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An Efficient Approximation for Minimum Latency Broadcast in
Multi-Channel Multi-Hop Wireless Networks

Shan Shan, Wei Wang, Hongjie Du, Xiaofeng Gao, and Weili Wu

Abstract—In this paper, we discuss the minimum latency
broadcast problem (MLB) in multi-channel multi-hop wireless
networks (MLB-MC). This problem is NP-hard since its special
version, MLB in single-channel network (MLB-SC) is proved
to be NP-hard [1]. We design an efficient approximation for
MLB-MC, analyze its approximation ratio, and evaluate its
performance via numerical experiments. Furthermore, we give a
general theorem as an upper bound to compare the performance
between approximations for MLB-MC and MLB-SC.

Index Terms—Wireless network, broadcast, approximation.

I. INTRODUCTION

MULTI-HOP wireless networks, including wireless ad
hoc networks and wireless sensor networks,etc. are de-

centralized networks in which all nodes cooperate together to
fulfill a network task. To overcome low bandwidth constraint,
multiple channels are facilitated for communication issues.

Broadcast is an effective data dissemination technique in
wireless networks. Messages are spread from a source to
the whole network through hop to hop transmissions. We
assume one transmission takes one unit time, thus divide
time into equal time slots. The minimum latency broadcast
problem(MLB) is trying to find a interference-free broadcast
schedule with minimum time slots. MLB is extensively studied
in multi-hop wireless network [2] [3]. However, the usage of
multi-channel brings new challenge to MLB. We name this
optimization problem as MLB-MC. Correspondingly, MLB in
single channel is MLB-SC. Multi-rate MLB and MLB-MC
problems are considered in [4] [5].

In this paper, we consider MLB-MC with three types of in-
terference, namely 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛, 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 and 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛.
Fig.1(a) shows the influence of 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛. If two nodes 𝑠1, 𝑠2
send messages to one destination 𝑟1 in their transmission
range 𝑅 at the same time without detecting the existence of
each other. Fig.1(b) illustrate 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒. If receiver 𝑟2
locates within the 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑛𝑔𝑒 𝛼𝑅 of one sender
𝑠1, it cannot receive message from other sender 𝑠2 when 𝑠1
is broadcasting. Fig.1(c) explains 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 which means
a sender 𝑠2 within the 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑔𝑒 𝛽𝑅 (also named
as 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝑟𝑎𝑛𝑔𝑒) of another sender 𝑠1 cannot
broadcast while 𝑠1 is broadcasting. Any type of interference
happens, the transmission fails. Two transmission are 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 if none of the above happen. In this paper, we
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Fig. 1. 3 types of conflicts.

design an efficient approximation algorithm named k-coloring
to solve MLB-MC. We provide its approximation ratio and
prove its efficiency by numerical experiments. We also give a
general theorem as an upper bound to compare approximations
for MLB-MC and MLB-SC.

The rest of the paper is organized as follows. Section II
gives the problem formulation. In Section III, we propose k-
coloring with performance analysis and a universal theorem
comparing algorithms for MLB-SC and MLB-MC. Simulation
and conclusions are presented in Section IV and V.

