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Abstract—Energy conservation and network performance have
become two of the most important issues in data center as
the scale of cloud services continues growing. Recent researches
usually consider these two issues separately. Energy conser-
vation mainly deals with hosts, which reduces total energy
consumption by consolidating virtual machine(VM)s to fewer
hosts, and network performance mainly deals with network
scalability and cnergy cfficicncy, which impreves data center
network(DCN) scalability by applying new network topologies
or reuting schemes and impreves DCN cnergy cfficicncy by
consolidating tralfic. In this paper, we joinlly consider these (wo
issucs and define Combined VM Consolidation (CVC) problem.
We prove that CVC is NP-complete and is inapproximable by a
factor of 3/2 & unless P = NP. Next, we propose NICE: Network-
aware VM Consolldation scheme for Energy Conservation in Data
CEnter to solve CVC. Instead of taking the unrealistic hypothesis
that migration cost is negligible, a common assumption in most
literatures, we precisely analyze VM migration cost according
to real-trace experiments in a 6-server testbed via VMware.
Massive simulatiens validate the cfficicncy of NICE. In all, te
the best of our knowledge, we are the first work to combine VM
consolidation with network optimization and migration cost.

Keywords-cloud computing; data center; VM consolidation;
energy saving; VM migration cost

I. INTRODUCTION

Ass the increasing demands for a wide spectrum of cloud ser-
vices, energy conservation becomes one of the most important
issues in modern data center. There are many works [1]-[8]
trying to save energy in data center, and the common way
is through improving cnergy cllicicncy of hosls and other
physical facilities. For instance, literatures [1]-[5] applied live
virtual machine(VM ) migration technology to conserve energy
by first consolidating VMs (o lewer hosts and then uming
idle hosts off. This can be implemented via many management
softwares such as Xen and VMware, and the service downtime
due to migration is extremely short.

Apart from energy conservation, network performance is
another important issue in modern data center, especially the
scalabilily and energy elficiency ol data center nelwork(DCN).
The common way to tackle the scalability issue is through
applying new network topologies, among which DCell [9],
BCube [10], VL2 [11], Portland [12] are some of the most
excellent works. Meng et. al. [13] tried to improve DCN scal-
ability from a different perspective. They mapped VM pairs
with heavy nutual trallic (o slot pairs in hosts with low cost

connections in order to localize traffic as much as possible. [n
(his way, the amount ol (ralfic going through the core level
switches is greatly reduced ,and this leads to a more scalable
DCN. In [14], Li et. al. also tried to reduce the network
cost during the VM placement procedure. However, Tso et.
al. [15])define a novel distributed migration scheme to reduce
VM communication cost. As for improving DCN energy
efficiency, the commaon way is (hrough dynamically adjusting
network links and switches according (o traliic demands. Abls
et. al. [16] exploited the energy-proportional characteristic of
modern plesiochronous links to reduce energy consumption
of DCN by dynamically adjusting data transmission rates of
cxisting links according to traffic ratc dcmands. Chabarck et.
al. [17], Heller et. al. [18] and Wang et. al. [19] designed novel
trallic rouling schemes (0 achicve DCN cnergy conscrvation by
dynamically turning on-off switches and cables. Mann et. al.
[20] and Fang et. al. [21] exploited VM migration technology
to improve energy saving potential of DCN.

However, none of the above works jointly considered reduc-
ing host energy consumption and improving DCN scalability
and cnergy clliciency, It is obvious thal VM consolidation
allects traflic distribution in DCN, and (raffic distribution i
directly related to the scalability and energy saving potential of
DCN. Therefore, we propose to reduce host energy consump-
tion and (0 improve DCN scalability and cucrgy cllicicney at
the same time through VM consolidation. Instead of taking
the unrealistic hypothesis that migration cost is negligible, in
(his paper we deline cost function Tor VM 1nigration through
real-trace experiments in a 6-server testbed via VMware. We
also illustrate the cost function for host energy consumption
and network cost. Based on these cost functions, we formally
deline Combined VM Consolidation (CVC) which minimizes
host energy consumption, network cost and migration cost.
We prove that CVC is NP-complete by a reduction from
classic Bin Packing Problem. We also analyze the hardness
of approximation for CVC, say, CVC is inapproximable by a
factor of 3/2 — € unless P = NP, where € is any given positive
real number.

