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Efficient Impairment-Constrained 3R
Regenerator Placement for Light-Trees in

Optical Networks
Yi Zhu, Xiaofeng Gao, Weili Wu, and Jason P. Jue

Abstract—Light-trees can efficiently guarantee point-to-
multipoint connection in optical networks for many widely
used multicast applications, such as Internet protocol tele-
vision (IPTV). The establishment of a light-tree requires the
placement of 3R regenerators along the tree due to the
wavelength continuity constraint and physical impairments.
Thus, the problem is to establish a light-tree and to as-
sign wavelengths such that the number of regenerators is
minimized. We call this problem the efficient 3R regenerator
placement (ERP) problem. If we fix the routing of the multicast
tree, then how to place a minimum number of regenerators
and assign wavelengths to links becomes a subproblem of ERP,
which is named the wavelength assignment and regenerator
placement (WARP) problem. We find that ERP is NP-hard, and
then provide an approximation algorithm named SPT-ReWa,
which has a subroutine named ReWa which can solve WARP
optimally. We prove that ReWa can find an optimal solution for
WARP, and we analyze the approximation ratio of SPT-ReWa
for ERP. Finally, we illustrate several simulation scenarios to
show the efficiency of SPT-ReWa.

Index Terms—Light-tree; Multicast; 3R regenerator place-
ment; Wavelength assignment.

I. INTRODUCTION

M any emerging multicast applications, such as Internet
protocol television (IPTV), live auction, and distributed

games, require point-to-multipoint connections from a source
to multiple destinations in the network. These applications
also require guaranteed high-bandwidth transmission. For
example, high definition TV without compression needs
6 Gbps bandwidth, ultra-high definition TV needs 72 Gbps,
and 4k-cinema needs 6 Gbps [1]. In optical networks, these
requirements can be achieved by utilizing light-trees [2].

A light-tree is a point-to-multipoint optical channel that
enables simultaneous communication between a source and a
set of destinations. Traditionally, there are two steps to set up
a light-tree: routing and wavelength assignment. The routing
problem is to construct a tree in the given optical network
which is rooted at the source and connects all destinations;
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the wavelength assignment problem is to select an available
wavelength on each edge of the generated routing tree [3].

However, in a practical setting, routing and wavelength
assignment are not sufficient to guarantee successful commu-
nication between source and destinations. A destination may
not receive the data from the source due to two reasons.

a) Wavelength Continuity Constraints (WCC): WCC require
that the incoming and outgoing light signals at a node in the
tree reserve the same wavelength in the absence of wavelength
conversion. If there is no common wavelength available along
the path from the source to a destination, the destination will
not receive the data and will be blocked. The blocking probabil-
ity is higher for multicast traffic than for unicast traffic, since
unicast only considers a path, while multicast considers a tree.

To overcome the effect of WCC, an optical wavelength
converter can be introduced to switch one wavelength to
another [4]. However, such converters are not widely used
because of high cost, limited capability to switch the
wavelength, and additional impairments to the transmission.

b) Physical Impairment (PI): PI refers to physical degrada-
tion effects, such as noise, intra-crosstalk, linear impairments,
and nonlinear fiber effects, which cause the signal quality to
degrade in terms of power. When the receiving signal power
is below a threshold, the receiver cannot receive the data
correctly.

In a light-tree, a node may use a passive power splitter
to split an incoming signal into m outgoing signals, which
degrades the incoming signal power by a factor of 1

m . Such a
device significantly reduces the probability that a destination
will receive data successfully. One possible method to
compensate for the signal power loss is to place amplifiers [5].
However, amplifiers will also amplify the noise accumulated
in the signal. Furthermore, amplifiers cannot convert the
wavelength and may also introduce additional impairments.

To overcome WCC and PI and to avoid the shortcomings
of converters and amplifiers, 3R regenerators can be used in
the optical network. 3R refers to reamplification, reshaping,
and retiming, and involves converting the optical signal back
to the electronic domain and regenerating a brand new signal
(a.k.a. O–E–O conversion).

If 3R regenerators are placed at all nodes (i.e., full
placement), the destinations are guaranteed to receive the
data correctly, which ensures successful light-tree setup.
However, Scheffel [6] argues that full placement will cause
high capital expenditures for network providers due to
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the significant number of O–E–O conversions needed in
the network. Furthermore, compared to full placement, the
routing protocol and signaling overhead will be tremendously
reduced with a limited number of 3R regenerators (i.e., sparse
placement) [7–9]. Therefore, we wish to place as few 3R
regenerators as possible to satisfy the light-tree setup. In
this paper, our objective is to place the minimum number
of regenerators for a given multicast request to guarantee
successful communications. This problem is named the efficient
3R regenerator placement (ERP) problem.

In ERP, we place the regenerators either to relax WCC or
to compensate PI, while in Chen’s problem [10], wavelength
conversion is needed only to relax WCC. Therefore, Chen’s
problem is a special case of ERP. Since Chen’s problem is
proved to be NP-hard, we will prove that ERP is also NP-hard
in Section III. We solve ERP with an approximation algorithm
named SPT-ReWa, which contains two steps. First, we use the
shortest path tree (SPT) algorithm to construct a light-tree
for one source and several destinations in a target network.
We then design an efficient subroutine named ReWa to
determine wavelength assignment and regenerator placement
for the given SPT, which is a subproblem for ERP. We call
this subproblem the wavelength assignment and regenerator
placement (WARP) problem. ReWa consists of three phases:

1) mathematical transformation,

2) minimum regenerator calculation, and

3) wavelength assignment and regenerator placement.

We prove that ReWa finds the minimum number of
3R regenerators (optimal solution) for WARP, we analyze
the approximation ratio of SPT-ReWa, and we evaluate
the performance of ReWa and SPT-ReWa theoretically and
practically. Our numerical results demonstrate the efficiency
of SPT-ReWa.

The rest of this paper is organized as follows. We review
previous works in Section II. In Section III, we model ERP and
WARP formally, including switch architecture analysis, power
function formulation, and ERP and WARP definition. We
propose and illustrate SPT-ReWa in Section IV. In Section V,
we analyze the performance of SPT-ReWa and ReWa. Finally,
we report some numerical results in Section VI and conclude
the paper in Section VII.

II. PREVIOUS WORKS

The research related to ERP can be divided into three
categories.

(a) Multi λ-light-tree: Multi λ-light-tree [11] relaxes WCC
by using wavelength converters. This problem has several
optimization objectives. In [3], the authors tried to minimize
the number of wavelengths in a multicast routing tree by
formulating it as the wavelength cover (WC) problem. WC was
proved to be NP-hard and solved by two-phase heuristics. Chen
and Wang [10] tried to minimize the number of converters and
argued that the wavelength assignment for a given tree was
not NP-hard. Liang and Shen [12] balanced wavelength cost
and conversion cost for light-tree construction and transferred

it to the well-known Steiner Tree problem. Two extensions
of [12] were made by considering transmission delay and
conversion delay in [13] and [14], respectively.