II. PROBLEM STATEMENT

We consider single source broadcast with 𝐾 channels. For
one broadcast process, each node in network should obey the
broadcast rule which is each node should receive a copy before
broadcasts and receive at least one copy of message from the
source in the end. We use an undirected graph 𝐺 = (𝑉,𝐸) to
represent our communication model, 𝑉 and 𝐸 are the vertex
and edge set. We assume that all the nodes in the network have
the equal transmission range 𝑅, interference range 𝛼𝑅 and
carrier sensing range 𝛽𝑅 [2],𝛽 ≥ 𝛼 ≥ 1. 𝑑(𝑢, 𝑣) is Euclidean
distance between node 𝑢 and 𝑣, 𝑢, 𝑣 ∈ 𝑉 . Node 𝑢 is a neighbor
of node 𝑣 only if 𝑑(𝑢, 𝑣) ≤ 𝑅, the neighbor set of node 𝑢 is
denoted as 𝑁(𝑢) = {𝑢 ∈ 𝑉 ∣(𝑢, 𝑣) ∈ 𝐸}. Assume a non-
overlapping orthogonal frequency channel set 𝐶, ∣𝐶∣ = 𝐾 .
The channel node 𝑣 uses to send messages is represented by
𝑐𝑜𝑙𝑜𝑟𝑠𝑒𝑛𝑑(𝑣) and the channel to receive is 𝑐𝑜𝑙𝑜𝑟𝑟𝑒𝑐(𝑣), channel
assignment to node 𝑣 is denoted as 𝑐𝑜𝑙𝑜𝑟(𝑣).

Given broadcast source 𝑠, the hop counts from node 𝑣
to 𝑠 is the height of node 𝑣 denoted as ℎ(𝑣). To compute
broadcast latency, we divide time into equal time slot unit,
assume one transmission needs one time slot, node 𝑢 transmits
in the 𝑡(𝑢) time slot. So latency is measured by number
of time slots each broadcast process needs, denoted as 𝑚.
If two transmissions can be scheduled in the same time
slot without any interference, they are parallel transmissions
and only parallel transmissions can be scheduled in a same
time slot. If two nodes 𝑢,𝑣 are parallel senders or parallel
receivers, then the transmissions they involved are parallel
transmissions. We define indicator functions 𝑝𝑠() and 𝑝𝑟()
for parallel senders and receivers. If node 𝑢 and 𝑣 are parallel
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senders, then 𝑝𝑠(𝑢, 𝑣) = 1, else 𝑝𝑠(𝑢, 𝑣) = 0. If node 𝑢 and 𝑣
are parallel receivers, then 𝑝𝑟(𝑢, 𝑣) = 1, else 𝑝𝑟(𝑢, 𝑣) = 0. If
two receivers are parallel receivers, their senders are parallel
senders.

Lemma 1. Two nodes 𝑡1, 𝑡2 are parallel senders if 𝑑(𝑡1, 𝑡2) >
𝑚𝑎𝑥(𝛼 + 1, 𝛽)𝑅 1⃝ ∨ 𝑐𝑜𝑙𝑜𝑟𝑠𝑒𝑛𝑑(𝑡1) ∕= 𝑐𝑜𝑙𝑜𝑟𝑠𝑒𝑛𝑑(𝑡2)

2⃝. Two
nodes are parallel receivers if 𝑑(𝑟1, 𝑟2) > (𝑚𝑎𝑥(𝛼, 𝛽) +
2)𝑅 1⃝ ∨ 𝑐𝑜𝑙𝑜𝑟𝑟𝑒𝑐(𝑟1) ∕= 𝑐𝑜𝑙𝑜𝑟𝑟𝑒𝑐(𝑟2)

2⃝.

Proof: 1⃝ is proved in [2]. Obviously,in 2⃝ two transmis-
sions in different channels are parallel transmissions.

Schedule problem is represented as an assignment of node
transmissions to time slots and channels to nodes. Assign to
each node transmission different channels to minimize the
number of non-parallel transmissions. Assign to each node
𝑢 ∈ 𝑉 a time slot 𝑡(𝑢) = 𝑖, 0 ≤ 𝑖 ≤ 𝑚, at which 𝑢 transmit the
message. If a node does not transmit, no time slot is assigned
to it. Broadcast latency𝑚 is the number of time slots needed to
finish the broadcast. MLB-MC is formally defined as follows:
Given 𝐺 = (𝑉,𝐸), 𝑠, 𝑅, 𝛼, 𝛽,𝐾,𝐶, assign time slots and
channels to each node 𝑢 to get minimum latency 𝑚 such that
∀𝑢, ∀𝑣,if 𝑡(𝑢) = 𝑡(𝑣) = 𝑖,𝑝𝑠(𝑢, 𝑣) = 1, 𝑢, 𝑣 ∈ 𝑉, 1 ≤ 𝑖 ≤ 𝑚.

