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Connected Dominating Set is widely used as virtual backbone in wireless networks to
improve network performance and optimize routing protocols. Based on special charac-
teristics of ad-hoc and sensor networks, we usually use unit disk graph to represent the
corresponding geometrical structures, where each node has a unit transmission range
and two nodes are said to be adjacent if the distance between them is less than 1. Since
every Maximal Independent Set (MIS) is a dominating set and it is easy to construct,
we can firstly find an MIS and then connect it into a Connected Dominating Set (CDS).
Therefore, the ratio to compare the size of an MIS with a minimum CDS becomes a
theoretical upper bound for approximation algorithms to compute CDS. In our paper,
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with the help of Voronoi diagram and Euler’s formula, we improved this upper bound,
so that improved the approximations based on this relation.
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1. Introduction

Wireless ad-hoc and sensor network can be widely used in many civilian application
areas, including healthcare applications, environment and habitat monitoring, home
automation, and traffic control [10, 6]. Due to the special characteristics of such
networks, we usually use Unit Disk Graph (UDG) to represent their geometrical
structures (assuming that each wireless node has the same transmission range). A
UDG can be formally defined as follows: Given an undirected graph G = (V, E),
each vertex v has a transmission range with radius 1. An edge (v1, v2) ∈ E means
the distance between vertex v1 and v2 is less than or equal to 1, say, dist(v1, v2) ≤ 1.

Compared with traditional computer networks, wireless ad-hoc and sensor net-
works have no fixed or pre-defined infrastructure as hierarchical structure, resulting
the difficulty to achieve scalability and efficiency [2]. To better improve the per-
formance and increase efficiency of routing protocols, a Connected Dominating Set
(CDS) is selected to form a virtual network backbone. The formal definition of CDS
can be shown as follows: Given a graph G = (V, E), a Dominating Set (DS) is a
subset C ⊆ V such that for every vertex v ∈ V , either v ∈ C, or there exist an
edge (u, v) ∈ E and u ∈ C. If the graph induced from C (G[C]) is connected, then
C is called a Connected Dominating Set (CDS). Since CDS plays a very important
role in routing, broadcasting and connectivity management in wireless ad-hoc and
sensor networks, it is desirable to find a minimum CDS (MCDS) of a given set of
nodes.

Clark et al. [3] proved that computing MCDS is NP-hard in UDG, and a lot of
approximation algorithms for MCDS can be found in literatures [8,7,1,5]. It is well
known that in graph theory, a Maximal Independent Set (MIS) is also a Dominating
Set (DS). MIS can be defined formally as follows: Given a graph G = (V, E), an
Independent Set (IS) is a subset I ∈ V such that for any two vertex v1, v2 ∈ I,
they are not adjacent, say, (v1, v2) �∈ E. An IS is called a Maximal Independent Set
(MIS) if we add one more arbitrary vertex to this set, the new set will not be an IS
any more. Compared with CDS, MIS is much easier to be constructed. Therefore,
people usually construct the approximation for CDS with two steps. The first step
is to find a MIS, and the second step is to make this MIS connected. As a result, the
performance of these approximations highly depends on the relationship between
the size of MIS (mis(G)) and the size of minimum CDS (mcds(G)) in graph G.
Such a relation, say, mis(G)

mcds(G) is also called the theoretical bound to approximate
CDS.

In our paper, we will give a better theoretical bound to approximate CDS, which
is mis(G) ≤ 3.399 · mcds(G) + 4.874, if there are no holes in the area constructed
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by the MCDS. The rest of this paper is organized as follows. In Sec. 2 we introduce
the preliminaries and relation between mis(G) and cds(G), including related works.
In Sec. 3 with the help of Voronoi division, we divide the plane into several convex
polygons and calculate the area for each polygon under different situations. In Sec. 4
we use Euler’s formula to calculate a better bound for mis(G)

mcds(G) , and finally Sec. 5
gives the conclusion and future works.