Minimizing the number of wavelengths or the number of
converters is not equivalent to minimizing the number of
regenerators, which is our objective. An example can be found
in Subsection VI.A. Moreover, we also consider PI constraint.
Thus, ERP is different from Multi λ-light-tree.

(b) Power-Constrained Light-tree: Power-Constrained Light-
Tree takes the power budget into account in different ways. In
an optical network, a power budget is the allocation of available
electrical power among the various functions that need to be
performed [15]. In practice, an optical signal transmitted at
a source node has a fixed amount of power. Each time the
message is split at a router onto multiple output ports, a
splitting loss is incurred, which reduces the power of the signal
at each of the outputs. Thus, while the power budget may allow
a message on a given wavelength to be dropped at more than
one destination, it may not be possible to drop the message at
an arbitrary number of destinations using a single light-path
or light-tree [16].

In [17], the authors considered the power budget when
constructing a light-tree and prove that power aware light-tree
(PALT) construction is NP-hard. They formulated the power
function for link attenuation and node splitting.

Another problem, named multicast routing and wavelength
assignment for multi-drop light-tree (MC-RWA), allows the op-
tical signal to be dropped at a maximum of k destinations [18].
The value k is determined by the power budget. It is proved
that MC-RWA is NP-hard for a general graph. On the other
hand, the lower bound of MC-RWA can be solvable in certain
topologies, such as rings, hypercubes, and tori [18,19]. In [20],
the authors argued that MC-RWA for a 2-drop light-tree can be
reduced to the minimum bipartite weighted matching problem
to obtain the optimal solution.

Hamad and Kamal [21] proposed routing and wavelength
assignment for power aware multicasting, named RWA-PAM.
They developed a mixed integer linear programming (MILP)
to formulate RWA-PAM and proposed a heuristic, since
RWA-PAM is NP-hard.

In our problem, ERP, we place regenerators where the power
drops below some threshold, which is the main difference
from PALT, MC-RWA, and RWA-PAM. We do not constrain
the number of destinations in our topology, which is different
from MC-RWA. Besides, RWA-PAM may fail if it cannot find
a possible light-tree to meet a certain power level, but we can
always obtain a feasible solution for ERP.

(c) Traditional Regenerator Placement: Traditional Regener-
ator Placement consists of two possible techniques. The first is
to place 3R regenerators beforehand, and then to decide rout-
ing and wavelength assignment for the coming request based
on the location of regenerators. Pachnicke et al. [22] placed the
regenerators based on the estimated signal degradation along
links and nodes, and set up paths according to the demands.
Peng et al. [23] proposed a new switch architecture (tMC-OXC),
which can support transparent unicast and opaque multicast.
When the multicast traffic passes through this switch, it is
equivalent to having 3R regenerators at all incoming and
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outgoing links. Based on this new architecture, they developed
algorithms for multicast routing.

Another technique first finds the routing and wavelength as-
signment, and then places 3R regenerators when necessary [1].
The authors formulated the signal-to-noise ratio (SNR)
function and developed the MILP to place the regenerators
based on the assumption that the links on the tree can obtain
the same wavelength.

Our work utilizes the second technique as the basic ap-
proach; however, we have different objectives compared to [1].
Additionally, we also provide the optimal wavelength assign-
ment and regenerator placement simultaneously for a given
tree.

III. EFFICIENT 3R REGENERATOR PLACEMENT

PROBLEM

In this section, we formulate ERP and WARP formally. We
first introduce the network models, notations, and other useful
assumptions in Subsection III.A. Next, Subsection III.B intro-
duces the switch architecture, which helps to develop the power
loss function in Subsection III.C. Finally, Subsection III.D
provides the problem definitions in detail and proves that ERP
is NP-hard.

A. Models and Symbols

a) Network Model: We model the network as an undirected
graph G = (V ,E), where each switch denotes a node u ∈ V ,
and each fiber denotes an edge e ∈ E. N(u) is the neighbor
set of node u. Define Λ as the set of wavelengths supported by
each fiber. On each fiber e = (u,v), there is a set of available
wavelengths λ(u,v) ⊆ Λ. Λ = ∪(u,v)∈Eλ(u,v). Let s denote
the source node, and D = {d1,d2, . . . ,dn} denote the set of n
destinations.

Similarly, we define a multicast tree as T = (V ′,E′) rooted
at s, where {s}∪ D ⊆ V ′ ⊆ V , and E′ ⊆ E. For a node u ∈ V ′,
let f u

T be the parent of u on T, and Cu
T the children set of

u. Specifically, f s
T = φ, and Cu

T = φ if u is a leaf. Let Tu be a
subtree (a branch) cut from T and rooted at u.

To place the minimum number of regenerators and to assign
a wavelength on each edge, we introduce some additional
notation. A regenerator can only be placed before a node
or after a node on a link (which will be illustrated in
Subsection III.B), so we define a binary variable rv(u). If
rv(u)= 1, it means that we place a regenerator on edge (u,v) at
u’s side. Otherwise rv(u) = 0. Next, let Rλi

u denote the number
of regenerators placed on Tu, where λi is the wavelength

assigned to edge ( f u
T ,u). Ru = 〈Rλ1

u ,Rλ2
u , . . . ,R

λ|Λ|
u 〉 is a vector

containing the number of regenerators placed on Tu with every
possible λi as u’s input. Let R(T) be one possible regenerator
placement. Then R(T) = [r i( j)]|V |×|V | is a binary matrix. Here
|V | is the cardinality (size) of set V. Correspondingly, let |uv|
denote the Euclidean distance between u and v. Similarly, let
R(u) denote the number of regenerators placed at node u, which
can be determined as R(u)=∑

j∈T, j 6=u
[
r j(u)+ ru( j)

]
.

TABLE I
SYMBOL DEFINITIONS FOR THE NETWORK

G Given topology, G = (V ,E)
s Source in G
D Destination set for multicast
Λ Possible wavelength set
λ(u,v) Available wavelength set for (u,v)
T A multicast tree rooted at s
N(u) Neighbor set of u
f u
T u’s parent on T

Cu
T u’s children set on T

Tu A subtree of T rooted at u
rv(u) Regenerator placed on edge (u,v) at u’s side

R
λi
u Number of regenerators on Tu with

w( f u
T ,u)=λi

Ru Regenerator vector, 〈Rλ1
u ,Rλ2

u , . . . ,R
λ|Λ|
u 〉

R(T) Binary regenerator matrix
R(u) Number of regenerators placed on node u’s side
w(u,v) Wavelength assignment on edge e = (u,v)
W(T) Wavelength assignment for T
|uv| Euclidean distance between u and v
|X | Cardinality of set X

Each edge can choose only one possible wavelength, so let
w(u,v) denote the chosen wavelength for (u,v). Then W(T) =
[w(i, j)]|V |×|V | is a matrix denoting the wavelength assignment
for every edge in T.