III. APPROXIMATION ALGORITHM AND ANALYSIS

A. Algorithm

We name our approximation as k-coloring, which
generalizes the algorithm in [2] for MLB-MC. The main
idea is as follows: firstly a BFS tree 𝑇𝐵𝐹𝑆 rooted at 𝑠 is
constructed, 𝑇𝐵𝐹𝑆 = 𝑇1 ∪ 𝑇2 ∪ 𝑇3...𝑇ℎ, ℎ is the height
of 𝑇𝐵𝐹𝑆 , 𝑇𝑖 = {𝑣 ∣ ℎ(𝑣) = 𝑖}, 1 ≤ 𝑖 ≤ ℎ. Then we
form a global minimum weight maximum independent
set(MIS) 𝑈 , the weight 𝑤𝑣 = 𝑛𝑐𝑣/𝐼𝑁𝑣, 𝑛𝑐𝑣 is the set
of nodes firstly covered by 𝑣, 𝐼𝑁𝑣 represents for the
interference caused by adding 𝑣 to 𝑈 and is defined as ∣𝑠∣,
𝑠 = {𝑢 ∣ 𝑑(𝑣, 𝑢) ≤ 𝑚𝑎𝑥(𝑚𝑎𝑥(𝛼 + 1, 𝛽)𝑅,𝑚𝑎𝑥(𝛼, 𝛽) +
2)𝑅) ∧ ℎ(𝑣) = ℎ(𝑢) ∧ 𝑢 ∈ 𝑈}. The goal of constructing
minimum weight global MIS instead of arbitrary global MIS
is to eliminate the number of non-parallel transmissions.
According to the depth of each node, 𝑈 = 𝑈1 ∪ 𝑈2...𝑈ℎ.
Next, we choose connectors to connect 𝑈 into connected
dominating set (CDS), connector set is denoted as 𝑈𝐶. We
select minimum connector set, because the smaller the size
of CDS, the less number of non-parallel transmissions there
are. Similarly, 𝑈𝐶 = 𝑈𝐶1 ∪ 𝑈𝐶2...𝑈𝐶ℎ. Only nodes in
𝑈 ∪ 𝑈𝐶 broadcast, broadcast is done from top to bottom.
For each layer 𝑖, firstly, 𝑈𝑖 receive from 𝑈𝑖−1, then 𝑈𝑖

receive from 𝑈𝐶𝑖. The main difference between k-coloring
and [2] is the use of multiple channels, we assign different
channels to non-parallel transmissions. An important concept
used here is conflict graph 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) [2] where 𝑉𝐶
corresponds to the nodes to be scheduled, and there is an
edge between two nodes iff. they cannot transmit message
simultaneously. Conflict graph in which each node has radius
𝑚𝑎𝑥(𝛼+ 1, 𝛽)𝑅 is sender conflict graph 𝐺𝐶𝑐 ; conflict graph
in which each node has radius (𝑚𝑎𝑥(𝛼, 𝛽) + 2)𝑅 is receiver
conflict graph 𝐺𝐶𝑟 . For each level 𝑖, we construct a receiver
conflict graph 𝐺𝐶𝑟𝑢(𝑖)

for 𝑈𝑖, then a sender conflict graph
𝐺𝐶𝑐𝑢(𝑖)

for 𝑈𝑖, so each level 𝑖 has two conflict graph. The

last step is to schedule the broadcast, the idea which is
similar to [2] is: for each level 𝑖, map the original problem
to coloring algorithm on 𝐺𝐶𝑐𝑢(𝑖)

and 𝐺𝐶𝑟𝑢(𝑖)
and find the

minimum number of colors 𝑚𝑐𝑖 and 𝑚𝑟𝑖 such that 𝐺𝐶𝑐𝑢(𝑖)

and 𝐺𝐶𝑟𝑢(𝑖)
are 𝑚𝑐𝑖-colorable and 𝑚𝑟𝑖-colorable separately.

