Operating System Exercises

Exercise 3: Deadlocks Due date: Apr. 15, 2019

- 1. Suppose there are 2 copies of resource A, 3 copies of resource B, and 3 copies of resource C. Suppose further that process 1 holds one unit of resources B and C and is waiting for a unit of A; that process 2 is holding a unit of A and waiting on a unit of B; and that process 3 is holding one unit of A, two units of B, and one unit of C. Draw the resource allocation graph. Is the system in a deadlocked state? Why or why not?
- 2. Consider the following system snapshot using data structures in the Banker's algorithm, with resources A, B, C, and D, and process P0 to P4:

	Max			A	Allocation				Need			A	Available			
	A	В	C	D	A	В	C	D	A	В	C	D	A	В	C	D
P0	6	0	1	2	4	0	0	1								
P1	1	7	5	0	1	1	0	0								
P2	2	3	5	6	1	2	5	4								
P3	1	6	5	3	0	6	3	3								
P4	1	6	5	6	0	2	1	2								
													3	2	1	1

Using Banker's algorithm, answer the following questions.

- a. How many resources of type A, B, C, and D are there?
- b. What are the contents of the Need matrix?
- c. Is the system in a safe state? Why?
- d. If a request from process P4 arrives for additional resources of (1,2,0,0,), can the Banker's algorithm grant the request immediately? Show the new system state and other criteria.
- 3. Consider a system with four processes P1, P2, P3, and P4, and two resources, R1, and R2, respectively.

Each resource has two instances. Furthermore:

- P1 allocates an instance of R2, and requests an instance of R1.
- P2 allocates an instance of R1, and doesn't need any other resource.
- P3 allocates an instance of R1 and requires an instance of R2.
- P4 allocates an instance of R2, and doesn't need any other resource
- a. Draw the resource allocation graph.
- b. Is there a cycle in the graph? If yes name it.
- c. Is the system in deadlock? If yes, explain why. If not, give a possible sequence of executions after which every process completes.
- 4. A system has four processes and five allocable resources. The current allocation and maximum needs are as follows:

	Allocated	Maximum	Available
Process A	$1\ 0\ 2\ 1\ 1$	11213	001X2
Process B	20110	22210	

Process C 1 1 0 1 0 2 1 3 1 0 Process D 1 1 1 1 1 0 1 1 2 2 1

What is the smallest value of X for which this is a safe state?