunable by clients as expected in Definition 3.2.

Besides two fundamental problems, there still exist two practical

issues to be solved before the method of index set randomization

can apply to FSL. The first issue regards whether it is practical and

necessary for the cloud server to ask “Do you have a certain index?”

for each index in the full index set, which is intrinsically adopted

by FL. For example, the matrix, representing Taobao’s full recom-

mendation model, has billions of rows. Thus, it is impractical for

a client to answer billion-scale questions and further to download

and securely upload those rows with “Yes” answers. We turn to

narrowing down the scope to the union of 𝑛 chosen clients’ real

index sets, which is normally far smaller than the full index set (i.e.,

the union of the whole clients’ real index sets). Our optimization is

inspired by an observation: If a client’s real index set is of size 300,

and the full index set is of size 2 billion, using the probability param-

eters in the survey of party membership, the expected number of

“Yes” answers is 300× 75% + (2× 10
9 − 300) × 25% ≈ 5× 10

8
. Such a

calculation implies that the dominant “Yes” answers are those with

“No” in reality but “Yes” due to randomness. Nevertheless, most of

the “No”-to-“Yes” answers are useless. Specifically, for those indices

that do not belong to any chosen client’s real index set (e.g., index

5 in Figure 1), although part (25% in expectation) of the chosen

clients upload zero vectors for randomization, the cloud server can

still infer from the aggregate zero vectors that these clients do not

actually have the indices. Therefore, it is unnecessary to cover any

index outside the union of 𝑛 chosen clients’ real index sets. By using

the union, we set 𝑛 = 100 and recalculate the expected number of

“Yes” answers as 300× 75%+ (100× 300− 300) × 25% ≈ 8× 10
3
. This

implies that a prohibitively large number of unnecessary “No”-to-

“Yes” answers are avoided, significantly improving efficiency and

without degrading privacy. Now, a basic and thorny problem that

accompanies is how multiple clients can obtain the union of their

real index sets under the mediation of an untrusted cloud server

without revealing any client’s real index set, namely, the need of

a PSU protocol. Considering existing schemes cannot satisfy the

atypical setting of FSL and high scalability, we propose a novel

design of PSU based on Bloom filter and secure aggregation.
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The second issue regards the longitudinal privacy when a client

is chosen to participate in multiple rounds of FSL. The initial ver-

sion of randomized response provides a rigorous privacy guarantee

only when an audience answers the same question once, facilitating

a one-time response to “Do you have a certain index?”. Thus, we

need to extend the initial version to allow repeated responses from

the same client to those already answered indices. Our extension

leverages key principles from randomized aggregatable privacy-
preserving ordinal response (RAPPOR) [19, 21] and plays randomized

response twice with a memoization step between. In particular, the

noisy answers generated by the inner (permanent) randomized re-

sponse will be memoized and permanently replace the real answers

in the outer (instantaneous) randomized response. This ensures

that even though a client responds to the membership of a concrete

index for infinite times, the client can still hold plausible deniability

of its real answer, where the level of deniability is lower bounded

by the privacy level of the memoized noisy answer.

4.2 Design Details
We introduce the design details of SFSL in a top-down manner. We

first give an overview of its top-level architecture and then show

two underlying modules, namely, index set randomization and PSU.

4.2.1 Secure Federated Submodel Learning (SFSL). Before getting
into SFSL, we first review federated averaging [34], which is the

default distributed optimization algorithm of FL. In each round, the

cloud server restarts a collaborative training process and randomly

chooses some eligible clients to locally train the latest global model.

Then, the cloud server takes a weighted average of the full model

updates, one chosen client’s weight being proportional to the size of

its training set, and adds the aggregate update to the global model.

We now present SFSL in Algorithm 1, which generalizes fed-

erated averaging to support effective and efficient FSL. SFSL also

preserves desired security and privacy properties while incorporat-

ing the unstable and limited network connections of mobile devices.

At the initial stage, the cloud server randomly initializes the global

model (Line 1). In each communication round, the cloud server

selects 𝑛 clients to participate (Lines 2 and 3) and also maintains

an up-to-date set of the chosen clients who are alive throughout

the whole round, denoted by
ˆC. A chosen client determines its real

index set based on its local data, which specifies the “position” of its

truly required submodel (Line 10). For example, if the goods IDs of a

Taobao user include {1, 2, 4}, then he/she requires the first, second,

and fourth rows of the embedding matrix for goods IDs, further

implying that the real index set should contain {1, 2, 4}. Then, the
cloud server launches PSU to obtain the union of the chosen clients’

real index sets while keeping each individual client’s real index set

in secret (Lines 4 and 11). The union is delivered to live clients for

them to generate randomized index sets with customized LDP guar-

antees against the cloud server (Line 12). Each live client will use

its randomized index set, rather than its real index set, to download

the submodel and to securely upload the submodel update (Lines 13

and 19). Upon receiving the randomized index set from a client, the

cloud server stores it for later usage and returns the corresponding

submodel and training hyperparameters to the client (Line 6).

Depending on the intersection of the real and randomized in-

dex sets (i.e., the succinct index set), the client extracts a succinct

Algorithm 1: Secure Federated Submodel Learning (SFSL)

/* Cloud server’s process */

1 Initialize the global modelW;

2 foreach communication round do
3 Randomly select 𝑛 clients, denoted as C;
4 Launch private set union (Algorithm 3), obtain the union of 𝑛

clients’ real index sets, namely,

⋃
𝑖∈C S (𝑖 )

, and deliver the

union result to the up-to-date set of the clients who are alive,

denoted as
ˆC ⊂ C;

5 foreach client 𝑖 ∈ ˆC do
6 Receive and store the randomized index set S′′(𝑖 )

from

client 𝑖 , and return the submodelWS′′(𝑖 ) and training

hyperparameters to 𝑖;