2. Preliminary and Related Works

As mentioned in Sec. 1, we use two steps to approximate a CDS in graph G. The
first step is to select a MIS and the second step is to connect this MIS. Let mis(G)
be the size of selected MIS, connect(G) be the size of disks that are used to connect
this MIS, and mcds(G) be the size of minimum CDS. Then, the approximation
ratio for such algorithm is

mis(G) + connect(G)
mcds(G)

=
mis(G)
mcds(G)

+
connect(G)
mcds(G)

.

For the connecting part, Min et al. [9] developed a steiner tree based algorithm
to connect a MIS, with connect(G)

mcds(G) ≤ 3, which becomes the best result to connect
a MIS. On the other hand, for selecting MIS part, Wan et al. [12] constructed a
distributed algorithm which can select a MIS in graph G with size mis(G) ≤ 4 ·
mcds(G)+1. Later, Wu and her cooperators [13] improved this result into mis(G) ≤
3.8 · mcds(G) + 1.2. Funke et al. [4] discussed the relation between mis(G) and
mcds(G) and gave a theorem saying that mis(G) ≤ 3.453 · mcds(G) + 8.291, but
the proof lacks evidences. In this paper we give a better bound for mis(G) and
mcds(G), with a detailed analysis for the approximation ratio.

Actually, mis(G) and mcds(G) have a really close relationship. Given an UDG
G = (V, E), let M be the set of disks forming MCDS. If we increase the radius of
disks in M from 1 to 1.5, and decrease the radius of the rest disks in V \M from 1
to 0.5, then we can construct a new graph G′. It is easy to know that all the disks
in V are located insides the area formed by M . (For disks in M , obviously they
are located insides themselves, and for disks in V \M , e.g. v1, since M is a MCDS,
there exists a disk v2 ∈ M dominating v2. Therefore dist(v1, v2) ≤ 1. Besides, the
radius of v1 is 0.5, while the radius of v2 is 1.5, so v1 must locate inside v2’s disk.) If
we select a MIS for G, then based on the definition of UDG, the distance between
any two disks from MIS should be greater than 1. And since the radius of disks in
V \M for G′ is 0.5, any of two disks from MIS will not intersect each other. (To
simplify the conception, we can consider the radius of the disks in both MIS and
M as 0.5.) Then we can get the conclusion that the sum of maximum area for MIS
should be less than the area of MCDS, which is a rough bound for mis(G)

mcds(G) . The
following theorem gives this bound.

Theorem 2.1. The rough bound for mis(G) and mcds(G) is mis(G) ≤ 3.748 ·
mcds(G) + 5.252.
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Fig. 1. Two disks in MCDS.

Proof. Consider two disks v1, v2 in MCDS set M . Both of them have radius 1.5,
and max(dist(v1, v2)) = 1. If we set v1 and then add v2, then the newly covered
area will be at most S2, just shown as the shadow in Fig. 1.

Let area(xv1y) be the area of sector xv1y, and area(�xv1y) be the area of
triangle xv1y. Besides, cosα = 1

3 . Then, the area of S2 should be:

area(S2) = π · 1.52 − 2 · (area(xv1y) − area(�xv1y))

= 2.25π − 2
(

arccos
1
3
· 1.52 − 1

2
· 1
2
· 2√2

)

≈ 2.25π − 4.1251.

If we mimic the growth of a spanning tree for MCDS, then the maximum number
of MIS should less than the total areas induced from M divide the area for a small
disk with radius 0.5. Consequently, we can get the following inequations.

mis(G) ≤ π · 1.52 + (mcds(G) − 1) · S2

π · 0.52

=
4 · S2

π
· mcds(G) +

4 · 4.1251
π

≈ 3.748 · mcds(G) + 5.252.

Thus we proved the theorem.

3. Voronoi Division

Based on Theorem 2.1 we get an upper bound for mis(G)
mcds(G) . Now let us analyze

the relationship between mis(G) and mcds(G) more specifically. Before our discus-
sion, we firstly introduce the definition of Voronoi Division, which can be referred
from [11].
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Fig. 2. Example for Voronoi diagram.

