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Abstract—Channel assignment is a very important topic in wireless networks. In this paper, we study FDMA channel assignment in a
noncooperative wireless network, where devices are selfish. Existing work on this problem has considered Nash Equilibrium (NE),
which is not a very strong solution concept and may not guarantee a good system performance. In contrast, in this work, we introduce a
payment formula to ensure the existence of a Strongly Dominant Strategy Equilibrium (SDSE), a different solution concept that gives
participants much stronger incentives. We show that, when the system converges to an SDSE, it also achieves global optimality in
terms of system throughput. Furthermore, we extend our work to the case in which some radios have a limited tunability. We show that
in such a case, nevertheless, it is generally impossible to have a similar SDSE solution; with additional assumptions on the numbers of
radios and the types of channels, etc., we can again achieve an SDSE solution that guarantees optimal system throughput. Besides
this extension, we also consider other extensions of our strategic game to achieve throughput fairness and to deal with possibly
inconsistent information caused by players joining and leaving. Finally, we evaluate our design with simulated experiments. Numerical
results verify that the system does converge to the globally optimal channel assignment with the proposed payment formula, and that
the system throughput is significantly higher than that achievable with the random-based and NE-based channel assignment schemes.
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THE radio spectrum is a scarce resource in this age of fast
growing wireless communications. To better utilize the
radio spectrum, Frequency Division Multiplexing Access
(FDMA) is introduced to divide the carrier bandwidth into
channels of different frequencies, each carrying a signal at
the same time. Some wireless systems also use Code
Division Multiple Access (CDMA), Time Division Multiple
Access (TDMA), or Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA) to allow multiple radio
transceivers to access the same frequency channel. With the
emergence of software-defined radios, the problem of
channel assignment, which assigns radio transceivers to
available channels, has gained increasing importance. Due
to the limitation on the number of available channels,
careful channel assignment is needed to mitigate the
performance degradation of wireless networks because of
interference among different users.

In recent years, a large number of channel assignment
schemes for wireless networks (e.g., [1], [2], [3], [4], [5], [6],
[7], [8], [9]) have been proposed. In general, they assumed
that all the nodes are “well behaved” or “cooperative.”
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However, this assumption may not be valid in general ad
hoc networks [10]. In practice, a node can easily deviate
from the protocol to seek for more benefit for itself. So it is
crucial to study how to provide incentives for the selfish
nodes to behave cooperatively. In a recent work, Félegyhazi
et al. [11], [12] studied Nash Equilibria (NEs), which is a
standard solution concept from game theory, in a non-
cooperative multiradio multichannel allocation game. While
their work is elegant and intriguing, NE does not provide an
ideal solution to the problem of channel assignment. There
are two reasons: 1) NE is not a very strong solution concept.
More specifically, when in an NE, a player of the game has
incentives to keep its equilibrium strategy only under the
assumption that all other players are also keeping their
equilibrium strategies. When this assumption is not valid,
NE does not provide incentives for the game player. 2) More
importantly, NE is usually not social efficient, which means
that the system performance is not maximized. Therefore,
when the system converges to one of the NEs, it could be the
case that some of the selfish nodes benefit at the cost of
system performance degradation.

The objective of this paper is to provide a solution that
can guarantee the system to converge to a state in which the
system throughput is optimized. Specifically, we use a very
strong solution concept from game theory, called Strongly
Dominant Strategy Equilibrium (SDSE), to guarantee the
system convergence. By its definition (see Section 3.2), SDSE
ensures that, regardless of other nodes’ behavior, a pair of
communicating nodes always have incentives to use the
equilibrium strategy. Hence, the solution we provide is
much stronger than any NE-based solution. The main
technical tool we use in this paper is a carefully designed
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payment scheme. The major contributions of this paper are
as follows:

e  First, we model the channel assignment problem as a
strategic game. Our game model applies to the
general scenario, where both single-radio devices
and multiradio devices can exist. By introducing a
carefully designed payment formula (for using
channels), we ensure the existence of an SDSE.
Furthermore, we show that the SDSE achieves the
global optimality in terms of system throughput.

e Second, we extend our game model to a limited
tunability system model and prove that one cannot
find a similar SDSE in some cases. To deal with
limited tunability, we introduce some practical
assumptions on the numbers of radios and on the
types of channels, etc. With these assumptions, we
can again have an SDSE that achieves the global
optimality using another carefully designed pay-
ment formula.

e Third, we study throughput fairness among the
players of this game. Specifically, we provide a
bound for the fairness ratio (see Section 6.1 for
definition). Furthermore, we extend the strategic
game to a repeated game so that we can achieve
optimal throughput fairness. In our repeated game
of channel assignment, not only optimal system
throughput is preserved, but also the throughput
shared among players is balanced in the long run.

e Fourth, we consider the effect of players joining
and leaving the game, and discuss how to deal
with possibly inconsistent information caused by
such events.

e Finally, we evaluate our solutions using extensive
simulated experiments. Numerical results show that,
with the proposed payment formula, the system does
converge to the globally optimal channel assignment.
In addition, the system throughput is significantly
higher than that achievable with the random-based
and NE-based channel assignment schemes.

The rest of the paper is organized as follows: We briefly
review the related works in Section 2 and present the
technical preliminaries in Section 3. In Section 4, we
describe our strategic game model of channel assignment,
prove the existence of SDSE, and propose the algorithm for
computing globally optimal channel assignment. We con-
sider the limited tunability system model in Section 5. In
Section 6, we present the extension for fairness and discuss
how to deal with inconsistent information and multiple
collision domains. We present the evaluation results in
Section 7. Finally, we conclude the paper and point out
potential future works in Section 8.

2 RELATED WORKS

In this section, we first review related works on channel
assignment that assume cooperation of participants, and
then review the works with selfish participants.

2.1 Cooperative Channel Assignment

The channel assignment problem was first studied in cellular
networks. We refer to [1] for a comprehensive survey.
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Due to explosive growth of wireless LANs (WLANSs) in
recent years, how to efficiently manage the channels
becomes an important problem. For instance, Mishra et al.
[2] utilized weighted graph coloring to address channel
allocation for WLANSs. Mishra et al. [3] used client-driven
mechanisms to address the joint problem of channel assign-
ment and load balancing in centrally managed WLANSs.

As multiradio devices are becoming more and more
useful in wireless mesh networks (WMNSs), many research-
ers devoted themselves to studying channel assignment
problems in WMNs. For example, Alicherry et al. [4],
Raniwala et al. [5], and Kodialam and Nandagopal [6]
considered channel assignment together with routing or
scheduling in order to maximize network throughput.
While the above works considered omnidirectional anten-
nae, other authors (e.g., those in [7]) considered the channel
allocation problem in rural mesh networks that are built
using directional antenna.