7 foreach 𝑗 ∈ ⋃
𝑖∈C S (𝑖 ) do

8 Determine the live clients involving index 𝑗 , denoted as

ˆC𝑗 = {𝑖 |𝑖 ∈ ˆC ∧ 𝑗 ∈ S′′(𝑖 ) }, let them submit materials

for secure aggregation, and obtain the sum of (weighted)

updates

∑
𝑖∈ ˆC𝑗 Δw

(𝑖 )
𝑗

and the total count number of

relevant samples

∑
𝑖∈ ˆC𝑗 𝑣

(𝑖 )
𝑗

;

9 Update the 𝑗-th row of the global model W by adding∑
𝑖∈ ˆC𝑗 Δw

(𝑖 )
𝑗

/∑
𝑖∈ ˆC𝑗 𝑣

(𝑖 )
𝑗

;

/* Client 𝑖’s process */

10 Determine its real index set S (𝑖 )
based on local data;

11 Participate in private set union (Algorithm 3);

12 Generate a randomized index set S′′(𝑖 )
(Algorithm 2);

13 Use S′′(𝑖 )
to download a submodel, denoted asWS′′(𝑖 ) ;

14 Depending on the succinct index set S′′(𝑖 ) ⋂ S (𝑖 )
, locally extract

the succinct submodel WS′′(𝑖 ) ⋂S (𝑖 ) from WS′′(𝑖 ) and prepare

involved data as the succinct training set;

15 TrainWS′′(𝑖 ) ⋂S (𝑖 ) using the hyperparameters and obtain the

update of the succinct submodel ΔWS′′(𝑖 ) ⋂S (𝑖 ) ;

16 Initialize the submodel update to be uploaded with S′′(𝑖 )
, denoted

as ΔWS′′(𝑖 ) , all to 0, and add ΔWS′′(𝑖 ) ⋂S (𝑖 ) ;

17 Count the number of training samples involving each index

𝑗 ∈ S′′(𝑖 )
and store the results in the vector vS′′(𝑖 ) ;

18 Weight ΔWS′′(𝑖 ) in advance by multiplying each row with the

corresponding count number in vS′′(𝑖 ) ;

19 Upload materials for securely aggregating ΔWS′′(𝑖 ) , vS′′(𝑖 ) .

submodel and prepares involved data as the succinct training set

(Line 14). For example, if a Taobao user’s real index set is {1, 2, 4},
and his/her randomized index set is {2, 4, 6, 9}, he/she receives a
submodel with the row indices {2, 4, 6, 9} from the cloud server, but

just needs to train the succinct submodel with the row indices {2, 4}
over his/her local data involving the goods IDs {2, 4}. After training
under the preset hyperparameters, the client obtains the update of

the succinct submodel (Line 15). Then, it prepares the submodel

update to be uploaded with the randomized index set by adding

the update of the succinct submodel to the rows with the succinct

indices and padding zero vectors to the other rows (Line 16). To

help the cloud server average multiple submodel updates according

to the size of relevant local training data, each chosen client also

needs to count the number of its training samples involving every
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index in the randomized index set (Line 17). In particular, the num-

bers of samples involving the indices outside the succinct index

set are all zeros. Furthermore, each client weights the submodel

update to be uploaded in advance by multiplying each row with

the corresponding count number, namely, the weight (Line 18).

The weighted submodel updates and the count vectors from live

clients are securely aggregated side by side under the coordination

of the cloud server (Lines 7–9 and 19). Specifically, the cloud server

guides the secure aggregation by enumerating every index in the

union of real index sets as follows. It first determines the set of

live clients whose randomized index sets contain this index and

then lets these clients submit the materials for securely adding

up the weighted updates and the count numbers w.r.t. the index

(Line 8). The cloud server finally applies an aggregate update to

the global model in this row by adding the quotient between the

sum of the weighted updates and the total count number, namely,

the weighted average (Line 9). To reduce the interactions between

the cloud server and any client, they can package all the materials

supporting secure aggregation, rather than exchanging for one

index each time (Lines 7–9). In particular, the cloud server executes

Lines 7 and 8 for each live client 𝑖 ∈ ˆC in parallel and then executes

Line 9 for each index in the union 𝑗 ∈ ⋃
𝑖∈C S (𝑖)

.

4.2.2 Index Set Randomization. We next show how a client can

generate a randomized index set in each participating round.

We start with the basic design. The sensitive question, asked by

the cloud server, is “Do you have a certain index?”. All the clients

chosen in one round of FSL make up the population to be surveyed,

while the union of their real index sets works as the necessary and

sufficient scope of the questionnaire. Given the questionnaire, client

𝑖 leverages randomized response to answer “Yes” or “No” and puts

the indices with “Yes” answers into its randomized index set. To

fine-tune the tension among effectiveness, efficiency, and privacy,

client 𝑖 basically adjusts two probability parameters 𝑝
(𝑖)
1

, 𝑝
(𝑖)
2

in

randomized response. In particular, 𝑝
(𝑖)
1

denotes the probability that

an index in client 𝑖’s real index set will return a “Yes” answer and

controls the factual size of client 𝑖’s data contributed to FSL. A larger

𝑝
(𝑖)
1

generally implies better effectiveness from convergence rate. In

addition, 𝑝
(𝑖)
2

denotes the probability that an index outside client 𝑖’s

real index set will return a “Yes” answer and determines the number

of redundant rows to be downloaded and the number of padded zero

vectors to be uploaded through secure aggregation. Hence, given

a fixed 𝑝
(𝑖)
1

, a smaller 𝑝
(𝑖)
2

indicates better efficiency. Furthermore,

𝑝
(𝑖)
1

, 𝑝
(𝑖)
2

jointly adjust the level of LDP, where a pair of closer

𝑝
(𝑖)
1

, 𝑝
(𝑖)
2

provide better LDP. We examine three typical instances:

(1) The party membership survey takes 𝑝
(𝑖)
1

= 75%, 𝑝
(𝑖)
2

= 25% for

each respondent; (2) FL essentially uses the full index set as the

scope of the cloud server’s questionnaire, takes 𝑝
(𝑖)
1

= 𝑝
(𝑖)
2

= 1 for

each client, and offers the best LDP and effectiveness but the worst

efficiency; and (3) FSL adopts 𝑝
(𝑖)
1

= 1, 𝑝
(𝑖)
2

= 0 for each client and

provides the best effectiveness and efficiency but the worst LDP.