In order to solve CVC, we propose an effective scheme
named NICE: Network-aware VM Consolldation scheme for
Energy Conservation in Data CEnter. NICE consists of three
subroutines. Firstly, we use FirstFit-Decr algorithm to pack
all VMs into virtual hosts according to VMs’ computing
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request, with an approximation ratio of % to the optimal result.
Secondly, we implement Kernighan-Lin algorithm to minimize
total inter-host traffic. Iinally, we design a greedy approach
Greedy-Map which iteratively maps virtual host to physical
host with minimum network cost and migration cost increase
until all virtual hosts are mapped.

We summarize our contributions as follows:

« We dcfinc migration cost quantilatively bascd on rcal-
trace experiments, and we analyze host energy consump-
tion and network cost thoroughly.

« We formally formulate Combined VM Consolidation
(CVC) problem and prove its computational complex-
ity and hardness of approximation. To the best of our
knowledge, we arc the first work joinlly considering host
energy consumption, network cost and migration cost in
VM consolidation.

« We propose an effective scheme NICE to solve CVC,
which is a three-step heuristic.

+ We validale the elficiency of NICE via massive simula-
tions under various scenarios.

The rest of the paper is organized as follows. In Section II,
we review some related works. In Section III, we present
important observations about date center host and DCN, and
introduce our real-trace experiments on VM migration cost.
Problem formulation and proof of CVC’s complexity and
hardness of approximation are presented in Section IV. We
describe our scheme NICE in Section V. Evaluation results are
shown in Section VI. We conclude our work in Section VII.

II. RELATED WORK

In [2] Verma et. al. first miroduced various [onmulation
of the cost-aware Application placement problem. For each
formulation, they described model assumptions, analyses of
practicality of these assumptions and information required to
solve corresponding problems. Their work showed compre-
hensive theoretical and experimental evidence to establish the
cllicacy ol pMapper and (hey proposcd MP ratio to combine
migration cost and power consumption. But it didn’t consider
network performance, neither the communication cost. Similar
to [2], Jung et. al. [3] built a system that optimizes power con-
sumplion, performance benelits, and ransicnt cosls incurred
by adaptation. In [4], Zu et. al. proposed an cllicicnl power-
aware resource scheduling strategy that reduces data center’s
power consumption effectively based on VM live migration.

Chabarek et. al. [17] state that power consumption are
becoming a significant technology challenges that threaten to
slow bandwidth growth. They described the power issues in
routers, and advocated power-awareness be a primary objective
in the design and conliguration ol DCN. Ileller er. al. [18] pro-
posed a system for reducing energy consumption of DCN by
dynamically turning on-off links and switches while imposing
little or no harm to network performance. They implemented
their design on a hardware testbed using OpenFlow and Nox.
Their results show that there are great potential of energy
saving for dynamic DCN. To make dynamic DCN more
practical, Wang et. al. [19] used data mining technique to

predict coming (raflic demands and adjusied DCN according
to the predicted workload. They also considered correlations
between traffic in the process of traffic consolidation, which
can further improve the performance of dynamic DCN.

In [20], Mann et. al. proposed a framework for VM place-
ment and migration. They took both the network topology
and network (raflic demands into account so (hat the network
energy consumption can be minimized while satisfying as
many network demands as possible. Fang et. al. [21] did
similar work except that they assumed that instead of only
one VM per server, several VMs can be placed on one server.
Shang et. al. [22] mainly focused on how to save energy in
high-density data center network from the routing perspective.
In [23], Huang et. al. proposed enery-aware VM placement
in which they considered application dependencies to reduce
network energy consumption.

III. PROBLEM ANALYSIS

In this section, we first present our definition ol cosl
functions for host and network. Then we introduce our real-
trace experiments on VM migration cost.