Definition 3.1. Let S be a set of n sites in Euclidean space. For each site pi of S,
the Voronoi cell V (pi) of pi is the set of points that are closer to pi than to other
sites of S, say,

V (pi) =
⋂

1≤j≤n, j �=i

{p : |p − pi| ≤ |p − pj|}.

The Voronoi diagram V (S) is the space partition induced by Voronoi cells.

Similarly, for graph G′, let S be the set of selected MIS, then for each disk wi ∈ S,
we can find the corresponding Voronoi cell (the outer boundary is the boundary for
MCDS). Figure 2 gives an example with mcds(G′) = 2 and mis(G′) = 7. It is easy
to know that each non-boundary Voronoi cell is a convex polygon, and the area
is greater than a disk with radius 0.5. Next let us analyze the area for each kind
of polygons under densest situations. For these boundary Voronoi cells, we also
consider them as a special kind of polygons with one arc edge.

3.1. Triangle

Assume that we have a Voronoi cell Ci as a triangle including disk wi. Then the
area of Ci is smaller if wi is its inscribed circle. Besides, among those triangles, the
area of equilateral triangle is the smallest. The following lemma gives proof for this
conclusion.

Lemma 3.2. The equilateral triangle has the smallest area among other triangles
with wi as its inscribed circle.

Proof. Let a, b, c be the lengths of three edges for triangle Ci, wi be its inscribed
circle, and r = 0.5 be the radius of this circle. Then based on Heron’s formula, we
have

area(Ci) =
1
2
(a + b + c) · r = s · r =

√
s(s − a)(s − b)(s − c),
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where s = a+b+c
2 is the semiperimeter. Since r is fixed, the smallest area comes

when s is smallest. Therefore we have the following model.



min s =
1
2
(a + b + c)

s.t.

√
(s − a)(s − b)(s − c)

s
= r =

1
2
.

(3.1)

Based on Lagrange’s formula, let

F (a, b, c) = (a + b + c) − λ

(√
(b + c − a)(a + c − b)(a + b − c)

a + b + c
− 1

)
,

then (3.1) can be changed into min F (a, b, c), and the extreme value comes out when
the following partial derivative holds:




∂F/∂a = 0

∂F/∂b = 0

∂F/∂c = 0

∂F/∂λ = 0.

(3.2)

Then we get that when a = b = c = f(λ, s), (3.2) holds. Therefore the equilateral
triangle has the smallest area. Let P3 denote such kind of triangle, just shown in
Fig. 3(a).

Similarly, if Ci is a boundary cell, then the one with smallest area should be an
equilateral triangle with one side cut by an arc from disks in MCDS at one of its
tangency point. An example can be seen from Fig. 3(b). Let E3 denote such pseudo
triangle. It is easy to know that area(P3) = 6 · 1

2 · 1
2 ·

√
3

2 ≈ 1.299. To compute the
area of E3, we will use integral. According to Fig. 4, area(E3) = area(P3) − 2 · S3,
where S3 is the shadow formed by the boundary arc and two edges of P3. Therefore,

3P

iw

3E

(a) (b)

Fig. 3. Example for triangle cells.
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Fig. 4. Compute area for E3.

we have that

S3 = f(y) − g(y)

=
∫ a

0



(

y

tan 2π
3

+
1
2

tan
π

3

)
−
√

9
4

+
(

y − 3
2

)2

 dy

≈ 0.0605,

where f(y) is the function for intersecting edge of triangle and g(y) is the function
for the arc of ICMS. As a consequence, area(E3) = 1.1781.

3.2. Quadrangle, pentagon and hexagon

If a non-boundary Voronoi cell Ci has four edges, then using similar conclusion, we
can get that a square with wi as its inscribed circle has the smallest area. Let P4 be
such kind of polygon, just shown as Fig. 5(a). If Ci is a boundary Voronoi cell, then
under two conditions Ci will have the minimum area. The first condition is when
boundary arc cuts off one angle of P3, just shown as Fig. 5(b), we name it as A4;
and the second condition is when boundary arc cuts off one edge of P4, shown as

4P

4A

4E

(a) (b) (c)

Fig. 5. Example for quadrangle cells.
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Fig. 5(c), we name it as E4. Using similar approach as triangles, we can calculate
the area for these quadrangles, and give the result that

area(P4) = 1, area(A4) ≥ 1.1357, area(E4) = 0.9717.