The channel assignment problem is also studied in other
wireless networks, such as ad hoc networks (e.g., [8]) and
software-defined radio networks (e.g., [9]).

2.2 Channel Assignment with Selfish Participants

The related works described in Section 2.1 require that all
nodes in the network must be cooperative. Here, coopera-
tive means that the nodes unconditionally obey a central
control or behave strictly according to the prescribed
protocol. However, this assumption is not valid when the
network consists of selfish nodes, whose goal is to
maximize their utility/profit. With the existence of selfish
nodes, assigning radios to channels becomes a game.

In an earlier work, Félegyhézi et al. [11] studied Nash
Equilibria in a static multiradio multichannel allocation
game. Their work is restricted to the scenario in which each
device is equipped with the same number (>1) of radios. In
this paper, we adopt a much stronger solution concept
called SDSE and give a scheme to achieve it. Further, our
work is applicable to the general case in which each
wireless device can be equipped with an arbitrary number
(possibly one) of radios.

Another important related work on channel assignment
game is [13] in which the authors proposed a graph coloring
game model and discussed the price of anarchy under
various topology conditions such as different channel
numbers and bargaining strategies. Nevertheless, the work
is restricted to networks of base stations and requires the
assumption that each base station has to choose a channel
that has not been used by any other existing base stations.
In contrast, our work does not have such assumptions. (e.g.,
we allow sharing of a physical frequency channel.)

In wireless networks, game-theoretic approaches are also
used to study media access problems. For example,
MacKenzie and Wicker [14] studied the selfish behavior of
nodes in Aloha networks. Later, Cagalj et al. [15] and
Konorski [16] used game-theoretic approaches to investi-
gate the media access problem of selfish nodes in CSMA/
CA networks. In cognitive radio networks, Nie and
Comaniciu [17] proposed a game-theoretic framework to
analyze the behavior of cognitive radios for distributed
adaptive spectrum allocation, but their main results are for
cooperative users only.
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There are also other works on incentive compatibility in
wireless networks. Examples include those works on packet
routing and forwarding in ad hoc networks [18], [19], [20],
[21], [22], [23], [24], [25], [26].

3 TECHNICAL PRELIMINARIES

3.1 System Model

We consider a wireless network, where each node is
equipped with a single or multiple radio(s). Each radio
has both a transmitter and a receiver, which may or may not
be able to work simultaneously. We assume a wireless
network with a common signaling channel and where the
nodes communicate with each other without involving
other nodes as intermediate relays.

As in paper [11], we assume that each node participates
in only one of the communication sessions at a time. To
communicate, a pair of nodes allocate one or multiple
radios. We assume that the transmission must be between
two radios, where one acts as transmitter and the other acts
as receiver. So we only consider the case in which each node
of the pair allocates the same number of radios in the same
channel(s). A pair of nodes can have parallel transmissions
between them if they both have multiple radios and allocate
multiple radios.

The available frequency band is divided into orthogonal
channels (e.g., the IEEE 802.11a protocol [27] has 12
orthogonal channels). We denote the set of available
orthogonal channels by C. These channels can be either
fixed-rate channels C/ or varying-rate channels C”. More
specifically, we denote the aggregate throughput of a
channel ¢ € C by R.(n), where n is the number of pairs of
radio transmitter and receiver allocated to the channel c.
R.(n) can be either a constant independent of n or a
decreasing function of n, corresponding to a fixed-rate
channel or a varying-rate channel. For instance, R.(n) is
independent of n if TDMA-based scheduling scheme is
used; and R.(n) is a decreasing function when using CDMA
or CSMA/CA-based protocol (e.g., the IEEE 802.11 stan-
dards). As in [11], we assume that the aggregate throughput
R.(n) of a channel c is shared evenly among the radios
using the channel. So each radio pair gets throughput
R.(n)/n, when n > 0.

In this paper, we only consider a single collision domain,
wherein all transmissions on the same channel will collide
with each other. Extending our work to multiple collision
domains will be left for future study.

3.2 Notations and Concepts from Game Theory

Before introducing our game-theoretic model, we need to
recall some notations from game theory. In the classic
model of strategic game, there are a finite set of players
N ={1,2,...,n}, and for each player i € N, a nonempty
set ¥; of all possible (mixed) strategies. The set of strategy
profiles is ¥ = X;cn3;. Each player i chooses a strategy
si € ¥;. As a notational convention, s_; represents the
strategy profile of all players except player i, i.e,
s_; € X_; = X;z%;. Note that s=(s;,s_;) is a strategy
profile in which player i takes strategy s; and the other
players take strategies s_;. A player i’s preferences can be
determined by a utility function wu;(s). Player i prefers
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strategy s; to s, when the other players take s_;, if
wi(si,5-5) > ui(sh, s—i).

The most commonly used solution concept in game
theory is Nash Equilibrium (NE) [28]:

Definition 1 (Nash Equilibrium). A Nash Equilibrium of a
strategic game is a profile s* € ¥ of strategies with the
property that for every player i € N, we have

ui(s;,s%;) = ui(si; s2y), (1)

forall s; € ¥;.

Although the Nash Equilibrium gives a fundamental
solution concept to game theory, it relies on knowing all the
other players’ strategies and beliefs on the other players,
and also loses power in the games where multiple NEs
exist. A stronger solution concept is SDSE."

Definition 2 (Strongly Dominant Strategy Equilibrium). A
Strongly Dominant Strateqy Equilibrium of a strategic game
is a profile s* € X of strategies with the property that for every
player i € N,

Vs_j € ¥_;,Vs; # 57,
3877', S Zfi,vsi 7é 5;7

4 STRATEGIC GAME OF CHANNEL ASSIGNMENT

We model the channel assignment problem as a strategic
game G in which a player is a pair of nodes having packets
to exchange.

4.1 Strategic Game Model

In this paper, we consider a set N of players, where each
player ¢ knows her identity. A player’s identity can be a
quite long bit string, like an MAC address. Nevertheless, for
simplicity of presentation, in this paper, we assume that the
players’ identities are 1-n. Note that our results are
independent of this simplifying assumption. That is, all
our results are still valid if the identities are not 1-n.

Each player ¢ € N has w; radio pairs (e.g., each node has
w; radios). In this section, we consider the model where
each player has fully tunable radio pair(s). (In Section 5, we
will consider an extend model, where players’ radios may
not have full tunability.) The radio pair distribution vector
is denoted by W = {wy, ws, ..., w,}.

In this game, the strategy of a player ¢ € NV is just her
channel assignment vector s; = {s;1, Si2, - L Sijol )
where s, . is the number of radio pairs that player ¢ assigns
to channel c. (In Section 5, we extend our channel assign-
ment game to the limited tunability model in which the
strategy of player also includes her claimed tunability.)