We further extend the basic design to allow multi-round par-

ticipation of client 𝑖 and its repeated responses to any index. As

shown in Algorithm 2, we let client 𝑖 maintain two index sets with

“Yes” and “No” answers in the permanent randomized response,

Algorithm 2: Client 𝑖’s Index Set Randomization

Input: Client 𝑖’s real index set S (𝑖 )
, Union of the chosen clients’

real index sets

⋃
𝑖∈C S (𝑖 )

, Client 𝑖’s memoized index set

Y (𝑖 )
(resp., N (𝑖 )

) initialized to ∅ at very beginning with

permanent “Yes” (resp., “No”) answers to the question “Do

you have a certain index?”, Client 𝑖’s customized probability

parameters 0 ≤ 𝑝
(𝑖 )
1

, 𝑝
(𝑖 )
2

, 𝑝
(𝑖 )
3

, 𝑝
(𝑖 )
4

≤ 1.

Output: Client 𝑖’s doubly randomized index set S′′(𝑖 )

1 S′(𝑖 ) = ∅, S′′(𝑖 ) = ∅;
// Permanent randomized response

2 foreach 𝑗 ∈ ⋃
𝑖∈C S (𝑖 ) ∧ 𝑗 ∉ Y (𝑖 ) ⋃N (𝑖 ) do

3 if 𝑗 ∈ S (𝑖 ) then
4 Add 𝑗 to S′(𝑖 )

with probability 𝑝
(𝑖 )
1

;

5 else
6 Add 𝑗 to S′(𝑖 )

with probability 𝑝
(𝑖 )
2

;

// Memoization of permanent answers

7 if 𝑗 ∈ S′(𝑖 ) then
8 Y (𝑖 ) = Y (𝑖 ) ⋃ 𝑗 ;

9 else
10 N (𝑖 ) = N (𝑖 ) ⋃ 𝑗 ;

// Instantaneous randomized response

11 foreach 𝑗 ∈ ⋃
𝑖∈C S (𝑖 ) do

12 if 𝑗 ∈ Y (𝑖 ) then
13 Add 𝑗 to S′′(𝑖 )

with probability 𝑝
(𝑖 )
3

;

14 else
15 Add 𝑗 to S′′(𝑖 )

with probability 𝑝
(𝑖 )
4

;

16 return S′′(𝑖 )

respectively (Input). The permanent randomized response is param-

eterized by 𝑝
(𝑖)
1

, 𝑝
(𝑖)
2

as illustrated above. Given that a client can be

grouped with distinct clients in different rounds while the union of

the chosen clients’ real index sets varies from one round to another,

the client needs to handle new indices. For a certain round, as any

new index comes (Line 2), client 𝑖 first generates a permanent noisy

answer for it, conditional on whether the new index is in or is not in

the real index set (Lines 3–6). Then, client 𝑖 updates two memoized

index sets (Lines 7–10). Based on the memoized noisy answers to

the union of real index sets, client 𝑖 obtains its final randomized

index set by performing an instantaneous randomized response

over the union (Lines 11–16). The instantaneous randomized re-

sponse is parameterized with another two probabilities 𝑝
(𝑖)
3

, 𝑝
(𝑖)
4

,

similar to 𝑝
(𝑖)
1

, 𝑝
(𝑖)
2

in the permanent randomized response. Now,

these four probability parameters jointly support tuning the ten-

sion among privacy, effectiveness, and efficiency. In particular,

𝑝
(𝑖)
5

= 𝑝
(𝑖)
1

(𝑝 (𝑖)
3

− 𝑝
(𝑖)
4

) + 𝑝 (𝑖)
4

(resp., 𝑝
(𝑖)
6

= 𝑝
(𝑖)
2

(𝑝 (𝑖)
3

− 𝑝
(𝑖)
4

) + 𝑝 (𝑖)
4

),

denoting the probability that an index in (resp., not in) client 𝑖’s

real index set finally returns a “Yes” answer, now plays the same

role as 𝑝
(𝑖)
1

(resp., 𝑝
(𝑖)
2

) in the basic design. Detailed derivations of

𝑝
(𝑖)
5

, 𝑝
(𝑖)
6

can be found in the complete manuscript [42].

4.2.3 Private Set Union (PSU). We introduce the last PSU module.

We first briefly review existing PSU protocols and illustrate their

practical infeasibility in FSL. We then present our new design.
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Algorithm 3: Private Set Union (PSU)

1 Cloud server partitions the full index set S;
2 foreach client 𝑖 ∈ C do
3 Represent its real index set S (𝑖 )

as a Bloom filter b(𝑖 ) ;
4 Randomize b(𝑖 ) to an integer vector b′(𝑖 ) by replacing each bit

1 in b(𝑖 ) with a random integer from Z𝑅 ;

5 Use a bit vector a(𝑖 ) to indicate whether there exists an element

in S (𝑖 )
falling into the partitions of S;

6 Randomize a(𝑖 ) to an integer vector a′(𝑖 ) by replacing each bit

1 in a(𝑖 ) with a random integer from Z𝑅 ;

7 Submit materials for securely aggregating b′(𝑖 ) , a′(𝑖 ) ;

8 Cloud server obtains

∑
𝑖∈C b′(𝑖 ) and

∑
𝑖∈C a′(𝑖 ) with secure

aggregation, reconstructs the union

⋃
𝑖∈C S (𝑖 )

, and delivers the

union to each live client 𝑖 ∈ ˆC.