Time slots 𝑚𝑖 needed for each level is (𝑚𝑐𝑖 + 𝑚𝑟𝑖). The
broadcast latency 𝑚 is the sum of 𝑚𝑖, 1 ≤ 𝑖 ≤ ℎ. In
the end, we present the channel assignment algorithm.

Input: 𝑈,𝑈𝐶,𝐺𝐶𝑡 , 𝐺𝐶𝑟

Output: 𝑐𝑜𝑙𝑜𝑟𝑠𝑒𝑛𝑑(𝑣), 𝑐𝑜𝑙𝑜𝑟𝑟𝑒𝑐(𝑣), 𝑣 ∈ 𝑈 ∪ 𝑈𝐶
foreach 𝑖, 𝑖 ∈ 1, ...ℎ do1

𝑆 ← ∅;2

foreach u, 𝑢 ∈ 𝑈𝑖 do3

if ∃𝑛𝑝, 𝑛𝑝 ∈ 𝑆, 𝑝𝑠(𝑛𝑝, 𝑢) = 1 then4

𝑐𝑜𝑙𝑜𝑟𝑠𝑒𝑛𝑑(𝑢)← 𝑐𝑜𝑙𝑜𝑟𝑠𝑒𝑛𝑑(𝑛𝑝);5

𝑆 ← 𝑆
∪{𝑢};6

end7

if ∄𝑛𝑝, 𝑛𝑝 ∈ 𝑆, 𝑝𝑠(𝑛𝑝, 𝑢) = 1 then8

𝑐𝑜𝑙𝑜𝑟𝑠𝑒𝑛𝑑(𝑢)← 𝑙, 𝑙 is the least used channel9

in 𝐶;
end10

foreach 𝑛, 𝑛 ∈ 𝑁(𝑢) ∩ 𝑈𝐶𝑖+1 do11

𝑐𝑜𝑙𝑜𝑟𝑟𝑒𝑐(𝑛) = 𝑐𝑜𝑙𝑜𝑟𝑠𝑒𝑛𝑑(𝑢)12

end13

end14

𝑆 ← ∅;15

foreach u, 𝑢 ∈ 𝑈𝐶𝑖 do16

if ∃𝑛𝑝, 𝑛𝑝 ∈ 𝑆, 𝑝𝑠(𝑛𝑝, 𝑢) = 1 then17

𝑐𝑜𝑙𝑜𝑟𝑠𝑒𝑛𝑑(𝑢)← 𝑐𝑜𝑙𝑜𝑟𝑠𝑒𝑛𝑑(𝑛𝑝);18

𝑆 ← 𝑆
∪{𝑢};19

end20

if ∃𝑛𝑝, 𝑛𝑝 ∈ 𝑆, 𝑝𝑠(𝑛𝑝, 𝑢) = 1 then21

𝑐𝑜𝑙𝑜𝑟𝑠𝑒𝑛𝑑(𝑢)← 𝑙, 𝑙 is the least used channel22

in 𝐶;
end23

foreach 𝑛, 𝑛 ∈ 𝑁(𝑢) ∩ 𝑈𝑖 do24

𝑐𝑜𝑙𝑜𝑟𝑟𝑒𝑐(𝑛) = 𝑐𝑜𝑙𝑜𝑟𝑠𝑒𝑛𝑑(𝑢)25

end26

end27

end28

Algorithm 1: 𝐾 − 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

B. Analysis

Generally, broadcast scheduling problem is mapped to graph
coloring problem. A graph 𝐺 = (𝑉,𝐸) is said to be 𝑘-
colorable, if there exists a mapping 𝑓 : 𝑉 → {0, 1, 2, ⋅ ⋅ ⋅ , 𝑘−
1} such that 𝑓(𝑢) ∕= 𝑓(𝑣) whenever vertices 𝑢 and 𝑣 are
adjacent. The chromatic number 𝜒(𝐺) of graph 𝐺 is defined
to be the smallest 𝑘 such that 𝐺 is 𝑘-colorable. By Brooks’s
theorem, 𝜒(𝐺) ≤ Δ + 1, where Δ is the maximum degree
of graph 𝐺. Given an arbitrary 𝐺, it is 𝑁𝑃 -complete to find
𝜒(𝐺). For MLB-SC, it is reduced to a coloring problem on the
conflict graph 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) and 𝑚 = 𝜒(𝐺𝐶). For MLB-
MC, it is reduced to Multichannel Coloring Problem(MCP).
After the definition, we show that MCP can be reduced to the