The strategy profile s is a matrix composed of all the
players’ strategies: s = (s1, s2, ..., sn)T.

<y Sicy .-

1. SDSE is related to, but different from, the well-known concept of
dominant strategy equilibrium (DSE). The major difference is that SDSE
requires that, compared with any other strategy, the equilibrium strategy is
strictly better in some cases. Note that in some literature, SDSE is called
Weakly Dominant Strategy Equilibrium (WDSE). We choose to call it SDSE
rather than WDSE because it is stronger than DSE, not weaker than DSE.
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Given a strategy profile s, it is easy to see the total number
of radio pairs used by a player i is m;(s) = > cc Sie < Wi
Here, the inequality indicates that it is not necessary to use
up all one’s available radios. Similarly, it is also easy to see
the total number of radios assigned to a channel ¢ is
ne(s) = Y ,cn Si.- Hence, the throughput a player i gets from
a channel c is

Ti,(a(S) = Ze Rr:(ntf)v (3)

Ne

and the total throughput a player ¢ gets is

ri(s) =Y rie(s). (4)

ceC

Finally, the system throughput is
T(s) = _ Re(no). (5)

ceC

In reality, any practical solution to the channel assign-
ment game should satisfy some additional requirements.
First of all, there should not be any starvation. Second, we
need social efficiency, which means that the system through-
put should be maximized. We combine these two require-
ment to define the concept of global optimality of a solution.?

Definition 3 (Global Optimality). In a strategic game of
channel assignment, suppose that s* is a strategy profile or,
say, a channel assignment. We say s* is globally optimal if
the following two requirements are met:

1. No starvation. Vi € N,r; > 0.
2. Social efficiency. Vs € A, s # s*, if s satisfies require-
ment (1), then T'(s) < T'(s*).

We note that the globally optimal channel assignment
might not be unique. But all globally optimal channel
assignments have the same overall throughput in the system.

4.2 Method to Achieve Global Optimality

It is ideal to have a globally optimal channel assignment.
However, achieving the globally optimal channel assign-
ment is a highly challenging task. If we allow the players to
choose the channels without giving them any influence,
most likely, the system would either not converge at all or
converge to an assignment that is not globally optimal [11],
[12]. Therefore, we need to introduce a method to influence
the strategies of the players. Here, the method we use is to
require players to make payments.

Just as in [20], [21], [22], [23], [24], [25], [26], we assume
that there is some kind of virtual currency in the system.
Each player has to pay some virtual money to the system
administrator based on the outcome of the strategy profile.
We regard this payment as the fee for using the channels.
Note that the system administrator need not to be an online
authority. It is just a server connected to the Internet. So the
players can pay or receive credit from the system admin-
istrator when they have connections to the Internet.

Now let’s assume that we have a globally optimal
strategy profile s* (we will explain how to compute s* in
Section 4.3.). We define the payment of player ¢ as follows:

2. Our definition of global optimality is thus slightly different from a
traditional definition, which usually considers the optimization of a single
metric (e.g., throughput).
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pi(s) = ari(s) + 6<D(si, s7) — p—

Z D(sj,(szf)) —¢,
JEN j#i
(6)

where D(s;, s}) is the Manhattan distance (also known as the
L1-distance) between strategies s; and s; & > Oand § > O are
parameters used for converting throughput and the Man-
hattan distance into virtual currency values, respectively; € >
0 is a very small constant. (Suppose that r,,;, is the minimal
reasonable bandwidth with which the basic networking
operation can be completed. We require that e < ary,;, so
that p; > 0 when all players follow the optimal strategy.)
Intuitively, the payment is the charge for the player’s overall
throughput plus a penalty (bonus) for more (less) deviation
from the globally optimal strategy than other players. We
note that the total payments to the system administrator is

P(s) = Zpi(s) = aZn(s) — ne,

ieEN ieN

which is the value of total throughput shared by the players
minus ne. We further note that if all the channels are used,

P(s) =« Zn(s) —ne= aZRc(nc) — ne,

ieN ceC

which is the value of system throughput minus ne.

We define the utility of player i as the value of
throughput she obtains minus her payment to the system
administrator:

ui (i, 5-;) = ari(si, s—i) — pi(si, 5-i)- (7)
Since each player is selfish and rational, she always wants
to maximize her utility.
Theorem 1. It is an SDSE when each player i takes strategy s;.
Proof. Combining (6) and (7), we can get the following:

wi(8i,5-i) = €— ﬁ(D(si,sf) - n% Z D(sj,sj-)>. (8)

1 JEN,j#i

Then, the utility difference of taking strategy s} and
s; #s) is

— B(D(si, )
= BD(s;, s])
> 0.

— D(s},s%))

771

So strategy profile s* is an SDSE. ]

By Theorem 1, it is straightforward to see that if s* is a
globally optimal channel assignment, then the SDSE
achieved is also globally optimal.
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4.3 Computing Globally Optimal Channel
Assignment

To implement the SDSE, each player must have an algorithm

for computing the globally optimal assignment s*. In this

section, we present a distributed algorithm that computes a

globally optimal channel assignment s, if there exists one.

The input of this algorithm is the set of channels C, the
set of players N, and the radio distribution vector W. This
algorithm requires perfect information of the system. Every
player can obtain such information in ad hoc traffic
indication message (ATIM) window of multichannel MAC
protocol (MMAC) [29] or channel switching function of
multiradio unification protocol (MUP) [30], by sending
probe signals, which contain player ID and number of radio
pairs, and listening to others” probe signals.

Algorithm 1 shows the pseudocode of our algorithm.
Intuitively, the algorithm considers three cases: 1) The
number of players is less than that of the channels. 2) The
number of players is more than that of the channels.
3) The number of players and that of channels are equal. For
all the cases, the algorithm first assigns each player with a
single channel. Next, in case 1, the algorithm tries to assign
each unoccupied channel with a player who still has unused
radio pair, until all the channels are occupied or all the radios
of players are used. In case 2, for each unassigned player 4, the
algorithm finds a channel c on which adding a radio pair will
cause the least throughput degradation. Then it assigns
player i with channel c. In case 3, we are done with channel
assignment and the algorithm terminates.

Algorithm 1. Algorithm for Computing Globally Optimal
Channel Assignment
Input: Set of channels C = C/ U C", set of players N, radio
distribution vector W.

Output: Globally optimal channel assignment s*.

1: Initialize all entries of s* to 0.