Repeat the above step for Ci as Pentagon and Hexagon, we can have the following
conclusion:

area(P5) = 0.9082, area(A5) ≥ 0.9499, area(E5) = 0.8968,

area(P6) = 0.8661, area(A6) ≥ 0.8855, area(E6) = 0.8546.

Figure 6 shows examples for pentagons and hexagons. After our calculation, we
can get the conclusion that area(Ai) ≥ area(Ei) for i ≥ 3. Therefore, in the next
section, we will use Ei as the smallest boundary Voronoi Cell as i pseudo polygon.

3.3. Heptagon and others

For a non-boundary Voronoi cell Ci, if Ci is a heptagon or n-polygon, n ≥ 7, we
will have the following lemma.

Lemma 3.3. The area of non-boundary n-polygon Ci (n ≥ 7) is greater then
area(P6).

Proof. Firstly, it is easy to know that Ci with 6 adjacent neighbors is the densest
situation if any two small disks does not intersect each other, just shown in Fig. 7(a).
Next, if Ci has 7 or more neighbors, then there must exist at least one disk wj which
does not touch wi (wi is the inner disk for Ci). Hence, the edge for Ci created by
wi and wj is not the tangent line for wi. As a consequence, the area covered by Ci

is greater than area(P6). An example of P7 can be shown in Fig. 7(b). If n > 7,
then the area of Ci will be bigger. Therefore, any Voronoi cell whose edges are more
than 6 will have bigger area then P6.

However, for boundary Voronoi heptagon Ci, when boundary arc cuts off one
angle of P6, the area will become minimum. Such pseudo heptagon is A7 (see Fig. 8).

5P

6P 6A 6E

5A 5E

Fig. 6. Examples for pentagon and hexagon cells.
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6P
7P

(a) (b)

Fig. 7. Compare P6 and P7.

7A

Fig. 8. Example for heptagon cells.

After calculation, we have that area(A7) = 0.8525. Similar as Lemma 3.3, the
boundary n-polygon Ci will have bigger area than area(A7) if n > 7.

3.4. Updated upper bound

As mentioned above, A7 is the smallest type of Voronoi cells. Then we can have a
better bound for mis(G)

mcds(G) .

Theorem 3.4. mis(G) ≤ 3.453 · mcds(G) + 4.839.

Proof. Similarly as proof for Lemma 3.2, we have

mis(G) ≤ π · 1.52 + (mcds(G) − 1) · S2

area(A7)

=
S2

0.8525
· mcds(G) +

4.1251
0.8525

≈ 3.453 · mcds(G) + 4.839,

which is almost the same as [4].
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4. Computing New Upper Bound

In this section, we will compute a better upper bound for mis(G)
mcds(G) using Voronoi

division and Euler’s formula. Firstly, we give some notations. Let si be the minimum
area of the non-boundary cell(i-polygon cell) and s′i that of the boundary cell. From
Sec. 3, we have that

s3 ≥ s4 ≥ s5 ≥ s6 ≤ s7 ≤ s8 . . . and s′3 ≥ s′4 ≥ s′5 ≥ s′6 ≥ s′7 ≤ s′8 ≤ s′9 . . . .