normal coloring problem and theorem2 shows the theoretical
upper bound of MLB-MC problem.
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(a) Vary No.Channel (b) Vary Node Density

Fig. 2. Relationship between density, channel and average rate.

Definition 1. (Multichannel Coloring Problem, MCP) Assign
a number from {1, 2, ⋅ ⋅ ⋅ ,𝐾} to each vertex of the conflict
graph 𝐺𝐶 , and partition 𝑉𝐶 into 𝑚 parts 𝑉𝐶(𝐺) = ∪𝑚𝑖=1𝑉𝑖,
such that all nodes in 𝑉𝑖 can send message simultaneously
(i.e., 𝐺𝐶 [𝑉𝑖] is 𝑚-colorable). The objective is to minimize
𝑚 =: 𝜒𝐾(𝐺𝐶).

Theorem 2. Let 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) be the conflict graph. Then
𝜒𝐾(𝐺𝐶) = ⌈𝜒(𝐺𝐶)

𝐾 ⌉.
Proof: First, since 𝐺𝐶 is 𝜒(𝐺𝐶)-colorable, 𝑉𝐶 can be

partitioned into 𝜒(𝐺𝐶) parts 𝑉1, 𝑉2, ⋅ ⋅ ⋅𝑉𝜒(𝐺𝐶) with 𝑉𝑖 is an
independent set for each 𝑖. Write 𝜒(𝐺𝐶) = 𝐾𝑞 + 𝑟 with
0 ≤ 𝑟 < 𝐾 . Let
𝑉1 = 𝑉1 ∪ 𝑉2 ∪ ⋅ ⋅ ⋅ ∪ 𝑉𝐾
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑉𝑞 = 𝑉(𝑞−1)𝐾+1 ∪ 𝑉(𝑞−1)𝐾+2 ∪ ⋅ ⋅ ⋅ ∪ 𝑉𝑞𝐾 ,
𝑉𝑞+1 = 𝑉𝑞𝐾+1 ∪ 𝑉𝑞𝐾+2 ∪ ⋅ ⋅ ⋅ ∪ 𝑉𝑞𝐾+𝑟 ,
Then, nodes in 𝑉𝑖 can transmit message without interference

(assign 𝐾 channels to each independent set; each node in the
same independent set acquires the same channel). It follows
that 𝜒𝐾(𝐺𝐶) ≤ 𝑞 + 1 = ⌈𝜒(𝐺𝐶)

𝐾 ⌉.
On the other hand, suppose that 𝑉𝐶 can be partitioned into 𝑠

parts 𝑉1, 𝑉2, ⋅ ⋅ ⋅ , 𝑉𝑠 such that each 𝑉𝑖 is 𝐾-colorable. Assign
each nodes in 𝑉1, 𝑉2, ⋅ ⋅ ⋅ , 𝑉𝑠 a number (color) as follows:
𝑉1 : colored using colors in {1, 2, ⋅ ⋅ ⋅ ,𝐾};
𝑉2 : colored using colors in {𝐾 + 1,𝐾 + 2, ⋅ ⋅ ⋅ , 2𝐾};
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑉𝑠 : colored using colors in {(𝑠 − 1)𝐾 + 1, (𝑠 − 1)𝐾 +