2. i< 1L c<=1.
3: while i <n and ¢ < |C| do
4 si. =L w <= w — 1L
5 i<i+lcectl
6: end while
7
8
9

: if n < |C] then
1< 1.
while ¢ < |C] and i < n do
10: if w; > 0 then
11: si,eLwsw—1Lcesct+ 1
12: else
13: <=1+ 1.
14: end if

15: end while
16: else if n > |C| then
17: while 7 < n do

18: C < argminecc (RC< Z]- s;‘{,) - R, ( Zj st 1))
19: si. <=1

20: i<+ 1.

21: end while

22: end if

23: return s*.

It is not hard to see the correctness of Algorithm 1. In
cases 1 and 3, since each channel is assigned with at most
one radio pair, the assignment causes no throughput
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degradation. In case 2, since only one radio pair is used
for each player and the assignment of each radio pair
always causes the least throughput degradation, the overall
throughput degradation is minimized. Putting these to-
gether, we can easily see that Algorithm 1 always computes
a globally optimal channel assignment.

5 LiMITED TUNABILITY

In previous sections, we have considered the case in which
all radios have unlimited tunability, and thus, have full
access to all channels. In reality, since the wireless networks
usually consist of various devices (e.g., laptop/desktop PC,
PDA, and IP phone), the radios of the devices may not have
the tunability to access all the channels. In this section, we
extend our work to the case in which some players may
have limited tunability. Here, we say a player can be tuned
to, or can access, a channel if both nodes of the player can
send/receive signals in that channel. (Recall that the two
nodes of each player must assign the same number of radios
to each channel.) Note that the problem in limited tunability
model is much more challenging than the one in unlimited
tunability model. For example, a selfish player may not be
willing to reveal its real tunability information, instead, it
may conduct probing experiments to determine the
tunability that can lead to more favorite channel assignment
to the player itself. This complicates the problem a lot. So, it
is not surprising that our first result in the limited tunability
model is a result of nonexistence of SDSE solution.

Note that, to model limited tunability, we need to extend
our channel assignment game. In particular, as we have
mentioned in Section 4.1, in the model with possible limited
tunability, each player’s strategy includes her claimed
tunability in addition to her vector of radio pair assignment.
In this extended game, the utility of a player is still her rate
(times a constant ) minus her payment.

5.1 Nonexistence of SDSE Solution

With possibly limited tunability of radios, the first result
we obtain is that we can no longer have an SDSE solution
as in the case of unlimited tunability, when nodes could lie
their tunability.

Theorem 2. Assume that players may have limited tunability
and can lie about the tunability (i.e., each player can claim
arbitrarily which channels it can access). Then, we cannot
guarantee to find a deterministic algorithm that, in each game,
outputs an SDSE such that the assignment of channels in the
equilibrium is globally optimal.

Proof. First, we make an important observation: Given a
strategy profile, the utility of a player does not depend
on which game she is in, as long as the involved
strategies do not violate any tunability restriction. We
say a strategy profile violates the tunability restriction in
a game if in that strategy profile, any player places any
radio pair in any channel that cannot be accessed by the
player. Lying about tunability in the strategy profile is
not considered violation of tunability restrictions. In
other words, given a strategy profile, a player has the
same utility in all games whose tunability restrictions are
not violated by the involved strategies. This is because
the total rate obtained by a player is determined by the
strategy profile as long as there is no violation of
tunability restriction, and because the payment is always
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determined by the strategy profile only. In particular,
note that we must compute the same payment for the
same assignments of radio pairs and same claimed
tunability of players, regardless of what the real
tunability restrictions are.

Then, we prove the theorem by contradiction. Assume
that the theorem is not true. That is, we have a
deterministic algorithm that outputs an SDSE for each
game such that the channel assignment in the SDSE is
globally optimal in the game. Then, we study two games
S1 and Sy, both of which have two players (1 and 2) and
two channels (¢; and ¢;). In game S;, both players can
access both channels. As we have assumed, our algorithm
should output an SDSE s* for S; such that the channel
assignment in the SDSE is globally optimal. Clearly, s*
must assign each of the two channels to each of the two
players. Without loss of generality, suppose that s*
assigns channel ¢; to player 1 and channel ¢, to player 2.

Next, we construct a different game S, based on the
above assignment of s*. In Sy, player 1 can access channel
¢o only (but lies to have full tunability to both ¢; and ¢),
while player 2 can still access both channels. By our
assumption, in this game, our assumed algorithm should
output an SDSE s’ such that the channel assignment in
the SDSE is globally optimal. Note that s’ must assign ¢
to player 2 and ¢, to player 1, since player 1 cannot access
channel ¢;. Clearly, we can see s}, # sj.

Recall the observation at the beginning of our proof.
Consider any strategy s; of player 1, which includes a
claimed tunability and a channel assignment vector, that
does not violate the tunability restriction of Sy (i.e., does
not put any radio in ¢;). Given the strategy profile
(s1,53), the utility of each player in game 5, is identical to
her corresponding utility in game S>. Hence, when the
strategy profile (s, s}) is used, we can use u;(sy, s3) for
the utility of player 1 and wus(si,s}) for the utility of
player 2, without mentioning whether the players are in
game S| or game 5.

Based on the above observation, now we study the
utility of player 2. Since s’ is an SDSE in game S,, there
exists a strategy s; of player 1 such that

ug(s1, 85) > us (sl,s;‘). (9)

On the other hand, since s* is an SDSE in game S, and
since the strategies sy, s}, and s}, do not violate tunability
restrictions in game S; (because in Sj, there is simply no
tunability restriction to violate), we must have

(10)

U (81, SS) > uy(s1, 85).
Clearly, there is a contradiction between (9) and (10). O

5.2 Simplified Model and Solution

Given Theorem 2, to achieve an SDSE solution, we have to
simplify our previous model to make the problem more
tractable. Consequently, we assume that each player has
only one pair of radios, and majority of players can access
all channels. Furthermore, if a number of players detect that
a player is cheating about her tunability, then the latter
player will be punished by an overwhelming penalty.

In this simplified model, again, we assume that we have
an algorithm for computing the globally optimal channel
assignment. (Note that such an algorithm is different from
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1) Each player ¢ € N sends test signals in each
channel it claims to be able to access. We denote
the accessible channel set of player ¢ as T;.

2) After receiving all the test signals, the players with
full accessibility compute the globally optimal chan-
nel assignment s* and broadcast it in all channels.

3) Each player ¢ takes strategy s; and pays two pay-

ments:
pi(s) = ar +ﬁ(D(si,s’{)
1
— ¥ D(sj,s’;)> — (1)
JEN,j#i
pi(s) = ~(Cl-1T), (12)
here v is a charge for inaccessibility to a channel

and v > 40.