For convenience, we set si = s6 when i ≥ 7 and s′i = s′7 when i ≥ 8. Hence, we get
the following equations.

s3 = 1.299, s4 = 1, s5 = 0, 9082, s6 = s7 = · · · = 0.8661. (4.1)

s′3 = 1.1781, s′4 = 0.9717, s′5 = 0, 8968, s′6 = 0.8546,

s′7 = s′8 = · · · = 0.8525.
(4.2)

4.1. 3-regularization

To simplify our calculation, in the subsection we will modify the Voronoi division
such that any vertex of v in Voronoi division has degree exactly 3. For every vertex
v, it is easy to see that d(v) ≥ 3. For any vertex v whose d(v) = d > 3, let
u0, u1, . . . , ud−1 be its neighbors in clockwise ordering. Replace this vertex with
d− 2 new vertices v1, . . . , vd−2 such that the distance between any vi and vj is not
more than ε. Then, connect every ui and vi and add two edges u0v1 and ud−1vd−2.
Figure 9 gives an illustration when d(v) = 5.

After the regularization, we can see that every vertex in Voronoi division has
degree of exactly 3. Furthermore, if we choose ε sufficiently small, the area of every
Voronoi cell will almost remain the same and the number of edges of new Voronoi
cell is no less than that of original Voronoi cell. Hence, Eqs. (4.1) and (4.2) are
also held.

4.2. Euler’s formula

Let ∂fout be the outer boundary of the area constructed by the MCDS. It is trivial
that the inside part of ∂fout together with ∂fout form graph G′. Note that there

v
1v

2v
3v

0u 0u

1u 1u

2u 2u
3u 3u

4u 4u

ε
ε

Fig. 9. Regularization when d(v) = 5.
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may exist some holes in G′, where each hole means a connected area inside the
∂fout, but not within the area constructed by the MCDS. In this subsection, we
firstly suppose there are no holes in G′, which means that the wireless transmission
range will cover the plane we discuss. Let fi and f ′

i be the number of non-boundary
and boundary Voronoi cells with exactly i edges, respectively. Then using Euler’s
formula, we have

∑
i(fi + f ′

i) + 1−m + n = 2. Since G′ is a cubic graph, 2m = 3n.
Hence, ∑

i

(fi + f ′
i) + 1 − 1

2
n = 2. (4.3)

Let |∂fout| be the number of edges in the outer face. Since every edge is exactly in
two faces, ∑

i

(i(fi + f ′
i)) + |∂fout| = 2m = 3n. (4.4)

For any boundary Voronoi cell, it must have at least one edge belonging to the outer
face. Hence, ∑

i

f ′
i ≤ |∂fout|. (4.5)

Combining (4.4) and (4.5), we have∑
i

ifi +
∑

i

(i + 1)f ′
i − 3n ≤ 0. (4.6)

Then we combine Euler’s formula and (4.6) together. Let −1× (4.6)+ 6× (4.3), we
have

3f3 + 2f ′
3 + 2f4 + f ′

4 + f5 − f ′
6 − f7 − 2f ′

7 − · · · ≥ 6. (4.7)

Since all Voronoi cells are contained in the area constructed by the MCDS, consider
this area and combining (4.1) and (4.2), we have∑

i

(sifi + s′if
′
i) = 1.299f3 + 1.178f ′

3 + f4 + 0, 972f ′
4 + 0.9082f5 + 0.8968f ′

5

+ 0.866(f6 + f7 + · · · ) + 0.8546f ′
6 + 0.8525(f ′

7 + f ′
8 + · · · )

≤ 2.9435 · mcds(G) + 4.1251. (4.8)

Then, −0.0114× (4.7) + (4.8), we obtain

1.2648f3 + 1.1402f ′
3 + 0.9672f4 + 0.9492f ′

4 + 0.8853f5 + 0.8968f ′
5

+ 0.866f6 + 0.8974f7 + · · · + 0.866f ′
6 + 0.8753f ′

7 + · · ·
≤ 2.9435 · mcds(G) + 4.2205. (4.9)

From (4.9), since mis(G) =
∑

i(fi + f ′
i), we have

0.866 · mis(G) = 0.866
∑

i

(fi + f ′
i) ≤ 2.9435 · mcds(G) + 4.2205.