PSU promises a wide range of applications in practice, including

union queries over several databases, and, more generally, inte-

gration or sharing of datasets from multiple private sources. Ac-

cording to the representation format of a set, existing PSU pro-

tocols can be generally divided into two categories: polynomial-

based [23, 25, 28, 29, 46] and Bloom filter-based [15, 33, 38]. For the

polynomial-based protocols, elements of a set are represented as

the roots of a polynomial, and the union of two sets is converted to

the multiplication of two polynomials. For the protocols based on

Bloom filter, the union operation over sets is normally transformed

to the element-wise OR operation over the Bloom filters, and the

logic OR operation can be further converted to bit addition and

bit multiplication. To obliviously perform addition and multiplica-

tion operations, the two kinds of protocols mainly turn to generic

secure two-party/multi-party computation, or outsource secure

computation to multiple noncolluding servers. Due to unaffordable

overhead, none of the existing PSU protocols have been deployed

in practice. Besides inefficiency, the basic setting of these protocols

significantly differs from that of FSL, where clients cannot directly

communicate or natively authenticate with each other and should

mediate through an untrusted cloud server. In addition, the set

elements here can come from a billion-scale domain, which has not

been touched in previous work as of yet.

Given the infeasibility of existing work and the atypical setting

of FSL, we propose a new PSU scheme. As shown in Algorithm 3,

each chosen client in one round of FSL first represents its real index

set as a Bloom filter (Line 3). The details about how to set the pa-

rameters of the Bloom filter can be found in [7, 10, 47]. Then, each

chosen client randomizes its Bloom filter by replacing each bit 1

with a random integer from Z𝑅 = {0, 1, . . . , 𝑅 − 1}, while keeping
each bit 0 unchanged (Line 4). All the chosen clients use their ran-

domized Bloom filters rather than original ones to participate in

secure aggregation (Line 7). With the secure aggregation guarantee,

the untrusted cloud server obtains only the sum of the randomized

Bloom filters (Line 8), but cannot know any individual randomized

Bloom filter, which protects the original Bloom filter and the un-

derlying real index set of each chosen client during the aggregation

process. Further, the randomization process guarantees that the

aggregate Bloom filter contains only the necessary membership

information of the elements in the union and obscures unnecessary

count numbers. In other words, the untrusted cloud server knows

only whether there exists a client having a certain index or not,

but cannot know how many clients have the index, which exactly

reaches the goal of PSU. Suppose the original Bloom filters are

securely aggregated without randomization. The aggregate Bloom

filter is actually a counting Bloom filter, equivalent to constructing

it from scratch by sequentially inserting each chosen client’s real in-

dex set. Besides the desired membership information, the counting

Bloom filter also contains the count numbers, which are undesired

leakage in PSU. Overall, our PSU is structured internally in a new

way of first local randomization and then oblivious addition, which

uses the counting Bloom filter as a springboard, but conceals the

undesired count numbers. Thus, our PSU avoids the costly oblivious

multiplications in the common practice to derive the union of sets

by performing bit-wise OR operations over the Bloom filters.

After obtaining the sum of the randomized Bloom filters, the

cloud server can recover the union by doing membership tests for

the full index set. It is prohibitively time-consuming if the full do-

main of index is huge (e.g., in the magnitude of billions in Taobao’s

e-commerce scenario). Even worse, the direct enumeration method

can also introduce a large number of false positives to the union

(i.e., those indices that are not in the union but falsely judged to be

in), further leading to unnecessary redundancy in the download

and upload phases. To handle these problems, we incorporate a

private partition union to narrow down the scope of index for the

union reconstruction above, thereby circumventing the full index

set. We let the cloud server divide the full domain of index into a

certain number of partitions ahead of time (Line 1). A good partition

scheme needs to well balance the pros in the union reconstruction

phase and the cons of additional cost. One trivial partition strategy

is interval-based, where the full index set is sequentially and evenly

split into some intervals. Another partition strategy is hierarchical

and is often application-oriented. According to the size of partitions,

we can determine the retrieval level or granularity. For example, (1)

in the e-commerce recommendation, a tree structure can be used

to partition the goods IDs, where the tree is initialized with the

category information and further can be optimized using learning

methods [57, 58]; and (2) in the natural language processing, a word

semantic hierarchy can be built with the expert knowledge from

WordNet [37, 39]. Given the partitions, each client first uses a bit

vector to indicate whether there exists an index in its real index

set falling into the partitions (Line 5). Just like hiding the concrete

count numbers for the Bloom filter, the client replaces each bit 1 in

its partition indicator vector with a random integer (Line 6). Then,

the cloud server obtains the sum of the randomized partition indica-

tor vectors through secure aggregation and reveals those partitions

with nonzero integers in the corresponding positions (Lines 7 and

8). By simply doing membership tests for the indices falling into

these partitions, the cloud server efficiently reconstructs the union

and delivers it to all live clients (Line 8).

5 THEORETICAL ANALYSIS
In this section, we first analyze the security and privacy of SFSL.

We then analyze its complexity and compare with SFL at the same

security and privacy levels. Due to space limitations, detailed proofs

and analyses are reserved in the complete manuscript [42].
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5.1 Security and Privacy Analyses
Under Definition 3.1, we analyze the LDP of our index set random-

ization in Algorithm 2. We first prove that the union of the chosen

clients’ real index sets is necessary and sufficient to be the input.

Then, as two stepping stones, we analyze the LDP guarantees of

the permanent randomized response and a one-time instantaneous

randomized response, which impose an upper bound and a lower

bound on the LDP of the index set randomization, respectively.

Lemma 5.1. The union of the chosen clients’ real index sets in a
certain communication round is necessary and sufficient for the index
set randomization of each chosen client in the round.

Lemma 5.2. Permanent randomized response achieves LDP of 𝜖 (𝑖)∞ =

ln

(
max

(
𝑝
(𝑖 )
1

𝑝
(𝑖 )
2

,
𝑝
(𝑖 )
2

𝑝
(𝑖 )
1

,
1−𝑝 (𝑖 )

1

1−𝑝 (𝑖 )
2

,
1−𝑝 (𝑖 )

2

1−𝑝 (𝑖 )
1

))
.

Lemma 5.3. A one-time instantaneous randomized response achieves

LDP of 𝜖 (𝑖)
1

= ln

(
max

(
𝑝
(𝑖 )
5

𝑝
(𝑖 )
6

,
𝑝
(𝑖 )
6

𝑝
(𝑖 )
5

,
1−𝑝 (𝑖 )

5

1−𝑝 (𝑖 )
6

,
1−𝑝 (𝑖 )

6

1−𝑝 (𝑖 )
5

))
.