We summarize all symbols in Table I.

b) Energy Assumption: Let Pin(u) be the incoming power
of node u, Pout(u) be the outgoing power of u, and H be the
receiving power threshold for each destination. To make the
problem easier, initially, let Pin(s) = 1. According to Fig. 1,
various equipment may reduce or increase the transmission
power for a data flow. We define a power loss function F(·) to
determine how much power is lost or gained when a flow passes
through a node, a link, or a regenerator. Table II lists all needed
symbols for power functions.

B. Switch Architecture

In this subsection, we introduce the architecture of switches
(given by Sahasrabuddhe and Mukherjee in [24]) in the
optical network, which helps us to abstract the power loss
function F(·). Figure 1 is an example of a commonly used
M × M multicast-capable all-optical switch (MC-OXC) which
cross connects optical channels directly in the optical domain.
(The traffic is bidirectional, and the reverse traffic will pass a
group of symmetric elements.)

When the signal arrives on the wavelength λa (shown as the
dotted line), it will bypass the switch on the same wavelength
to the output port through the first stage optical switch (OSW)
directly after demultiplexing (DEMUX). If the signal needs to
go to multiple outputs, a splitter is needed in the MC-OXC. The
duplicated signals are treated independently as the incoming
signals to the second stage OSW and are switched into the
proper outgoing MUX. When local traffic needs to be added,
the traffic can be added through the first stage OSW. When
the switch is a destination, the traffic can be dropped at the
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a
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Fig. 1. (Color online) Switch architecture illustration.

TABLE II
SYMBOL DEFINITIONS FOR POWER ISSUES

Pin(u) Incoming power of switch u
Pout(u) Outgoing power of switch u
F(u) Power loss function through u
F(u,v) Power loss function between u and v
Gamp 30 dB, amplifier gain
α 0.3 dB/km, fiber attenuation constant
H Receiving power threshold
S Distance between two amplifiers
Q Power loss coefficient on fibers
LOSW −8 dB, OSW power loss
LDEMUX −4 dB, DEMUX power loss
LMUX −4 dB, MUX power loss
L tap −1 dB, tap power loss
G in 12 dB, EDFA (amplifier) power gain at input side
Gout 12 dB, EDFA (amplifier) power gain at output

side
β β= LOSW ·LMUX ·Gout ·L tap
RE RE = 1

2 logβH, reachability (in terms of hop
counts) for the optical signal without
regenerators and splitters

first stage OSW (if this switch is a leaf on a light-tree) or the
second stage OSW (otherwise). In general, the OSWs may have
different insertion loss due to different port counts; however,
for simplicity, we assume that all OSWs have the same power
loss LOSW.

Due to PI and WCC, 3R regenerators are needed at the
MC-OXC in the splitter bank. Similar to converter placement
in [25], the regenerators can be placed at different positions.
Figure 2 shows examples of possible regenerator positions
along with the splitter. In detail, if PI is negligible and WCC
are not needed, then no regenerators are needed, which is
shown in Fig. 2(a). We place the regenerator before the splitter,
shown in Fig. 2(b), if the outgoing wavelengths are the same
(λb) but are different from the incoming wavelength (λa) or if
the incoming signal power is not sufficient to guarantee the
receiving power level of all subtrees rooted at this node. We
only place regenerators after the splitter, shown in Fig. 2(c), if
the outgoing wavelength (λb) is not the same as the incoming
wavelength (λa) and some other outgoing wavelengths (λa), or
if the outgoing signal power is not sufficient to cover all the
destinations of the particular subtree rooted at this node. In
Fig. 2(d), the regenerators may be placed before and after the
splitter to meet the receiving power requirement.

C. Power Loss at the Fiber and the Switch

In this subsection, we discuss the power loss in two places:
the fiber and the switch. For the power loss in the fiber (also
known as power attenuation along the fiber), the power loss
from switch u to switch v can be determined as follows (refer
to [17] for details):

Pin(v)= Pout(u) · (Gamp e−α|uv|)
|uv|
S = Pout(u) ·Q|uv|, (1)

where Q = G
1
S
amp e−α ≤ 1 is determined by the fiber system.

Now we give the power loss function for the fiber:

F(u,v)= Pin(v)= Pout(u) ·Q|uv|. (2)

Usually, the gain of the amplifier is set to be Gamp = e−αS

and, therefore, Q = 1 and F(u,v)= Pin(v)= Pout(u).

Now we consider the power loss at the MC-OXC. Figure 3
shows five different roles in which the switch u may act within
the light-tree. Shaded nodes form the destination set, and
dotted lines denote a virtual node, whose role will be explained
as follows.

1) Add only: this role only refers to the source s in Fig. 3. If
the signal is generated at source s and split into m = |Cs

T |
output ports, then, according to Fig. 1, the power loss for
each output port, which sends out the multicast traffic, can
be determined in two cases: if |Cs

T | > 1,

F(s)= LOSW1 ·LOSW2 ·LMUX ·Gout ·L tap

|Cs
T | Pin(s), (3)

else if |Cs
T | = 1,

F(u)= LOSW1 ·LMUX ·Gout ·L tap ·Pin(s). (4)

We assume LOSW1 = LOSW2 = LOSW, β = LOSW · LMUX ·
Gout · L tap and ignore the impact of one OSW when the
signal goes to multiple output ports, since it only has a small
effect on F(u) and we may make an additional check at the
source node. Then the power loss function can be simplified
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Fig. 2. (Color online) Example for regenerator placement.

as follows:

F(u)= Pin(s) · β

|Cs
T | . (5)

For simplicity, in Fig. 3, we use a node to represent a splitter
bank at an MC-OXC, and one trapezoid to represent all
devices, which include one OSW, one MUX, one EDFA, and
one tap, after the splitter bank. When the signal passes
through the trapezoid, the power will reduce by β.

2) Split and pass through: the second role is for a purely
intermediate switch to split the incoming power, such as
u1 in Fig. 3. If the signal arrives at switch u1 and departs
to m = |Cu

T | ≥ 2 output ports, then the power loss can be
determined by

F(u)= Pout(u)= Pin(u) · β2

|Cs
T | , (6)

where we assume G in = Gout and LDEMUX = LMUX. Thus
we add another trapezoid in Fig. 3 to represent all devices,
which include one OSW, one DEMUX, one EDFA, and one
tap, before the splitter bank. The power will reduce by β

when passing through a trapezoid.