Fig. 1. Scheme for achieving SDSE in the simplified limited tunability
model.

the one in Section 4.3, since the model is now different. We
will discuss this new algorithm in Section 5.3.) We design a
scheme (see Fig. 1) that ensures the existence of an SDSE
that achieves global optimality. In our scheme, to claim the
accessibility to a channel, a player needs to send a test
signal in that channel® so that other players can verify her
claim. In this way, a player has no way to exaggerate her
accessible channels. So a player can only claim a subset of
her real accessible channels. Recall that the majority of the
players have unlimited tunability. Consequently, the above
test signal can be verified by most players. The following
lemma shows that by claiming a proper subset of one’s
accessible channels, a player will lose her utility. In other
words, a player maximize her expected utility only by
revealing the true tunability.

Lemma 1. Other things being equal, if our scheme is used, for
every player, revealing the true tunability is always better than
claiming a proper subset of accessible channels.

Proof. Suppose that a player i claims her accessible channel
set T/ C T; and gets utility u}(s’). We show that u}(s’) is
always less than u;(s), which is the utility when claiming
the true accessible channel set T;:

uis) = ui(s)
= ari —p; —p; = (ar; = p}' = 1Y)

= —5(Dlsi,57) = 3 D))
JFi

(13)
* 1 *
+ 5(17(3;, s;7) — 1 D(s}, s} ))
i
—(IC = IT:) +~(IC1 = IT3]).
Since each player only has one radio pair,
0 < D(sy,sy) <2, (14)

for all s, s,.
By combining (13) and (14), we get

3. Here, the test signal we mentioned is actually a pair of signals sent by
the pair of radios of the player.
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ui(s) —ui(s') > (T = |T7]) — 48
>y —4p.
Since v > 40,

ui(s) — u(s") > 0.
O

Now it is not hard to show that we have an SDSE in
which each player claims her true tunability and uses the
(computed) strategy for globally optimal assignment.

Theorem 3. There exists an SDSE in the simplified model of
limited tunability such that each player claims the true
tunability and that the channel assignment is globally optimal.

5.3 Computing Globally Optimal Channel
Assignment

To implement the scheme in Section 5.2, we need an
algorithm for computing the globally optimal channel
assignment in our simplified model of limited tunability.
We propose a simple algorithm to deal with the case in which
all the chanmels are fixed-rate channels. Just as Algorithm 1, this
algorithm also has the player set IV and the channel set C as
the input. It does not need the radio distribution vector
because the radio distribution vector is a constant in our
simplified model. In addition, the algorithm takes as input of
an accessibility vector (X = (X1, Xs,...,X;,..., X,,), where
X; C O) that indicates which player can access which
channel(s). Based on this information, the algorithm needs
to compute a globally optimal channel assignment.

We convert the problem to a graph-theoretic problem.
Construct a vertex set V; by having a vertex for each player.
Construct another vertex set V; by having a vertex for each
channel. If a player can access a channel, then these two
vertices are connected together by an edge—let E be the set
of such edges. In this way, we get a bipartite graph
G = (Vi UW, E). A channel assignment corresponds to a
subset of edges such that each player is associated with only
one channel through this subset. We note that we can map
each channel assignment to a matching in the graph: in the
subset of edges corresponding to the assignment, for each
channel assigned to more than one player, we keep one
edge and delete the others; in this way, we get a subset of
edges that is a matching, and this matching’s aggregate
throughput is the same as the original assignment. (How-
ever, we note that more than one assignment may map to the
same matching.) Therefore, a globally optimal channel
assignment is mapped to a maximum bipartite matching in
the bipartite graph. We consider a deterministic algorithm
for maximum bipartite matching®:

(L,R,m) <= MBM(Vy, Vo, E),

where L C V; and R C V, are the sets of matched vertices,
and m is a binary matrix that represents the matching result.
We require all players to use the same M BM algorithm to
find a maximum matching. When there is more than one
maximum matching, the M BM algorithm should choose to
output one of them. Clearly, all players will get the same
maximum matching because they are using the same
algorithm and the algorithm is deterministic.

Algorithm 2 shows the pseudocode of our algorithm in
the simplified limited tunability model. First, the algorithm
computes a channel assignment based on the maximum

4. See [31] for example of such algorithms.
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bipartite matching. (Note that we are a little sloppy in the
algorithm—in fact, we need to convert NV and C into sets of
vertices and X into a set of edges connecting vertices in N
and C before applying the algorithm M BM. However, since
such a conversion is trivial, we skip it in order to make the
algorithm easier to read.) Then, to ensure that there is no
starvation, for each player that has not been assigned a
channel in the matching, the algorithm deterministically
assigns an arbitrary channel to her.

Algorithm 2. Algorithm for Computing Globally Optimal

Channel Assignment in the Simplified Model of Limited

Tunability

Input: Set of players N, set of channels C, accessibility
vector X.

Output: Globally optimal channel assignment s*.

1: Initialize all entries of s* to 0.

2: (L,R,s*) < MBM(N,C, X).

3: forallie N — L do

4: ¢ < Arbitrary channel that ¢ can access.
5 si. =1

6: end for

7: return s*.

Since Algorithm 2 is based on maximum bipartite
matching, the maximum number of channels is utilized in
the computed channel assignment s*. Consequently, the
result s* is globally optimal.

6 THROUGHPUT FAIRNESS, INCONSISTENT
INFORMATION, AND MULTIPLE COLLISION
DOMAINS

In previous sections, we have designed channel assignment
schemes to achieve SDSE in the unlimited and limited
tunability models. In this section, instead of designing more
schemes for channel assignment, we study the following
questions regarding the schemes we have presented:

e For players, how fair on throughput are our
schemes? Is there any way to further improve the
throughput fairness?

e  Our schemes are based on the fact that the informa-
tion different players have must be consistent. When
players join or leave, the information may become
inconsistent. How can we deal with that?

e How to extend our work from single collision
domain to multiple collision domains?

In the rest of this section, we answer these questions.

6.1 Throughput Fairness

To study how fair on throughput our schemes are, we define
a metric called throughput fairness ratio. This ratio relates to
other well-known measures, such as max-min fairness.

Definition 4. The throughput fairness ratio of a scheme is
defined as

F_ maziey 1i(s")

— minen 1i(s*)’

where s* is the equilibrium the scheme should converge to.
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Note that the larger F is, the less fair the scheme is.
Hence, to show that our schemes are fair on throughput to a
certain degree, we need to establish upper bounds for the
throughput fairness ratio. Below is such a bound for our
scheme in the unlimited tunability model.

Theorem 4. When algorithm 1 is used, the throughput fairness
ratio F has an upper bound

F < maX.cc R((l)
~ mineec R.(n—|C|+1)

-max{|C| — 1,n — |C| 4+ 1}.