Theorem 5.4. When client 𝑖 participates in any number of rounds,
index set randomization satisfies 𝜖 (𝑖) -LDP, where 𝜖 (𝑖)

1
≤ 𝜖 (𝑖) ≤ 𝜖

(𝑖)
∞ .

If client 𝑖 sets 𝑝
(𝑖)
1

= 𝑝
(𝑖)
2

= 𝑝
(𝑖)
3

= 𝑝
(𝑖)
4

= 1, then 𝑝
(𝑖)
5

= 𝑝
(𝑖)
6

=

1, 𝜖
(𝑖)
1

= 0, 𝜖
(𝑖)
∞ = 0, and 𝜖 (𝑖) = 0. This corresponds to the case

that any index in the union will always receive a permanent “Yes”

answer and an instantaneous “Yes” answer. In other words, if client

𝑖 takes the union as its randomized index set, it can achieve the

strongest 0-LDP as in conventional FL.

We next analyze the stage of securely aggregating submodel

updates in SFSL under Definition 3.2. We consider any index 𝑗 from

the union. We let 𝑛 𝑗,0 and 𝑛 𝑗,1 denote the numbers of live chosen

clients who do not have and have 𝑗 in reality, respectively. For

feasibility and clarity in analysis, we let each chosen client use

the same probability parameters, namely, ∀𝑖 ∈ C, 𝑝 (𝑖)
1

= 𝑝1, 𝑝
(𝑖)
2

=

𝑝2, 𝑝
(𝑖)
3

= 𝑝3, 𝑝
(𝑖)
4

= 𝑝4, which result in the same 𝑝
(𝑖)
5

= 𝑝1 (𝑝3 −
𝑝4) + 𝑝4 = 𝑝5 and 𝑝

(𝑖)
6

= 𝑝2 (𝑝3 − 𝑝4) + 𝑝4 = 𝑝6. Then, we have

Theorem 5.5 as follows:

Theorem 5.5. SFSL is a client-tunable privacy protection mecha-
nism for aggregating submodel updates and guarantees that: Event 1
happens with probability 𝑝7 = 𝑛 𝑗,1𝑝5 (1 − 𝑝5)𝑛 𝑗,1−1 (1 − 𝑝6)𝑛 𝑗,0 , and
Event 2 happens with probability 𝑝8 = (1 − 𝑝5)𝑛 𝑗,1 (1 − (1 − 𝑝6)𝑛 𝑗,0 ).

We still examine the case that each chosen client uses the union

as its randomized index set to securely upload the submodel update

by setting 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 = 1, resulting in 𝑝5 = 𝑝6 = 1

and 𝑝7 = 𝑝8 = 0. This is the strongest privacy for aggregating

submodel updates as in SFL. Combining with the aforementioned

0-LDP for each chosen client, we can find that SFSL with the setting

𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 = 1 (essentially, 𝑝5 = 𝑝6 = 1) is as secure as SFL

under Definition 3.1 and Definition 3.2. We further generalize this

observation in Theorem 5.6, which is free of any privacy definition.

Theorem 5.6. If each chosen client uses the union of real index
sets as its randomized index set, then SFSL is as secure as SFL.

Wefinally analyze the security of our PSU scheme in Algorithm 3.

Theorem 5.7. Only the union of the chosen clients’ real index sets
is revealed in the proposed PSU protocol.

Table 1: Complexities of SFSL (and PSU in it) at the same
security and privacy levels as SFL.

Communication Time Space

Client

SFSL 𝑂 (𝑛𝑠𝑑) 𝑂 (𝑛2𝑠𝑑) 𝑂 (𝑛𝑠𝑑)
PSU 𝑂 (𝑛𝑠) 𝑂 (𝑛2𝑠) 𝑂 (𝑛𝑠)
SFL 𝑂 (𝑛 +𝑚𝑑) 𝑂 (𝑛2 + 𝑛𝑚𝑑) 𝑂 (𝑛 +𝑚𝑑)

Server

SFSL 𝑂 (𝑛2𝑠𝑑) 𝑂 (𝑛3𝑠𝑑) 𝑂 (𝑛2 + 𝑛𝑠𝑑)
PSU 𝑂 (𝑛2𝑠) 𝑂 (𝑛3𝑠) 𝑂 (𝑛2 + 𝑛𝑠)
SFL 𝑂 (𝑛2 + 𝑛𝑚𝑑) 𝑂 (𝑛2𝑚𝑑) 𝑂 (𝑛2 +𝑚𝑑)

*|⋃𝑖∈C S (𝑖) | ≪ |S| ⇒ 𝑛𝑠 ≪𝑚.

5.2 Complexity Analysis and Comparison
We analyze the communication, time, and space complexities of the

client and the cloud server in one round of SFSL. We introduce SFL

as a benchmark for comparison. To be consistent with the analysis

of the secure aggregation protocol [8], we adopt the honest-but-

curious setting and consider the worst-case dropouts of clients.

We first analyze SFSL. For feasibility and clarity, we let each client

use the same 𝑝1, 𝑝2, 𝑝3, 𝑝4 and the resulting 𝑝5, 𝑝6. We assume that

the expected cardinality of each client’s real index set is 𝑠 , which in-

dicates that the expected cardinality of the union of𝑛 chosen clients’

real index sets

⋃
𝑖∈C S (𝑖)

is upper bounded by 𝑛𝑠 . We note that 𝑛𝑠 is

normally much less than the cardinality of the full index set𝑚 (i.e.,

𝑛𝑠 ≪𝑚). In addition, the expected cardinality of each client’s ran-

domized index setS′′(𝑖)
is upper bounded by 𝑠𝑝5+(𝑛−1)𝑠𝑝6, and the

expected cardinality of each client’s succinct index setS (𝑖) ⋂S′′(𝑖)

is 𝑠𝑝5. Moreover, according to [7, 10, 47], the optimal length of the

Bloom filter in the proposed PSU protocol is proportional to the

cardinality of the set to be filtered, namely, the cardinality of the

union. In what follows, we directly show the complexity formulas

containing 𝑝5, 𝑝6. First, the overall communication complexities of

the client and the cloud server are𝑂 (𝑛𝑠 + (𝑠𝑝5 + (𝑛−1)𝑠𝑝6) (2𝑑 +1))
and𝑂 (𝑛2𝑠 + 𝑛(𝑠𝑝5 + (𝑛 − 1)𝑠𝑝6) (2𝑑 + 1)), respectively. Second, the
overall time complexities of the client and the cloud server are