3) Pass through: the third role is similar to unicast, such as
u2 in Fig. 3. Let m = |Cu

T | = 1, then the power loss function
is

F(u)= Pout(u)= Pin(u) ·β2. (7)

4) Drop only: this role may exist only when the switch is the
destination, such as u4 in Fig. 3. The power loss function at
the destination is

F(u)= Pout(u)= Pin(u) ·β. (8)

5) Drop and continue: the last role refers to the switch
which acts as both intermediate and destination, such as
u3 in Fig. 3. The signal will split into m = |Cu

T |+1. Among
the m separated signals, |Cu

T | will go to the output ports
and the remaining one will be dropped. The total power loss
function can be determined as

F(u)= Pout(u)= Pin(u) · β2

|Cu
T |+1

. (9)

In order to keep consistent with the previous four cases, we
add a virtual switch which connects to the switch u. For
example, in Fig. 3, we add virtual node u′

3 and connect u′
3

to u3 through a virtual link.

S

Fig. 3. (Color online) Example for u with different roles for tree T.

Since the signal power may not be sufficient for receivers
to detect, we need to place regenerators to compensate for the
power loss. Furthermore, if the outgoing wavelength is not
the same as the incoming one, a regenerator is needed for
wavelength conversion purposes. In detail, we give two rules
for placing a regenerator.

• Rule 1 (Power Sufficient Rule) When the signal arrives at
the switch u with power Pin(u) from root s along tree T, if
Pin(u)< H, then R(x)= R(x)+1, where x is the intermediate
switch along the path from s to u (including s and u) on T
such that Pin(u)≥ H.

• Rule 2 (Wavelength Conversion Rule) At the switch u, if
W(x,u) 6= W(u, y), where e1 = (x,u) ∈ T and e2 = (u, y) ∈ T,
then R(x) = R(x)+1, which means that either rx(u) = 1 or
r y(u)= 1.

If we place a regenerator at switch u, the outgoing signal
power is no longer determined by the incoming signal power
shown by Eqs. (3)–(9). We recalculate the power loss function
according to the different regenerator placements in Fig. 2.
Now, we assume the output power of the regenerator is Pin(s),
and the power loss function at the switch u can be determined
based on the following two scenarios.

• If rx(u)= 1 and r y(u)= 0, then

F(u)= β

|Cu
T |Pin(s). (10)

• If r y(u)= 1, then

F(u)=β ·Pin(s). (11)

From Eqs. (3)–(11), we determine the power loss function
with and without regenerators and give the rules for
regenerator placement.
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D. Definition of ERP and WARP

Based on the previous introduction, we can now define the
efficient regenerator placement (ERP) problem.

Definition 1 (ERP). Given a network topology G = (V ,E) with
source s and destination set D, a wavelength family λ(E), a
power loss function F(·), and two regenerator placement rules,
the efficient regenerator placement (ERP) problem is to find
a multicast tree T with wavelength assignment W(T) and
regenerator allocation R(T) with minimum |R(T)|.

If we find a multicast tree T, then it is easy to define WARP
as follows.

Definition 2 (WARP). Given a multicast tree T with source
s and destination set D, a wavelength family λ(E), a power
loss function F(·), and two regenerator placement rules, the
WARP problem is to find wavelength assignment W(T) and
regenerator allocation R(T) with minimum |R(T)|.

Theorem 1. The efficient regenerator placement (ERP) prob-
lem is NP-hard.

Proof. The decision form of the ERP problem can be defined
as follows.

Given a network topology G = (V ,E) with source s and
destination set D, a wavelength family λ(E), a power loss
function F(·), two regenerator placement rules, and an integer
K, is there a tree T from source s to all destinations in D with
wavelength assignment W(T) and regenerator allocation R(T)
based on two placement rules such that |R(T)| ≤ K .

ERP belongs to the NP class since we can guess the tree T
with wavelength assignment W(T) and regenerator allocation
R(T) in polynomial time and then use the breadth first search
(BFS) algorithm to check whether or not T satisfies the two
rules and |R(T)| ≤ K . Therefore, ERP belongs to NP.

Now we prove ERP is NP-hard. In [10], the multi λ-light-tree
problem with the objective of minimizing the total number of
wavelength converters for a single request (MWC) is shown to
be NP-hard. When we set β = 1, Rule 1 is definitely satisfied
and finding the tree T with W(T) and R(T) to minimize |R(T)|
is equivalent to MWC. Therefore, MWC is a special case of ERP.

Since ERP belongs to the NP class and MWC is proved to be
NP-hard, our ERP problem is also NP-hard. ä

IV. OPTIMAL WAVELENGTH ASSIGNMENT AND

REGENERATOR PLACEMENT

In this section, we introduce our approximation algorithm
for ERP, named SPT-ReWa. This algorithm contains two main
subroutines. The first subroutine selects a multicast tree for s
and D. Here we use the classical shortest path heuristic [26] to
construct the tree T rooted at s with the objective of minimizing
the total number of links in T. We then use a subroutine named
ReWa to solve the WARP problem, which can select an optimal
solution within polynomial time.

The main purpose of ReWa is to determine the placement
of regenerators and to assign wavelengths on each tree edge
when the routing of the tree is given. The first process of the

algorithm is the decision process which starts from leaves and
ends at the root of the tree. For each node along the tree, 1)
the node determines whether or not to place the regenerators
on the incoming and outgoing links if and only if all children of
this node have already determined the wavelengths and the
regenerator placement; 2) the node determines the number
of regenerators needed for any available wavelength in the
incoming link; 3) the node chooses the wavelengths and
determines the placement of regenerators such that the total
number of regenerators placed at this node is minimized; 4)
if the regenerator is placed, the node relaxes both Rule 1
and Rule 2 simultaneously, which is different from either
amplifier placement (only relaxing Rule 1) or wavelength
converter placement (only relaxing Rule 2); and 5) the node
reports the minimum number of regenerators needed and the
wavelength(s) on the incoming link to the parent node along
the tree. When the source node determines the regenerator
placement, the algorithm will start the second process, which
informs all the nodes from the root to the leaves to reserve
the wavelengths and to place the regenerator based on their
reported information in the first process.

We give the detailed algorithm to achieve the key idea
of ReWa in the following subsections. In ReWa—Phase I,
we make a mathematical transformation for every node; in
ReWa—Phase II, we collect necessary information from leaf
nodes to the root, and calculate the number of regenerators
needed; in ReWa—Phase III, we assign a wavelength for each
edge on the tree and then decide the position of regenerators.