Proof. We distinguish three scenarios:

l. n <|C|: In this case, each channel is assigned at
most one radio pair. Hence, assuming i; =
argmax;enri(s*) and i = argmin;en 7;(s*), the
throughput fairness ratio in this case is

Tiy (S*)
Tiy (S*)

2~ Re(1)

iy e

2 =1 Be(1)

i,

F =

maZXceec R((l)
MaTeec HA2) 101 — 1),
~ mineec R.(1) (el )

2. n=|C|: In this scenario, the globally optimal
channel assignment s* is that each player gets a
separate channel and assigns a single radio pair to
it. So the throughput fairness ratio is

_ maziey 7i(s*) _ maveec Re(1)

IN

B MINeN 7'1’(5*) MiNeeC Rc(l) .

3. n>|C]: In the globally optimal channel assign-
ment of this scenario, each player only uses a
single pair of radios. Then, assuming that i; =
argmax;enri(s*), 42 = argmin;ey 7;(s*), and that

87 ¢ = She, = 1, the throughput fairness ratio is
F = Tiy (5*)
Tiy (S*)
_ R, (ne,(s7))/ne,(s7)
Re,(ne,(s%)) /e, (5%)

mazeco R.(1)
= mineec Re(n —|C|+1)

“(n—1|Cl+1).

By combining the above three scenarios, we get

F< maxecc Re(1)
= mineec Re(n—|C|+1)

-max{|C| — 1,n — |C] + 1},

which completes the proof. ]

Fig. 2 shows the throughput fairness ratio of our scheme
in the unlimited tunability model. In the figure, the solid line
shows the upper bound of the throughput fairness ratio,
while the plus marks show the ratio of 100 samples for each
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Fig. 2. Throughput fairness ratio of our scheme in the unlimited tunability
model.

different size of player set. In the figure, we can see that the
samples are well bounded by the upper bound in Theorem 4.

We do not give a similar bound for the scheme in the
limited tunability model because throughput fairness can be
strongly affected by the tunability restrictions.

In some applications, throughput fairness may be
crucial. Therefore, we extend our work to another game-
theoretic model so that we can obtain the maximum amount
of throughput fairness without losing global optimality.

This extended model is infinitely repeated game.” Essen-
tially, this infinitely repeated game models a situation in
which players repeatedly engage in the strategic game G as
defined in Section 4. There is no limitation on the number of
times that G is played; and in each round, the players take
their strategies simultaneously. Using the terminology of
infinitely repeated game, each round of strategic game here
is called a stage. All the stages have the same length of time.
We treat each stage as a strategic game. Furthermore, we
define the cumulative utility of player i € N from the
beginning of the game to stage t as

wlt] = _Zuim- (15)

Let us assume, as in Section 4, that all radios have unlimited
tunability. We further assume that each player has the same
number of radios in the infinitely repeated game. Then, we
can get a completely fair channel assignment as follows:

In stage t, we define a channel assignment matrix s*[t],
which will be used to compute the payments to the system
administrator:

s* ift=0
ep= (20T (16)
st —1] if ¢t >0,
St —1]

where s* is an SDSE we defined in Section 4.

5. Note that our model of infinitely repeated game is slightly different
from the one in classic game theory. In the standard model, the utility
function is fixed in each stage of the game. However, in our model, the
definition of payment is based on the globally optimal channel assignment.
Consequently, the payment formula changes along with the globally
optimal channel assignment in each stage of the game. So does the utility
function.



1816

According to the definition of the utility function, each
player’s utility in a stage is independent of other stages. So
each player gets its cumulative utility maximized if her
utility in each stage is maximized. The player can achieve
this by taking the strongly dominant strategy s;[t] in each
stage t. Since s}[t] is a globally optimal channel assignment,
the global optimality is preserved in our repeated game.

In our infinitely repeated game, suppose that player i
takes the dominant strategy sf[t] in each stage t. The
average throughput that player ¢ gets from the beginning of
the game to stage ¢ is

Rl =Y rild

=0
1 t
= ; Z T'(i+4) mod n [0} :
J=0

Consider the infinity of the repeated game:

1
lim

t
lim T; [t] = m ; Z 7'(i+j) mod n [0]
=0

t——+00
1 n—1
= lim

t
S

1 n
== nil0].

So in our infinitely repeated game of channel assign-
ment, if the players take the dominant strategy in each
stage, then they get the same throughput in the long run.
This shows that our infinite repeated game can achieve
throughput fairness without losing global optimality.

We note that the infinitely repeated game of channel
assignment requires the players to coordinate the channel
assignment over stages. Therefore, all clocks in the system
must align with a reference clock. Furthermore, techni-
ques that support fast switching among channels will be
highly needed. For example, the fast access point switch-
ing technique proposed in [32] can be applied to fast
channel switching.

(18)

6.2 Inconsistent Information

As we have mentioned, the schemes we have presented are
based on the assumption that the players have consistent
information. When players join or leave, the information
may become inconsistent. Therefore, if the wireless network
is dynamically changing, the globally optimal channel
assignment may need to be recomputed when a node joins
or leaves.

Fortunately, a player can notice the signs of information
inconsistency by observing the following;:

e The obtained throughput is different from the
expected throughput.

e The payment to the system administrator is higher
than the calculated cost for obtaining the through-
put (ie., the node is penalized by the system
administrator).

When a player has inconsistent information, a number of

players who share channel(s) with it can be affected. It is not
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necessary for all of affected players to recompute the
globally optimal channel assignment. Here, we propose a
simple method to deal with the problem of information
inconsistency:

1. When a player 7 notices that the current throughput
is different from the expected throughput, it sets a
back-off time T ;:

M

Ti=———
i Q‘T'f_ri‘ ’

where M is the maximum back-off time, and r; and
r¢ are obtained and expected throughputs, respec-
tively. After the back-off time 7, the player rechecks
the obtained throughput. If the obtained throughput
is still different from the expected throughput, the
player needs to probe the channels, recompute the
globally optimal channel assignment, and reassign
the channel(s) to radio pair(s).

2. If connected to the system administrator, a player
checks the payment to the system administrator. If the
payment includes a penalty, it probes the channels,
recomputes the globally optimal channel assignment,
and reassigns the channel(s) to radio pair(s).

In case 1, intuitively, the greater the difference between
the obtained and expected throughputs is, the shorter the
back-off time needs to be. A player with inconsistent
information is likely to have a significant throughput
difference. And case 2 is complementary to case 1 in that
the player with inconsistent information happens to have
little throughput difference. It enables the player who gets a
penalty immediately to realize that its information is
inconsistent with other players’.

6.3 Multiple Collision Domains

So far, we have presented schemes designed for a single
collision domain, wherein all transmissions on the same
channel will collide with each other.