𝑂 (𝑛2𝑠 + 𝑛(𝑠𝑝5 + (𝑛 − 1)𝑠𝑝6) (𝑑 + 1)) and 𝑂 (𝑛3𝑠 + 𝑛2 (𝑠𝑝5 + (𝑛 −
1)𝑠𝑝6) (𝑑 + 1)), respectively. Third, the overall space complexities of

the client and the cloud server are𝑂 (𝑛𝑠 + (𝑠𝑝5 + (𝑛 − 1)𝑠𝑝6) (𝑑 + 1))
and 𝑂 (𝑛2 + 𝑛𝑠 + (𝑠𝑝5 + (𝑛 − 1)𝑠𝑝6) (𝑛 + 𝑑 + 1)), respectively. In
fact, considering secure aggregation is the most costly primitive

underlying SFSL, the complexity formulas above can be roughly es-

timated by leveraging the complexity analysis results of the secure

aggregation protocol reported in [8]. More specifically, we let the

dimension of vector there take 𝑂 (𝑛𝑠 + (𝑠𝑝5 + (𝑛 − 1)𝑠𝑝6) (𝑑 + 1))
here, where 𝑂 (𝑛𝑠) corresponds to the optimal length of the Bloom

filter and the preset constant size of the partition indicator vector

in our PSU, and (𝑠𝑝5 + (𝑛 − 1)𝑠𝑝6) (𝑑 + 1) accounts for the total

size of the weighted submodel update and corresponding count

vector with the randomized index set. From the analysis above, we

can derive that our SFSL is quite scalable because its complexity

depends on the cardinality of the union of 𝑛 chosen clients’ real

index sets 𝑛𝑠 , but is independent of the cardinality of the full index

set𝑚 that controls the size of the full model. In other words, SFSL

completely relieves the dependence on the full model.
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Table 2: Statistics of Taobao dataset.

Type #User(s) #Goods #Categories #Samples

Test (Full) 24,790 138,829 4,758 1,010,284

Train (Full) 49,023 143,534 4,815 15,854,357

Train (Per Client) 1 301 117 323

We next compare our SFSL with SFL at the same security and

privacy levels by imposing 𝑝5 = 𝑝6 = 1 in SFSL. Table 1 shows their

complexities along with the complexity of our PSU. The complexi-

ties of SFL and PSU are derived using the complexity analysis of

the secure aggregation protocol, where the dimension of vector

takes the size of the full model𝑚𝑑 and 𝑂 (𝑛𝑠), respectively. From
Table 1, we can draw that given 𝑛𝑠 ≪𝑚 in our application scenario,

the complexities of the client and the cloud server in SFSL are both

far lower than those in SFL. We can also draw that only if 𝑛𝑠 < 𝑚,

our SFSL outperforms SFL. In the worst case where 𝑛𝑠 = 𝑚 (i.e.,

the union of the chosen clients’ real index sets is the full index

set), the complexity of SFSL is the same as that of SFL. An intuitive

explanation is that if all the clients participate in each round of

FSL, the union of the chosen clients’ real index sets is the full index

set, and SFSL degenerates to SFL. However, the full participation is

ideal and impractical because of the unavailability of some clients

in each round. Thus, the worst case may never happen. We note

that 𝑛𝑠 cannot be larger than𝑚, because the full index set is actu-

ally the union of all the clients’ real index sets. In summary, SFSL

outperforms SFL in any scale of FSL applications, where ubiquitous

data heterogeneity results in model differentiation for the clients.

6 EVALUATION
Dataset:Weuse an industrial dataset

1
built from 30-day impression

and click logs of Taobao users from June 15, 2019 to July 15, 2019.

For a certain Taobao user, we leverage his/her click behaviors in

previous 14 days as historical data to predict his/her click and non-

click behaviors in the following 1 day. We leave out the behaviors

within the last 1 day as the target items of the test set while putting

the other samples into the training set. Specifically, the test set is

located on the cloud server to judge the accuracy and convergency

of the global model. For the full training set, we further cluster

each Taobao user’s data as a training set located on a client. Table 2

shows some statistics about the dataset.

Model, Hyperparameters, and Metric:We take the deployed

DIN in Alibaba [56] as the recommendation model for FSL, where

the number of columns in the embedding matrix is set to 18. Except

the embedding layer for user IDs, goods IDs, and category IDs,

the parameters of the other network layers in DIN, including the

attention layer and the fully connected layer, are of size 64,327.

Hence, the global model on the cloud server is of size 3,617,023,

whereas a desired submodel on the client is of size 71,869 in average,

which is only 1.99% of the global model’s size and roughly requires

0.27MB space using 32-bit representation. For each client’s local

training, we choose mini-batch stochastic gradient descent (SGD)
as the optimization algorithm, set the batch size to 2, and set the

local epoch number to 1. In addition, we initially set the learning

1
A similar Taobao dataset is online available from Tianchi [3].

Table 3: Choices of probability parameters (CPPs) and result-
ing privacy levels. CPP1 corresponds to pure FSLwith secure
aggregation. CPP5 is as secure as SFL.

𝑝1, 𝑝3 𝑝2, 𝑝4 𝑝5 𝑝6 𝜖1 𝜖∞ 𝑝7 𝑝8

CPP1 1 0 1 0 ∞ ∞ 86.7% 0

CPP2 15/16 1/16 88.3% 11.7% 2.02 2.71 0 10.3%

CPP3 7/8 1/8 78.1% 21.9% 1.27 1.95 0 19.5%

CPP4 3/4 1/4 62.5% 37.5% 0.51 1.10 0 34.2%

CPP5 1 1 1 1 0 0 0 0

* Smaller 𝜖1, 𝜖∞, 𝑝7, 𝑝8 indicate better privacy for each chosen client 𝑖 .

rate to 1 and further apply exponential decay with the decay rate

of 0.999 per communication round. For the cloud server’s global

testing, we adopt a golden metric in the task of click-through rate
(CTR) prediction, called AUC, and set the batch size to 1,024.