A. Mathematical Transformation (ReWa—Phase I)

Recall that WARP is dealing with a given multicast tree.
First, we need to insert some virtual leaves into the tree to
make the algorithm consistent, say, to satisfy Eq. (9). ∀u ∈ V ,
if u ∈ D and Cu

T 6= φ, then set V = V ∪ {u′}, E = E ∪ {(u,u′)},
λ(u,u′) = Λ, Cu′

T 6= φ, and f u′
T = u. Let VL denote all these us,

which is a virtual leaf set.

After inserting new sets into T, the input of ReWa is T =
(V ,E), D ⊆ E, λ(E), β, and H. Note that T is modified to include
the set VL. The output of ReWa is a wavelength assignment
W(T) and a regenerator placement R(T).

ReWa is an algorithm running at every node. Say, each node
runs a copy of ReWa and sends corresponding information
to other nodes. For simplicity, we only illustrate one copy.
In Phase I, each node runs independently. We now give
ReWa—Phase I shown in Algorithm 1.

If u is a leaf in T, then Tu is only one node, so the
number of regenerators placed on edge ( f u

T ,u) on u’s side with
available incoming wavelength λi ∈ λ( f u

T ,u) is 0, and all other
wavelengths, which are not available on edge ( f u

T ,u), are set
to ∞, shown as Line 2. This means that the destination can
be connected only through an available wavelength along the
edge ( f u

T ,u). Moreover, u is either a destination with outgoing
power threshold H, or a virtual node with incoming power
threshold H ·β2, to guarantee that the outgoing power of u’s
parent node, which is the real destination, is H. Thus we can
assign corresponding power Pout(u) and Pin(u) as shown in
Line 3 and 4, respectively. Finally, we set all rv(u) to 0.
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Algorithm 1 ReWa—Phase I

1: if Cu
T 6=φ then // u is a leaf in T

2: Rλi
u = 0, if λi ∈λ( f u

T ,u); otherwise Rλi
u =∞.

3: Pφ
out(u)= H ·β2, if u ∈V L; otherwise Pφ

out(u)= H.

4: Pin(u)= Pφ
out(u)/β.

5: rφ(u)= 0, r f u
T

(u)= 0.
6: else // u is not a leaf in T
7: Rλi

u =∞, ∀λi ∈Λ.
8: Pin(u)= 0, P ci

out(u)= 0, ∀ci ∈ Cu
T .

9: r f u
T

(u)= 0, rci (u)= 0, ∀ci ∈ Cu
T .

10: end if

If u is not a leaf in T, then we simply set everything as
“undetermined,” and then go to the next phase to calculate the
value.

B. Bottom-Up Traffic With Regenerator Calculation
(ReWa—Phase II)

After the mathematical transformation, we calculate the
minimum number of regenerators for T. Phase II is a
bottom-up phase starting from leaf nodes, and ending at the
source. Each node u will run a copy of Algorithm 2 to determine
the number of regenerators for the subtree routed at itself
(node u) once it receives necessary information from all its
children. There are three types of nodes in the tree T: 1) leaf
node, 2) intermediate node, and 3) source node. We discuss each
type as follows.

1) Leaf node: the number of regenerators has already been
determined by Algorithm 1. Any wavelength λi ∈ λ( f u

T ,u)
can be used, and minimum incoming energy should be
larger than or equal to Pin(u).

2) Intermediate node: when the node receives necessary
information (including incoming wavelength(s) and power
of the children) from all its children, it first determines
whether a regenerator is needed due to Rule 1 (power
sufficient rule). We define a temp set Cu1

T for each u, to
record the set of u’s children for which we put regenerators
on link (u, ci), ci ∈ Cu

T , and we define set Cu2
T = Cu

T −Cu1
T

to record the other children. The node then calculates the
number of regenerators needed for Rule 2 (wavelength
conversion rule) similar to the strategy in [10]. The
difference is that we assume any outgoing wavelength can
be accepted for the children in Cu1

T since the regenerator
can switch to any wavelength. Finally, the node will pick a
set of wavelength(s) with minimum number of regenerators
needed for the subtree rooted at node u and will report this
set to its parent.

3) Source node: similar to the intermediate node without
reporting information to a parent.

ReWa—Phase II can be described in Algorithm 2.

Algorithm 2 ReWa—Phase II

1: if Cu
T 6=φ then // u is a leaf in T

2: send Ru, Pin(u) to f u
T .

3: else if f u
T 6=φ then // u is an intermediate node

4: Step 1: Determine regenerator based on Rule 1
5: for ci ∈ Cu

T do
6: if Pin(ci) · |Cu

T |/β> 1 then
7: rci (u)= 1.
8: Cu1

T = Cu1
T ∪ {ci}.

9: else if Pin(ci) · |Cu
T |/β3 > 1 then

10: r f u
T

(u)= 1.
11: end if
12: end for
13: Step 2: Calculate regenerator numbers

14: Let x =∑
ci∈Cu1

T
(min1≤ j≤|Λ| R

λ j
ci

+1).

15: for λ j ∈Λ do

16: I = 1 if R
λ j
ci

6=∞, otherwise I = 0.

17: yj =
∑

ci∈Cu2
T

(R
λ j
ci

· I + (min1≤k≤|Λ| R
λk
ci

+1) · Ī).

18: end for
19: y∗j =min1≤ j≤|Λ| yj , λ

∗
j is such λ j to achieve y∗j .

20: Step 3: Determine Pin(u) and no. of regenerators
21: if r f u

T
= 1 then

22: Pin(u)= H/β.
23: else
24: ∀λi ∈λ( f u

T ,u), Rλi
u =min{1+ x+ y∗j , x+ yi}.

25: Let R
λ∗i
u =minRλi

u .

26: ∀λi ∈Λ, if Rλi
u > R

λ∗i
u , then Rλi

u =∞.

27: if ∃λi , s.t. Rλi
u = 1+ x+ y∗j then

28: Pin(u)= H/β.
29: else
30: Pin(u)=maxci∈Cu2

T
Pin(ci) · |Cu

T |/β2.

31: end if
32: end if
33: Step 3: Send Ru, Pin(u) to f u

T .
34: else // u is the source in T
35: Step 1: Determine regenerator based on Rule 1
36: for ci ∈ Cu

T do
37: if Pin(ci) · |Cu

T |/β> 1 and |Cu
T | = 1then

38: rci (u)= 1.
39: if Pin(ci) · |Cu

T |/β ·LOSW > 1 and |Cu
T | > 1then

40: rci (u)= 1.
41: Cu1

T = Cu1
T ∪ {ci}.

42: end if
43: end for
44: Step 2: Calculate x, y∗j similarly
45: Step 3: Determine final number of regenerators
46: Ru = x+ y∗j for all λ j ∈Λ.