A. Power Consumption of Host

There are any studics working 1o quantitatively deline
power consumption of host in modern data center. Most studies
show that CPU consumes more power than other activities,
such as memory and I/O, and these activities are usually
positively proportional to CPU utilization. In [24], Economou
et. al. demonstrated such observation by experiments, which
confirms that CPU takes the main part of power consumption.
Similar result can be found in [25], in which Fan et. al. claim
that using CPU utilization as the main factor to estimate the
power consumption of a host is reasonably accurate. Based
on their analyses, the power drawn by a host can be estimated
using the following formula:

P 4+ (PF —PHYQ2u—u®*), u>0
Ph(u)={ Oh (h h)( ) Y0

P,(u) denotes the total power of a host with CPU utilization
u. P,i denotes idle power of host, while P,f denotes the power
when host works at full CPU utilization. ¢ is a parameter
used to minimize the squared errors varying with different host
types, 1.4 in Fan’s experiment. We use Eqn. (1) to estimate
power consumption of host in data center. For example, if the
idle power of one host is100w, the full power is 150w and
the utilization is 0.5, its power usage is 125w according to
Eqn. (1) while o = 1.

1

B. Traffic Cost of DCN

Data center network is a group of cable-linked switches
which provide host to host and host to Internet communication.
As the scale of cloud data center continues growing, the core
level ol DCN oflen has (oo much tralfic (© handle. In order (o
mitigalc this scalability issuc, we can make more (rallic (rans-
mit locally by consolidating (ralfic, Besides scalabilily, cnergy
saving of DCN has also altracted significant atlention recently.



Traditionally, switches are turned on all the time. However,
recent power measurement studies present that dynamically
turning on and off switches on demand leads to a more energy-
clficicnt DCN. Tn [18]1, Heller et. al. observe that when the rate
of all the ports in a switch goes from 0% to 100%, the power
of the switch increases at most 8%. This shows that turning
off a switch yields most energy saving. Similar result can be
found in [19]: an idle switch with no active ports consumes
more than half of the total energy consumed by a switch with
all ports turned on. If we can turn off unused switches through
tralfic consolidalion, we can save a large amount of encrgy in
DCN, Therefore instcad ol defining network cost as ils power
consumplion, we define trallic cost as [ollows (o localize (rallic
as much as possible:

P(rapyhayhy) = rap - f(ha, hp) ()

Here ryp is the (ralfic rale between hosts h, and hy. f(hg,hp)
denotes the communication cost between hosts h, and #,
which is positively proportional to communication distance
between &, and 7, (usually represented as hop-counts). In this
way, minimizing (raffic cost will localize (ralfic and lead (o a
more scalable and more energy-efficient DCN.

C. VM Migration Cost

Substantially, VM migration is to shift resources and to
transmit memory pages, of which the latter incurs more cost. In
order to perform VM migration, hosts need to do extra work,
which increases their energy consumption. The VM memory
pages are transmitted through DCN, which causes extra traffic
cost.

In [26], Clark et. al. propose live VM migration, in which
“live” means that candidate VM continues working during
most of its migrating period, and the service downtime is
very short. In [27], Voorssluys et. al. present case study of
a modern Internet application to quantify the effect of live
VM migration. Their results exhibit that even though live
VM migration brings additional (raffic, it still performs betler
than offlinc migration. The service downline is an important
metric in VM migration, and in live VM migration it is
extremely short. This greatly reduces the risk of Service Level
Agreement (SLA) violation. However, none of these works
analyzed migration cost quantitatively, making it extremely
dilflicull for us (o precisely capture the cost of VM migration.

Corrcspondingly, wc define traffic cost ol VM live migralion
as Eqn. (2), and we quantify extra energy consumption of
hosts incurred by live VM migration process through real-
trace experiments. We set up a testbed consisting of 6 Dell
PowerEdge R710 hosts and perform VM live migration via
VMware between two hosts. After connecting each host to a
powerbay series North Meter, we record the power state of
source and destination hosts during VM live migration. The
memory size of migrating VM is 2040M B. We conclude from
50 times VM migration data that on average VM live migration
lasts 14s, and the average power increase of pairwise hosts is
about 12w. Figure 1 shows the power state of the two hosts
which conduct VM live migration.