Prototypes and Configurations:We implemented the proto-

types of our SFSL and the baseline SFL in Python 2.7.16, and the

source code is publicly available from [41]. Figure 2 provides an

overview of SFSL from the perspective of a client in a certain round.

We took a synchronous architecture on top and implemented a

communication module between the cloud server and each client

with standard socket programming. We used TensorFlow 1.12.0 to

implement DIN. We mainly used PyCryptodome 3.7.3 to implement

the secure aggregation protocol in [8]. To support modular addi-

tion underlying secure aggregation, we performed float-to-integer

conversion for each client’s submodel or full model update with

stochastic quantization [48], where the quantization level is set to

2
15
. We let each client use the same choice of probability parameters

(CPP) in SFSL. Table 3 lists 5 CPPs in the evaluation and their re-

sulting privacy levels of index set randomization and aggregating

submodel updates when the number of chosen clients per round

𝑛 is 100. Specifically, CPP1 corresponds to directly combining FSL

with secure aggregation, which lets each client reveal its real in-

dex set and provides the worst LDP. The resulting 𝑝7 = 86.7% at

CPP1 further implies that 86.7% of the goods IDs in the union of

100 randomly chosen clients’ real goods IDs involve a single client.

Therefore, the user data in Taobao’s e-commerce context are highly

heterogeneous. In contrast, CPP5 lets each client use the union of

the chosen clients’ real index sets as its randomized index set. By

Theorem 5.6, SFSL with CPP5 is as secure as SFL.

Our running environment is a Linux workstation with 64-bit

Ubuntu 18.04.2 OS. The processor is Intel(R) Core(TM) i9-9900K

with 8 cores, the base frequency is 3.60GHz, the memory size is

64GB, and the cache size is 16MB. The workstation is also equipped

with 2 NVIDIA’s GeForce RTX 2080 Ti graphics cards. To manifest

the difference between the roles of client and cloud server, (1) from

hardware, we ran all the clients only on CPU, but allowed the cloud

server to accelerate its operations using GPU; and (2) from paral-

lelism and concurrency, we optimized the cloud server’s hotspot

functions with Python’s multiprocessing library. For more imple-

mentation details, please refer to the complete manuscript [42].

6.1 Model Accuracy and Convergency
We bring in centralized training and conventional FL as two base-

lines. We plot the AUCs of our SFSL and two baselines in Figure 3.
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Figure 2: An implementation overview of SFSL from a client (i.e., a Taobao
user) in a certain round for DIN-based CTR prediction.
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Figure 4: Communication and computation overhead of the client and the cloud server per round in our SFSL and the baseline
SFL. In Figure 4(d), SA denotes secure aggregation, and 100 clients are chosen per round.

The number of clients randomly chosen in each round 𝑛 is set to

100. In addition, centralized training refers to the traditional case

that the cloud server first collects data from all the clients, then

trains the DIN model, and tests the global model once training over

the samples with a size similar to the total size of 𝑛 clients’ datasets.

From Figure 3, we can see that compared with centralized train-

ing, which reaches the best AUC of 64.11% in 803 rounds, our SFSL

with CPP2 achieves the highest AUC of 61.54% in 4,908 rounds,

decreasing by 2.57% of AUC. In contrast, conventional FL performs

worst, achieving the highest AUC of 54.32% in 867 rounds and di-

verging in the end. The major reason is that FL coarsely computes

the weighted average of the chosen clients’ full model updates pro-

portional to their training set sizes, no matter whether one client’s

whole training set actually involves some model parameters (the

full model excluding its desired submodel, e.g., some embedding

vectors in DIN) or not, thereby inaccurately counting in the weights

(i.e., the training set sizes) of those clients who contribute zero/no

updates for these model parameters. With a higher heterogeneity

of user data and a higher differentiation of submodels, the rough-

ness and inaccuracy of FL will be exposed more completely, which

clarifies why FL can work in the natural language context with a

10,000-word vocabulary considered by Google, but does not work

well in Alibaba’s e-commerce context with billion-scale goods IDs.

From Figure 3, we can also observe that CPP4 is the worst among

all CPPs and achieves the highest AUC of 60.11%, because 𝑝5, which

controls the size of each client’s succinct training set as well as

the length of historical goods and category IDs in each training

sample, in CPP4 is the smallest among all CPPs. This still explains

another observation that CPP1 and CPP5 with the same 𝑝5 = 1

have identical model performance.

6.2 Communication Overhead
We show the communication overhead of our SFSL and introduce

SFL as a baseline. Figure 4(a) plots the overall communication over-

head per client per round. We do not plot the communication over-

head of the cloud server, since it is equal to the communication

overhead per client multiplying by 𝑛. In more detail, the incom-

ing data of the cloud server are exactly the total outgoing data of

all 𝑛 chosen clients, and vice verse. We also do not plot for dif-

ferent dropout ratios because this factor has little impact on the

communication overhead.

One key observation from Figure 4(a) is that compared with

SFL, our SFSL can sharply reduce the communication overhead. In

particular, when 𝑛 = 100, the overall communication overhead per

client per round is 1.76MB, 2.33MB, 2.78MB, 3.40MB, and 5.57MB

in SFSL with CPP1, CPP2, CPP3, CPP4, and CPP5, respectively, re-

ducing 93.72%, 91.65%, 90.06%, 87.81%, and 80.05% than SFL, which

incurs 27.94MB. Considering SFSL with CPP5 is as secure as SFL,

we can draw that our SFSL can reduce communication overhead

even with not sacrificing any security or privacy. These results

coincide with the complexity analysis in Section 5.2 and Table 1.