47: ∀ci ∈ Cu
T , if R

λ∗j
ci

=∞, then rci (u)= 1.
48: end if

C. Top-Down Regenerator Placement With Wavelength
Assignment (ReWa—Phase III)

When the source determines the number of regenerators
and outgoing wavelength, the algorithm starts ReWa—Phase
III. In ReWa—Phase II, the regenerators placed based on
Rule 1 can be determined. However, we still need to assign
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Algorithm 3 ReWa—Phase III

1: if f u
T =φ then // u is the source in T

2: for ci ∈ Cu
T do

3: if rci (u)= 0 then
4: w(u, ci)=λ∗j .
5: else
6: w(u, ci)=min1≤ j≤|Λ| R

λ j
ci

.
7: end if
8: send w(u, ci) to ci .
9: end for
10: else if Cu

T 6=φ then // u is an intermediate node in T
11: Determine whether to place a regenerator before u
12: if r f u

T
(u)= 0 & Pin(u)= H/β, then r f u

T
(u)= 1.

13: for ci ∈ Cu
T do

14: if r f u
T

(u)= 1 then

15: w(u, ci)=λ∗j .
16: else
17: w(u, ci)= w( f u

T ,u).
18: end if
19: end for
20: Determine whether to place a regenerator after u

21: if rci (u)= 0 & R
λ∗j
ci

=∞, then rci (u)= 1.
22: for ci ∈ Cu

T do

23: if r f u
T

(u)= 1 then w(u, ci)=min1≤ j≤|Λ| R
λ j
ci

.
24: send w(u, ci) to ci .
25: end for
26: end if

a wavelength on each edge and decide other regenerator
positions based on Rule 2. Therefore, we design ReWa—Phase
III, which is a top-down phase from the source to all leaves.
Each node will run a copy of this phase once it receives the
information sent from its parent and determine the outgoing
wavelength and regenerator position at this node. The detailed
algorithm description can be seen in Algorithm 3.

V. THEORETICAL ANALYSIS

In this section, we first prove the correctness of ReWa
by showing that ReWa achieves the minimum number of
regenerators placed along the given tree. In order to show
that ReWa achieves an optimal solution, we need to prove
that 1) ReWa achieves a feasible solution which meets both
power constraint (Rule 1) and wavelength constraint (Rule 2)
and 2) ReWa achieves an optimal solution in terms of
number of regenerators for any subtree, which can be proved
by induction. We then analyze the approximation ratio for
SPT-ReWa and provide an example to demonstrate that there
exists a case which requires O(RE) ·OPT regenerators if we
apply SPT-ReWa. Finally, we analyze the time complexity of
SPT-ReWa.

Now let us discuss the performance of ReWa.

Theorem 2. ReWa outputs a feasible solution to set up a
light-tree.

Proof. ReWa—Phase I guarantees that the input power for
every destination is at least H. Next, in ReWa—Phase II, the

Fig. 4. Special network topology G(V ,E).

bottom-up calculation ensures successful communication for
every intermediate node. Finally, ReWa—Phase III chooses a
suitable wavelength on each edge. All three phases together
calculate a feasible solution for a tree T to overcome WCC and
PI. ä
Theorem 3. ReWa determines the minimum number of regen-
erators for T.

Proof. Proof in Appendix A. ä

Next, we analyze the approximation ratio for SPT-ReWa.

Theorem 4. SPT-ReWa has approximation ratio 2logβH =
4RE.

Proof. Proof in Appendix B. ä

Theorem 5. There exists a case which requires O(RE) ·OPT
regenerators.

Proof. Consider the following graph G. In the graph G, there
are two paths from source s to each destination di : one is the
path P1

i with total length mRE-1 and with every wavelength

different on each link, and the other is the path P2
i with total

length mRE and with all links having the same wavelength.
Figure 4 shows an example with m = 3 and RE = 2.

Obviously, the optimal solution should choose path P2
i from

source s to destination di , which requires m regenerators
due to Rule 1. The optimal solution requires OPT = m · |D|
regenerators. However, a total of our algorithm will always
choose P1

i from source s to destination di , due to the shortest
path heuristic, and the path requires mRE-1 regenerators. Our
approximation algorithm requires a total of m · |D| ·RE−|D| <
OPT · RE = O(RE) · OPT. Therefore, we can create a case
for which the approximation algorithm requires O(RE) ·OPT
regenerators. ä

Theorem 6. The total time complexity for SPT-ReWa is O(|D| ·
|V |2+|Λ| · |T|).
Proof. The time complexity for SPT requires at most O(|D| ·
|V |2) time, since the minimum hop count path can be
determined by BFS [27,28] or Dijkstra’s algorithm [29] in at
most O(|V |2). Now we analyze the time complexity for ReWa.
Phase I takes O(|Λ| · |T|) time to initialize all nodes in the
tree T. Phase II needs O(|Λ| · |Cu

T |) for each node u on the
tree T, and, therefore, the total time complexity for Phase II
is

∑
u∈TO(|Λ| · |Cu

T |) = O(|Λ| · |T|). As for Phase III, the time
complexity is also bounded by O(|Λ| · |T|). Thus, the total time
complexity for ReWa is O(|Λ| · |T|). The time complexity for
SPT-ReWa is O(|D| · |V |2+|Λ| · |T|). ä
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Fig. 5. (Color online) Example of algorithm comparison.

VI. NUMERICAL RESULTS

In this section, we first show an example to demonstrate
that ERP is different from problems in which the objective
is to minimize the total number of wavelengths or to
minimize the number of wavelength converters. We then
present some numerical examples to show that the total
number of regenerators obtained by SPT-ReWa is close to
the optimal solution in a small scale network. We also check
the performance of ReWa for a large scale tree with tens to
hundreds of nodes and demonstrate that both PI and WCC
greatly affect the regenerator placement.

A. Comparison Example

In this subsection, we compare ReWa with Li’s [3] and
Chen’s [10] algorithms. The comparison is illustrated in Fig. 5.

Figure 5(a) gives an original light-tree with the available
wavelength set for each edge. Figure 5(b) is the result for Li’s
algorithm, with 8 regenerators placed as rectangles, and with
the wavelength assignment shown on edges. From Fig. 5(b),
we find that Li’s algorithm reserves a minimum number of
wavelengths (2 wavelengths) for the light-tree, but requires 8
regenerators, 7 of which are used as wavelength converters.
The remaining regenerator acts as a power compensator.

Figure 5(c) is the result for Chen’s algorithm, also with
8 regenerators and a corresponding wavelength assignment.
From Fig. 5(c), we find that only 4 regenerators are used as
wavelength converters, and another 4 are used to compensate
power loss. The system requires 3 different wavelengths.