Hence, mis(G) ≤ 3.399 · mcds(G) + 4.874. Consequently, we have the following
theorem.
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Theorem 4.1. For any unit disk graph G, let mis(G) and mcds(G) be the num-
ber of disks in any maximal independent set and minimum connected dominating
set, respectively. If there are no holes in the area constructed by the MCDS, then
mis(G) ≤ 3.399 · mcds(G) + 4.874.

4.3. Discussion with holes

Actually, in the real world there may exist some place where the wireless signal
cannot reach, and some holes in the area constructed by the MCDS. Therefore, in
this subsection we will discuss G′ with holes in the following. Let k be the number
of the holes in G′ and |∂fhole| be the number of edges in all holes. Equations (4.3)
and (4.4) alter as ∑

i

(fi + f ′
i) + 1 + k − 1

2
n = 2.

∑
i

(i(fi + f ′
i)) + |∂fout| + |∂fhole| = 2m = 3n.

For any boundary Voronoi cell, it must have at least one edge belonging to the outer
face or one hole. Hence, ∑

i

f ′
i ≤ |∂fout| + |∂fhole|.

Calculate them by the same strategy as Sec. 4.2, we can obtain that

1.2648f3 + 1.1402f ′
3 + 0.9672f4 + 0.9492f ′

4 + 0.8853f5 + 0.8968f ′
5

+ 0.886f6 + 0.8974f7 + · · · + 0.866f ′
6 + 0.8753f ′

7 + · · ·
≤ 2.9435 · mcds(G) + 0.0684k + 4.2205. (4.10)

Then we have,

mis(G) ≤ 3.399 · mcds(G) + 0.0790k + 4.874.

It is easy to see that k ≤ mcds(G). Next we can obtain the following theorem.

Theorem 4.2. For any unit disk graph G, let mis(G) and mcds(G) be the number
of disks in any maximal independent set and minimum connected dominating set,
respectively. Then mis(G) ≤ 3.478 · mcds(G) + 4.874.

Besides, after analyzing the relation between disks in MCDS and based on the
characteristics for CDS, we can have the following lemma.

Lemma 4.3. For any unit disk graph G, let MCDS be a minimum connected domi-
nating set. To form a hole, there need at least 6 connect vertices in MCDS. Figure 10
is an example for a hole.

Proof. Let h be a point in a hole and m1, . . . , mt be the vertices in MCDS which
can form the hole including h and can induce a connect graph. By the definition
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1.5. +ε

1

1h
2h

3h

4h

5h
6h

Fig. 10. Example for a hole.

of a hole, h can not be covered by any disk from MCDS with radius 1.5. Hence,
choosing h as the center and draw a disk D with radius 1.5, any vertex mi will lie
outside this disk D. It is easy to see that if we form a hole with minimum number
of vertices, the graph induced by m1, . . . , mt is a path and mi is sufficiently close
to disk D. Let hmi intersect disk D at hi. Then the radians of the central angle
∠hihhi+1 should be

∠hihhi+1 ≤ 2 arcsin
1/2hihi+1

hhi
= 2 arcsin

1
3
.

Furthermore, since m1, . . . , mt form a hole, the distance between m1 and mt is less
than 3. Hence, the central angle ∠h1hht is more than π and t ≥ 	 π

2 arcsin 1
3

+1 = 6.

5. Conclusion

In this paper, we presented a better upper bound to compare MIS and MCDS in
a given UDG G with the help of Voronoi Division and Euler’s Formula. If the area
covered by MCDS has no holes, then the best upper bound for MIS and MCDS
should be mis(G) ≤ 3.399 · mcds(G) + 4.874. If there exist some uncovered holes,
then the bound will become mis(G) ≤ 3.478 · mcds(G) + 4.874 by Euler’s formula,
and mis(G) ≤ 3.453 · mcds(G) + 4.839 by the comparison of area for MCDS and
area for smallest Voronoi Cell. Actually, based on the discussion for Lemma 4.3, we
guess that the relation between k and mcds(G) can be k ≤ 1

3mcds(G), and so comes
the result that mis(G) ≤ 3.425 · mcds(G) + 4.839. The detailed proof becomes a
future work which needs thorough discussion.
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