Note that the above definition of single collision domain
does not imply that all nodes have to hear each others’
transmission, so even in a single collision domain, there
may be so-called hidden terminals. For example, assume
that there are four nodes A, B, C, and D, which are lined up
from left to right with certain distance between them, such
that A and D can’t hear each other but both B and C' can
hear A and D. Suppose that node A wants to transmit to
node B (so they form a player), and node D wants to
transmit to node C (so they form another player). We note
that A and D are considered as a hidden terminal by each
other, but according to our definition above, since A and D
cannot transmit on the same channel at the same time
without causing collisions at nodes B and C, they are
considered in the same collision domain, and accordingly,
their optimal channel assignment may be obtained using
the schemes described above.

When players are scattered around a relatively large
area, we may have multiple collision domains and face
different challenges from those addressed in the single
collision domain so far. For example, with multiple collision
domains, some players which are far apart from each other
can transmit on the same channel at the same time.
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Fig. 3. System throughput achieved by using our SDSE-based scheme
and the random-based scheme.

Achieving global optimality in terms of system through-
put in multiple collision domains is a nontrivial task in itself
even if we assume that all players are cooperative. One way
to make channel assignment incentive compatible is to
employ some other techniques, such as link scheduling.
More specifically, we partition the time into slots and we
allow links to place their radios on different channels in
different time slots. For each player, there is a payment for
using each channel, which varies with time. This reflects the
requirement of link scheduling. In this way, the system may
converge to a stable state with globally optimal throughput
in multiple collision domains.

We must note that a lot of nontrivial works need to be
done in order to extend our schemes to multiple collision
domains along the line of the above initial thoughts. We will
study these problems in our future work.

7 NumMmERICAL RESULTS

In this section, we evaluate our schemes using MATLAB.
We assume that the available frequency band is divided
into 12 orthogonal channels, which consist of fixed-rate
channels and varying-rate channels. In the evaluations, a
basic CSMA /CA protocol with binary slotted exponential
back-off is used for varying-rate channels. We use the same
system parameters as those in [33]. For our evaluation, we
seta=pF=1and v=>5.

7.1 Results in the Unlimited Tunability Model

We have performed two sets of simulations in the unlimited
tunability model. The first one is to compare the system
throughput achieved by using our SDSE-based channel
assignment scheme with that of random-based channel
assignment scheme and NE-based channel assignment
scheme [11]. In random-based scheme, players arbitrarily
assign their radios to the channels. Here, random-based
scheme and NE-based scheme do not charge the players for
using the channels. The second set of simulations is to show
that if our scheme is used, deviating from the computed
channel assignment cannot increase one’s utility (see (7) for
definition of utility).

In the first set of simulations, we consider three different
channels deployments: 1) no varying-rate channel, 2) eight
fixed-rate channels and four varying-rate channels, and 3) no
fixed-rate channel. We vary the number of players from 2 to
20. The number of radio pairs each player has is uniformly

1817

System Throughput

SDSE, fixed=8, varying= 4 & A

SDSE, fixed=0, varying=12 ---4---
NE, fixed=8, varying= 4 --m- |
NE, fixed=0, varying=12 -4~

2 4 6 8 10 12 14 16 18 20
Number of Players

Fig. 4. System throughput achieved by using our SDSE-based scheme
and the NE-based scheme.

distributed in [1,5]. We repeat the simulation until the
convergence level 107° is reached.

Fig. 3 shows the result of the comparison on system
throughputs between our SDSE-based scheme and the
random-based scheme. Generally, the SDSE-based scheme
reaches the maximum system throughput as long as there
are only a small number of players. As Fig. 3 shows, in all
three cases, the SDSE-based scheme reaches a system
throughput of 12 Mbit/s with only eight players. On the
other hand, when there exist varying-rate channels, the
system throughput of the random-based scheme will never
reach 12 Mbit/s. Even without any varying-rate channel,
the random-based scheme can get 12Mbit/s only when
there are at least 20 players in the system. Another
advantage of the SDSE-based scheme is that it results in a
much less system degradation than the random-based
scheme, when there exist varying-rate channels. In Case 2,
the SDSE-based scheme achieves a higher (0.68 Mbit/s
more) system throughput than the random-based scheme in
most cases; while in Case 3, the difference between system
throughputs is as high as 1.76 Mbit/s or even more.

Fig. 4 shows the comparison result between the SDSE-
based scheme and NE-based scheme. Since there is no
system degradation when no varying-rate channel exists,
we only show the later two cases here. When the resource
(channels) is abundant (less than or equal to four players,
each with average of radio radio pairs), the NE-based
scheme achieves almost the same system throughput as the
SDSE-based scheme. But when the resource is scarce, the
greedy nature of the players in NE-based scheme will result
in more severe contention for the channels as the number of
players increases. Accordingly, the SDSE-based scheme
performs much better than the NE-based scheme, when the
resource is scarce. When there are 20 players, the system
throughput of the SDSE-based scheme is 0.66 Mbps higher
than that of the NE-based scheme for case 2, and 1.83 Mbps
higher for case 3.

Our second set of simulations demonstrates the effect of
some players deviating from our scheme. In this set of
simulations, we assume that there are 20 players in the
system, and 50 percent of them deviate from our scheme by
arbitrarily assigning their radios to the channels. The other
setups are the same as the first set of simulations. The
simulation is repeated 100 times. We keep track of a player
and record her utility in the two cases: following our
scheme or deviating from it.
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Fig. 5. Utility of following our scheme and deviating.

Fig. 5 illustrates the utility of the tracked player. It is
shown that when following our scheme, the player can
always obtain nonnegative utility. Furthermore, the utility
obtained by following the scheme is always higher than by
deviating from it. This will motivate each player to follow
our scheme.

7.2 Results in the Limited Tunability Model

We have also performed two sets of simulations in the
limited tunability model. The first one compares the system
throughput of our SDSE-based scheme with that of the
random-based scheme and the NE-based scheme, while the
second one studies the effect of some players cheating
about their tunability and deviating from the computed
channel assignment.

In the first set of simulations, we assume that 60 percent
of players have limited tunability. For the players with
limited tunability, we restrict her number of accessible
channels uniformly between 1 and 11. We vary the number
of players from 2 to 20, and repeat each simulation until the
convergence level 107¢ is reached.

Fig. 6 compares the system throughputs of our SDSE-
based scheme, the random-based scheme, and the NE-based
scheme in the limited tunability model, when all the channels
are fixed-rate channels. The system throughputs of the SDSE-
based scheme and the NE-based scheme grow almost
linearly when no more than 12 players and remain at the
maximum value after that. (Note that in this special case, the
NE-based scheme can also have globally optimal throughput
because there is no varying rate channel. In this case, the
main advantage of our SDSE-based scheme is that it provides
much stronger incentives to converge to the equilibrium.)