Figure 5(d) is the result for ReWa, with only 7 regenerators
and a corresponding wavelength assignment. From Fig. 5(d),
we can see that, due to the two functions of regenerators (wave-
length conversion and power compensation), 4 regenerators

are used for both functions, 1 only for power compensation,
and 2 only for wavelength conversion. Thus fewer regenerators
are placed compared to Li’s and Chen’s algorithms. The system
needs 3 different wavelengths.

B. Small Scale Example

In this example, we check the performance of SPT-ReWa
and show that it is close to the optimal placement in a small
scale network. We use a six-node network, and the topology
and the available wavelength set on each link are shown
in Fig. 6. Since the network topology is symmetric, we test
three cases, and choose Node 1, Node 2, and Node 3 as the
source for each case. We also set the number of destinations
|D| from 2 to 4. After the source and |D| are determined,
we test all combinations (cases) of non-source nodes as the
|D| destinations. We set the reachability RE = 1

2 logβH = 2.
For each case, we obtain the optimal solution by emulating
all possible routings, applying ReWa to the given tree, and
selecting the tree with the minimum number of regenerators.
SPT-ReWa determines the routing based on the shortest path
heuristic. If two paths from the branch node to the destination
have the same cost (say, hop count), SPT-ReWa breaks ties with
the number of available wavelengths along the path.

We also study the performance of another routing algorithm.
We first assign the cost to each link (u,v) as 1

λ(u,v) , which
means that a link with a larger number of available wave-
lengths will have lower cost. We find the shortest path from
each destination to the source with minimum cost and form
a tree. We name this tree the minimum cost path (MCP)
tree. After finding a tree, we apply ReWa to determine the
wavelength assignment and regenerator placement. We name
this algorithm MCP-ReWa.
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Fig. 6. Topology for simulation.

TABLE III
COMPARISON BETWEEN SPT-REWA, MCP-REWA, AND

OPTIMAL SOLUTION

No. of
cases –4

Ratio of
4

s |D| OPT
SPT-
ReWa

MCP-
ReWa 0 1 0 1

2 0.9 1.3 1.7 6 4
1 3 1.2 1.6 2.7 6 4 64% 36%

4 1.8 2 3.2 4 1

2 0.7 0.9 1.0 8 2
2 3 0.9 1.2 1.4 7 3 64% 36%

4 1 1.6 1.8 2 3

2 0.7 0.9 1.0 8 2
3 3 1.1 1.2 1.4 9 1 84% 16%

4 1.4 1.6 2.0 4 1

Table III shows the average number of regenerators
obtained by the optimal algorithm and compares the results
of SPT-ReWa (|R(T)|) and the optimal solution (|R(T′)|opt).
We define the difference ratio (4 = |R(T)| − |R(T′)|opt) as
the number of cases with 4 over the total cases we test
for the given source. Here column OPT denotes the average
number of regenerators obtained by the optimal algorithm.
Columns SPT-ReWa and S-ReWa are the average numbers of
regenerators obtained by SPT-ReWa and S-ReWa, respectively.
From the table, we can find that the number of regenerators
obtained by the optimal algorithm is always smaller than
or equal to the solution achieved by SPT-ReWa. As the
number of destinations increases, we need more regenerators
to guarantee the light-tree establishment due to more power
splitting and more links. From the optimal solution, the source
Node 2 always requires fewer regenerators than the other two
source nodes, since Node 2 has fewer hops to all other nodes
(average hop count is 1.2).

We find that SPT-ReWa achieves good results, which are
within the approximation ratio, in a small scale network. In
more than 60% of the total cases, the number of regenerators
obtained by SPT-ReWa is the same as the optimal solution.
The rest of the cases only require one more regenerator
because SPT-ReWa may choose the routing with minimum hop
count but with more regenerators for wavelength conversion
purposes. Furthermore, we also find that SPT-ReWa always
achieves better results than MCP-ReWa because SPT-ReWa
finds the tree with minimum links to reduce the regenerator
placement due to Rule 1.

C. Large Scale Example

Since we give the approximation ratio in Section V, the
total performance of SPT-ReWa for the large scale network can
be guaranteed within the approximation ratio. Thus, in this
large scale example, we only check the performance of ReWa
under two regenerator placement rules for the given large
scale tree in 1). We then calculate the number of regenerators
for different tree shapes which are determined by the total
number of nodes (N) and the splitter capability (B) in 2).

We randomly generate a connected graph (such as the
topology studied in our simulation) with 205 nodes and with
an average node degree of 4. We randomly distribute the
available wavelengths on the links to meet the different
available wavelength ratios (AWR). AWR is the average
fraction of available wavelengths on each link of the topology.
AWR reflects the effect on the current regenerator placement
by other existing traffic, such as other multicast demands
(light-trees) and unicast demands (light-paths) that reserve
wavelengths.

1) Effect of placement rules on the number of regenerators for
a given tree

We randomly select nodes from the topology to form a tree
with N total nodes (N = 120). We randomly choose one node
as a source. We check each node along the tree to guarantee
that each node has a maximum of B (B = 3) children, which is
the maximum capability for the splitter to split the incoming
signal. All leaves of the tree form the destination set D. From
D, we randomly select nodes as virtual destination nodes. We
apply ReWa for this generated tree and take the result as one
experiment.

Figure 7 shows the results obtained by ReWa for generated
trees. Each point in the figure is the average of 100,000
experiments. We also show the range with 95% confidence
level in the figure. From Fig. 7, we can find that when
the reachability is small (RE = 1

2 logβH < 7), we need more
regenerators than when the reachability is large. The reason
is that the optical signal degrades quickly when reachability is
small and, therefore, the regenerators are used to compensate
PI (Rule 1) as well as to relax WCC (Rule 2). When
reachability (RE) increases, PI does not significantly affect
the transmission, and most regenerators are used to relax
WCC. Therefore, when reachability is large, the number of
regenerators remains fixed for a given AWR, and, as AWR
increases, we need fewer regenerators.

2) Effect of tree shape on the number of regenerators

In this example, we set AWR = 40% and test two scenarios:
small reachability (RE = 1

2 logβH = 4) and large reachability

(RE = 1
2 logβH = 8).

Figures 8 and 9 show the results we obtain from ReWa.
From Fig. 8, we find that as N increases, more regenerators
are needed. Based on the same reason given in 1), these
regenerators are used to compensate PI. Since we need to
regenerate the signal at most intermediate nodes, the splitter
capability (B) does not have a significant effect on the number
of regenerators placed on the tree. When the signal can be
transmitted further, the splitter capability has a greater effect
on the number of regenerators. For example, in Fig. 9, the case
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Fig. 7. (Color online) Number of regenerators (|R(T)|) versus
reachability (RE = 1

2 logβH).