2, ⋅ ⋅ ⋅ , 𝑠𝐾}.
So 𝑉𝐶 = 𝑉1∪𝑉2 ⋅ ⋅ ⋅∪𝑉𝑠 is 𝑠𝐾-colorable. By the definition

of 𝜒(𝐺𝐶), we have 𝑠𝐾 ≥ 𝜒(𝐺𝐶), which implies that 𝑠 ≥
⌈𝜒(𝐺𝐶)

𝐾 ⌉. Hence 𝜒𝐾(𝐺𝐶) ≥ ⌈𝜒(𝐺𝐶)
𝐾 ⌉. Combining this with

the inequality 𝜒𝐾(𝐺𝐶) ≤ ⌈𝜒(𝐺𝐶)
𝐾 ⌉, the theorem follows.

Theorem 3. Lower bound and upper bound of K-coloring
Appro. ratio 𝜌 are 𝑂(max(𝛼2,𝛽2)

𝐾 )ℎ and 𝑂(max(𝛼2, 𝛽2))ℎ.

Proof: First consider 𝐺𝐶𝑐 , assume single channel case,
∀𝑖, 1 ≤ 𝑖 ≤ ℎ,∀𝐺𝐶𝑐𝑢(𝑖)

, ∀𝐺𝐶𝑟𝑢(𝑖)
, 𝑣 ∈ 𝑉𝐶𝑐𝑢(𝑖)

∪ 𝑉𝐶𝑟𝑢(𝑖)
,

max 𝛿(𝑣) is a bounded constant. For node 𝑣, the number of
neighbors in 𝐺𝐶𝑐𝑢(𝑖)

or 𝐺𝐶𝑟𝑢(𝑖)
can be obtained by computing

the number of non-overlapping hexagons with radius 2√
3
𝑅 [6]

in the circle with radius max(𝛼+ 1, 𝛽)𝑅.

𝛿(𝑣) =
𝜋(max(𝛼+ 1, 𝛽)𝑅+ 𝑅

2 )
2 −

√
3𝑅2

2√
3𝑅2

2

= 𝑂(max(𝛼, 𝛽)2)

If 𝐺 is a line graph, then bound of 𝛿(𝑣) can not be
improved through assigning multiple channels, so lower
bound of 𝛿(𝑣) is 𝑂(max(𝛼, 𝛽)2). Upper bound of 𝛿(𝑣)

has been proved to be 𝑂(max(𝛼,𝛽)2

2 ) in theorem 2. Since
∀𝑖, 1 ≤ 𝑖 ≤ ℎ, 𝑚𝑖 is bounded, 𝑚 =

∑
𝑚𝑖, so 𝜌 ∈

[𝑂(max(𝛼,𝛽)2

𝐾 )ℎ,𝑂(max(𝛼, 𝛽)2)ℎ]. For 𝐺𝐶𝑟 , it is the same.

IV. SIMULATION

In this section, we simulate K-coloring and CABS [2](Min-
imum Latency Broadcast Algorithm for single channel) using
a simulator developed by ourself. In all experiments, nodes are
randomly put in a square of 1000*1000, and the transmission
range of each node is assumed to be 200,𝛼 = 𝛽 = 2. Each
experiment is run 3000 times using random data generated
from different random seeds and the average values are used
to plot the figure. We measure the average rate(rate equals to
latency in K-Coloring over CABS) by varying total number
of channels 𝐾 or node density. As we increase 𝐾 or node
density, average rate is decreasing which means performance
of K-Coloring outperforms CABS.

V. CONCLUSION

In this paper, we studied the MLB-MC Problem and present
an approximation algorithm with constant ratio. The simula-
tion results shows the impact of utilizing multiple channels on
the broadcast latency.
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