System Throughput
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Random, fixed=12, varying= 0 —©- |
NE, fixed=12, varying= 0 ---£---

2 4 6 8 10 12 14 16 18 20
Number of Players
Fig. 6. System throughput of our SDSE-based scheme, the random-

based scheme, and the NE-based scheme in the limited tunability
model, when all the channels are fixed-rate channels.
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Fig. 7. System throughput of our SDSE-based scheme, the random-
based scheme, and the NE-based scheme in the limited tunability
model, when there are both fixed-rate channels and varying-rate
channels.

Compared with the random-based scheme, which never
reaches 12 Mbit/s, the SDSE-based scheme and the NE-based
scheme obviously have higher system throughputs.

Fig. 7 compares the three schemes in the limited
tunability model, when there are both fixed-rate channels
and varying-rate channels. Again, the SDSE-based scheme
and the NE-based scheme achieve higher system through-
puts than the random-based scheme. In contrast to Fig. 6,
the SDSE-based scheme achieves a higher system through-
put than the NE-based scheme, when the number of players
is more than 16. This shows that the SDSE-based scheme
causes less system degradation than the other two schemes.

In the second set of simulations, we observe the effect of
some players cheating about tunability and deviating from
the computed channel assignment. We calculate the
difference between utility a player obtains by following
our scheme and the utility by cheating alone and deviating.

In Fig. 8, we can see that the difference in the utilities
obtained is always positive, meaning that following our
scheme will always result in a higher utility than cheating
and/or deviating. In addition, we observe that compared
with deviating, cheating is clearly the dominant source of
utility loss. Accordingly, it is always better for the players
to claim their true tunability and follow the computed
channel assignment.

7.3 Results on the Repeated Game

In this set of evaluations, we assume that there are eight
fixed-rate channels and four varying-rate channels. The

70
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Fig. 8. Utility difference between following our scheme and cheating and/
or deviating in the limited tunability model.



WU ET AL.: STRONG-INCENTIVE, HIGH-THROUGHPUT CHANNEL ASSIGNMENT FOR NONCOOPERATIVE WIRELESS NETWORKS

E ol —
kA standard deviation
g
= 0.08
&
g 0.06 1
z X
k=
5 004}
g
2
0.02
E
g o
@ 0 200 400 600 800 1000

Stage

Fig. 9. Standard deviation of players’ average throughput with growth of
the stage.

number of players is 20. Each player has two radio pairs. We
let the repeated game go 1,000 stages and record the standard
deviation of players’ average throughput in each stage.

In Fig. 9, we observe that there is a cycle of 20 stages. At
the end of each cycle, the standard deviation becomes zero.
Each cycle has a peak, which goes down toward zero with
progress of the repeated game. The length of the cycle is
determined by the period of the channel assignment matrix
s*(t) (see (16)), which is equal to the number of players.

7.4 Results on Efficiency

We evaluate the efficiency of our schemes in terms of
computational overhead in the unlimited and limited
tunability models, respectively. We run the proposed
channel assignment schemes on a laptop with 2.0 GHz
Intel CPU and 1 GB memory. The setups for the unlimited
and limited tunability models are the same as those in
Sections 7.1 and 7.2, respectively, except that we vary the
number of players from 10 to 40. We repeat each evaluation
10,000 times and calculate the average running time.

Figs. 10a and 10b show the computational overheads of
our schemes in the unlimited and limited tunability models,
respectively. Generally, the computational overhead in-
creases in the number of players.

In Fig. 10a, we can see that the computational overhead
in the case of no fixed-rate channel is significantly higher
than that in the other two cases. The extra computational
overhead is mainly induced by step 18 of Algorithm 1,
which looks for the right channel c. If there are fixed-rate
channels, then one of the fixed-rate channels will be quickly
chosen as c. But when there is no fixed-rate channel, the
algorithm has to search through all the channels to find the
channel with the smallest throughput degradation, and
thus, needs much more time to finish the computation.

Fig. 10b shows that when all the channels are fixed-rate
channels, the computational time in case of 40 percent
nodes having limited tunability is longer than that of
20 percent nodes having limited tunability. This is because
the complexity of the bipartite matching algorithm used is
O([VP|E|), where |V| is the number of players plus the
number of channels. When we implement Algorithm 2, we
only need to assign channels to the users with limited
tunability using this algorithm; after that, those users
without limited tunability can be easily assigned. In
contrast, when there are both fixed-rate channels and
varying-rate channels, the computational time in case of
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Fig. 10. Computational overhead. (a) Unlimited tunability. (b) Limited
tunability (20 and 40 percent nodes with limited tunability).

40 percent nodes having limited tunability is shorter than
that of 20 percent nodes having limited tunability. This is
because when majority of players have full tunability, Line
9 takes the most significant part of computational time in
Algorithm 1. Consequently, the more fully tunable players
there are, the longer computational time is needed.

In all the cases we tested, the computational overhead
remains very low. The computations are guaranteed to
complete in less than 7 milliseconds and 2.1 milliseconds in
the unlimited and limited tunability models, respectively. It
may seem counterintuitive that the unlimited tunability
model can have a higher computational overhead than the
limited tunability model. The reason for this phenomenon is
that our limited tunability model has restrictions on the
players and channels. In particular, it requires that each
player has only one pair of radios, which makes channel
assignment much faster.

8 CoNcLUSION AND FUTURE WORK

In this paper, we have studied the channel assignment
problem in noncooperative wireless networks. We modeled
the channel assignment problem as a strategic game and
can guarantee the existence of an SDSE by introducing a
payment formula. Furthermore, the SDSE scheme achieves
the global optimality in terms of system throughput. We
have proved that the above result does not hold in
the general limited tunability model. Nevertheless, when
we make additional practical assumptions on the numbers
of radios and the types of channels, etc., we can achieve an
SDSE solution that guarantees globally optimal system
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throughput again. We’ve quantified the throughput fairness
of our solution by providing bounds onto its throughput
fairness ratio. In addition, we have considered the issues of
throughput fairness and inconsistent information. We have
extended the strategic game to a repeated game, which
preserves the global optimality in each stage and achieves
throughput fairness in the long run; we also have proposed
a simple method to detect and eliminate inconsistent
information. Numerical results have demonstrated that
our solutions have strong incentives for players to
cooperate with low computational overheads.

There are several potential ways to further extend our
work. One possibility is to study the trade-offs among system
throughput, fairness among the players, and load-balance on
the channels. Another possibility is to consider a strategic
game of channel assignment in multiple collision domains.
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