B = 2
B = 3
B = 4
B = 5

Fig. 8. (Color online) Number of regenerators (|R(T)|) versus number
of nodes (N): RE = 1

2 logβH = 4.

of B = 5 requires almost 100% more regenerators than the case
of B = 2. The reason is that, although the tree height is smaller
when B is larger, splitting the signal at the intermediate node
will degrade the signal quality significantly, which requires
more regenerators to compensate PI. Therefore, from Figs. 8
and 9, longer reachability (RE = 1

2 logβH) and less splitting
(e.g., B = 3 and 4) reduces the total number of regenerators.

VII. CONCLUSION

In this paper, we consider an optimization problem in
optical networks for a multicast request with one source and
a set of destinations. The goal is to select a multicast tree
from a given topology, and then place the minimum number
of 3R regenerators and assign an available wavelength on
each edge of this tree to set up a light-tree. We name this
problem the ERP problem. We found that ERP is NP-hard, and
then provided a heuristic named SPT-ReWa, which contains
a subroutine ReWa to specifically deal with regenerator
placement and wavelength assignment for a given tree. We
proved that ReWa can obtain the optimal solution for a given

Fig. 9. (Color online) Number of regenerators (|R(T)|) versus number
of nodes (N): RE = 1

2 logβH = 8.

tree, and then provided the approximation ratio for SPT-ReWa,
which is 4RE. We also illustrated several numerical results to
exhibit the efficiency of our algorithm, comparing it with other
solutions in the literature dealing with similar problems.

One possible future direction is to place the regenerators
under different physical impairment measurements, such as
Q-factor, BER, or OSNR.

APPENDIX A

Appendix A.1 Proof of Theorem 3

In this appendix, we prove that ReWa achieves an optimal
solution for a given tree (shown in Theorem 3). We first provide
two lemmas which are used to prove the theorem.

Lemma 1. If r f u
T

(u) = 1, then T can be separated into two
subtrees, Ts and Tu, where Ts = T \ Tu. Then we have
minR(T)=minR(Ts)+minR(Tu)+1.

Proof. We know that a regenerator will generate a new
signal with power Pin(s). This signal can use any available
wavelength. Thus, the regenerator allocation for Ts will not
influence that of Tu. Then the multicast tree can be divided
into two independent subtrees, which reduces the size of
our problem. Therefore, the only thing needed is to insert
one regenerator on edge ( f u

T ,u) at u’s side. Then minR(T) =
minR(Ts)+minR(Tu)+1. ä

Lemma 2. If rv(u) = 1, where v ∈ Cu
T , then T can be separated

as two subtrees Ts and Tuv, where Tuv = Tv ∪ (u,v), and
Ts = T \ Tuv. Then we have minR(T)=minR(T)=minR(Ts)+
minR(Tu)+1.

Proof. Similar to Lemma 1, T can be divided into two subtrees
with independent regenerator placement. The only difference
is that Pout(u)= β

|Cu
T |

·Pin(s). ä

Now we prove Theorem 3.

Proof. We prove this theorem by induction on the height of
Tu, denoted as H(Tu).
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The base case is H(Tu) = 1, which means that u is a leaf
for T. Based on ReWa, ∀v ∈ N(u), rv(u) = 0, which is definitely
optimal.

Suppose when H(Tu) = k, R(Tu) is minimum. For H(Tu) =
k + 1, if we travel bottom-up, then at level k + 1 there may
exist several independent subtrees. We only need to consider
one subtree, and the others can be proved similarly. Assume
we have a subtree Tu with u at level k + 1, then each of u’s
children ci ∈ Cu

T forms a tree Tci with height less than or
equal to k. Based on Lemma 1, if ru(ci) = 1, we can remove
Tci from Tu, which guarantees the optimal property for R(Tu).
Similarly, based on Lemma 2, if rci (u)= 1, we can also remove
Tci ∪ (u,v) from Tu. Next, we need to consider the rest of tree
Tu, where there are no regenerators placed on each remaining
(u, ci). If ReWa does not output an optimal solution for Tu, then
according to the induction hypothesis, the only edges where we
can place some redundant regenerators are (u, ci) (since each
Tci outputs the minimum number of regenerators). However,
we already cut all edges that have regenerators, so we cannot
place any more regenerators.

Therefore, our algorithm outputs an equivalent result as the
optimal solution for level k+1, which implies the correctness
of ReWa. ä

APPENDIX B

Appendix B.1 Proof of Theorem 4

In this appendix, we prove that ReWa achieves an optimal
solution for a given tree (which is shown in Theorem 4). We
first provide two lemmas which are used to prove the theorem.

Lemma 3. Given a network topology G = (V ,E), a source s
and a destination set D, the lower bound on the number of
regenerators can be determined by |R(T)|low = n · logHβ, where
n is the minimum number of links of the Steiner tree from s to
D.

Proof. If we consider both Rule 1 and 2, we will place more
regenerators than if we only consider Rule 1 or 2. Therefore,
if we place regenerators just based on Rule 1, it should be the
lower bound of ERP.

Any tree T spanning from s to D can be separated
into |D| link-disjoint paths represented as {PB0,d1 ,PB1,d2 ,
. . . ,PBi ,di+1 , . . . ,PB|D|−1,d|D| }, where s = B0,B1, . . . ,Bi , . . . ,B|D|
represents the branching nodes of the tree. For each path
PBi ,di+1 , the power loss without placing any regenerator is at

least β|PBi ,di+1 |. Consider the effect of regenerators. In order to
meet threshold H, |R(PBi ,di+1 )| ≥ logHβ

|PBi ,di+1 | = |PBi ,di+1 | ·
logHβ. Therefore, |R(T)| ≥ |T| · logHβ ≥ n · logHβ, where |T| is
the total number of links of tree T. ä

Lemma 4. The upper bound of regenerators placed on a
shortest path heuristic tree SPT can be determined by |SPT|,
where |SPT| is the total number of links of SPT.

Proof. We know that full regenerator placement guaran-
tees the light-tree establishment. Thus it is trivial that
|R(SPT)|up ≤ |SPT|. ä

Now we prove Theorem 4.

Proof. Let |R(T∗)| be the number of regenerators placed on
an optimal multicast tree T∗, and |R(SPT)| is the number of
regenerators placed on a shortest path tree by our algorithm.
According to Theorem 3, |R(SPT)| ≤ |R(SPT)|up. Thus,

|R(SPT)|
|R(T∗)| ≤ |R(SPT)|up

|R(T)|low
≤ |SPT|

nlogHβ
≤ |SPT|

nlogHβ
. (12)

According to [26], we know that |SPT|
n ≤ 2. Thus,

γ= |R(SPT)|
|R(T∗)| ≤ |SPT|

nlogHβ
≤ 2 · logβH = 4 ·RE, (13)

which is the approximation ratio for SPT-ReWa. ä
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