The second key observation from Figure 4(a) is that the commu-

nication overhead per client in SFSL increases with 𝑛 for a certain

CPP and also increases with the serial number of CPP for a certain

𝑛. We clarify the reasons by the client’s communication complexity

𝑂 (𝑛𝑠 + (𝑠𝑝5 + (𝑛 − 1)𝑠𝑝6) (2𝑑 + 1)) in Section 5.2. On the one hand,

the communication complexity grows linearly with 𝑛. On the other

hand, it is increasing with 𝑝5 and 𝑝6, and thus, CPP5 is the most

communication expensive. Additionally, given 𝑝5 + 𝑝6 = 1 for CPPs

from CPP1 to CPP4, we can simplify the communication complexity

to𝑂 (𝑛𝑠 + (𝑠 + (𝑛−2)𝑠𝑝6) (2𝑑 +1)), which increases with 𝑝6 as 𝑛 > 2.
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From Table 3, we can see that 𝑝6 increases with the serial number

of CPP, implying higher communication overhead as depicted in

Figure 4(a). Intuitively, 𝑝6 controls the size of the redundant/zero

parameters to be downloaded and securely uploaded and dominates

the holistic trend of the communication overhead.

We finally present the communication overhead per client per

round incurred by our PSU, which increases linearly with𝑛, roughly

with an increase of 0.07MB per 20 clients. In addition, our PSU is

quite communication efficient and incurs 0.91MB as 𝑛 reaches 100.

6.3 Computation Overhead
We now report the practical computation overhead, mainly by

investigating the effects of 𝑛, the CPP, and the ratio of dropout. To

be consistent with the time complexity analysis, the computation

overhead includes only the run time of the client or the cloud server

in executing the protocol, but ignores synchronization delay and

the time overhead of testing global model. Given mobile devices are

highly parallel in practice, the total run time per communication

round can be estimated by adding up the computation overhead of

the client and the cloud server reported here. In addition, testing

the global model per round costs the cloud server 32.12s.

We first show the overall computation overhead of the client

and the cloud server per round in our SFSL with different CPPs in

Figure 4(b) and Figure 4(c). We still introduce SFL as a baseline. First,

we can see that our SFSL significantly outperforms SFL on both

sides of the client and the cloud server. In particular, when 𝑛 = 100,

at the same security and privacy levels, SFSL with CPP5 reduces

85.02% and 72.51% of the computation overhead than SFL on the

client and the cloud server, respectively. When security and privacy

become weaker, the advantages of our SFSL are more evident under

CPP1 to CPP4. For example, CPP2 reduces 98.77% and 86.70% of the

run time than SFL on the client and the cloud server, respectively.

Second, we focus on a certain side, either the client or the cloud

server, and can observe that its computation overhead grows with

𝑛 or the serial number of CPP. The reason can be explained by

the detailed time complexity in Section 5.2, while the intuition is

analogous to that behind the communication overhead.

We next investigate the effect of the dropout ratio and depict the

evaluation results per round in Figure 4(d) as 𝑛 = 100. We mainly

focus on the secure aggregation-based stages while ignoring the

other stages irrelevant with dropout. We consider that clients are

randomly selected to go offline at random points.We report only the

computation overhead of the cloud sever because dropped clients

do not introduce additional operation cost for live clients. From

Figure 4(d), we can see that with the growth of the dropout ratio,

the computation overhead of the cloud server increases. This is be-

cause the cloud server needs to remove the mutual masks between

dropped and live clients in secure aggregation. We also compare

our SFSL with SFL at the stage of securely aggregating submodel

or full model updates. We can find that SFSL significantly outper-

forms SFL at this stage for any dropout ratio. Specifically, when

the dropout ratio is 20%, CPP2 and CPP5 reduce 91.33% and 73.55%

of the computation overhead, respectively. We finally examine our

PSU and can see that it is quite efficient, even when the dropout

ratio is high. In particular, the computation overhead of the cloud

server is 37.66s as the dropout ratio reaches 20%.

6.4 Memory and Disk Loads
We present the practical storage overhead of our SFSL and the

baseline SFL. First is about the memory overhead. The cloud server

requires the video memory of 551MB, mainly for testing the global

model at the end of each communication round, which is the same

for all schemes. In addition, when 𝑛 = 100, and there is no dropout,

the memory overhead per client is 209MB and 281MB in SFSL with

CPP2 and CPP5, respectively, reducing 59.40% and 45.43% than

SFL. Correspondingly, the memory overhead of the cloud server is

1.58GB and 3.15GB, respectively, reducing 81.88% and 63.77% than

SFL. Regarding the disk load, only the client in SFSL with CPP2,

CPP3, and CPP4 needs to store its permanent noisy answers in the

index set randomization, which roughly occupies the disk space of

280KB within the total 5,000 rounds.

6.5 Discussion on Billion-Scale Issues
We finally discuss the issues as the size of the full index set (which

controls the size of the full model) and the total number of clients

scale further to billions in practice. First, the baseline SFL, depending

on the full model, will be prohibitively inefficient to be applicable.

Second, we analyze our SFSL. SFSL relives the dependence on the

full model, executes in communication rounds, and involves only

a constant number of (e.g., 𝑛 = 100) clients in each round. Thus,

no additional overhead will be incurred in SFSL due to the scale of

billions. We further consider how to shorten the periods of build-

ing/polishing the full model and covering the whole clients without

affecting any client’s efficiency and privacy. It is trivial to scale up

SFSL at the level of the cloud server. In particular, a master server

manages multiple child servers. For every round, each child server

selects 𝑛 clients, lets them use SFSL to download submodels, and

securely aggregates their submodel updates with SFSL. The master

server further aggregates the aggregated submodel updates from

the child servers to update the global model.

7 CONCLUSION
In this paper, we have proposed a submodel design SFSL for mobile

clients to effectively and efficiently train large-scale models under

the coordination of an untrusted cloud server while keeping user

data private. We further have applied SFSL to the e-commerce

recommendation scenario of Alibaba, implemented a prototype

system, and validated its practical feasibility over a Taobao dataset.
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