30 10 30 50
Iime(s)

Fig. 1. The power consumption of pairwise hosts during migration period

We can see from Fig. 1 that total power of the two hosts
stays stable before and after VM live migration, and changes
rapidly when VM migration begins. We can also see that
before and after VM migration the total power increases. This
is mainly due to the small differences of distinct hosts.

We formally define VM migration cosl as the sum ol host
power consumplion and (raflic cost:

PYM . To+s- f(he hg), he#h
C(s7hc7hd):{ Oh L f( i d) hC:hZ (3)

Here PhV M is the power increase of hosts, Ty is the time
duration of VM migration. s is the memory size of candidate
VM, and f(h.,hy) is the communication cost between current
host /. and destination host /.

At this moment we are able to formulate the VM consoli-
dation problem mathematically, which is described in details
in the next section.

IV. PROBLEM FORMULATION

[n this section, we first formally define Combined VM
Consolidation (CVC) problem as a constrained optimization
problem. Then we prove the computational complexity and the
hardness of approximation of CVC.

A. Problem Formulation

Our goal is to study the problem of consolidating VMs to
reduce total host energy consumption and network cost as well
as migration cost. Briefly speaking, we consider the common
scenario where n VMs are running on m hosts, and we assume
that traffic rates between arbitrary hosts, memory page sizes
of VMs (s1,...,s,) and their computing requests (cry,...,cr,)
are all known. We conduct VM consolidation every T time,
and our goal 1s to find a consolidation scheme which brings
maximum cost saving for the whole system. Notice that we
have to take off the energy cost spent for VM migration from
the overall cost saving after migration, and thus the Combined
VM Consolidation (CVC) problem can be lormally defined as
follows:
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In the above formulation, /() denotes the host that vm; is
currently placed on, /() denotes the host afterward and
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v
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Hence, P,(u;) is the power of host 4; before consolidation, and
Ph( :) is the power of host A; after consolidation. Accordingly,

z (Ph(uz)

Ph( )T is the total energy conservation of all

m hosts.

=
n VMs. 33 (R (i (). (7)) =
=1 j=
total traffic cost conscrvaton.
Constraint (5) ensures that the total computing requests from
all VMs placed on one host will not exceed the capacity of

this host. Constraint (6) guarantees that at least one host is
used to accommodate vm;.

C(sj,h( )),h'(j)) is the total migration cost of

P (rij,h(j),h(j)))T is the

m
Since the current host power Y (B, (u;))T and traffic cost
i=1
): (P(rij»h(i),h(j)))T are known, we can transform this
7./_1
maximum optimization problem into its equivalent minimiza-

tion form as follows:
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Now CVC becomes a minimization problem, jointly con-
sidering host power consumption, network cost and migration
cost. Total energy consumption of hosts can be calculated
through Eqn. (1), network cost through Eqn. (2) and migration
cost through Eqn. (3).

We also can use CVC to formulate VM placement problem
where the main goal is to place n VMs on m empty hosts with
minimum cost. We can achieve this by removing migration
cost from (7). In this way, CVC becomes a Combined VM
Placement problem formulation, which places VMs in cost
minimizing manner.

Table I summarizes main notations used in this paper.

TABLE I
MAIN NOTATIONS

Symbol Description
V =1vm;}  Set of VMs
H="1h} Set of hosts
R=1{rj} reaffic rate marrix
F=1{f(i,j)} communication cost matrix
CR=/{cri] Set of VM computing requests
S={si} Set of VM memory sizes
VH = {vh;} Set of virtual hosts
PH = {ph;} Set of physical hosts

T Time interval of conducting NICE

power of host while working at utilization u

P, (rap,ha,hyp) cost of tratfic with rate ry, going from Ay to Ay,
C(s,he,hy)  cost of migrating VM from A, to hy

h(i) host on which vm; is placed

B. Complexity Analysis

Actually, as shown in [13], when the communication cost
and (rallic rates are arbilrary real values, subproblem of
minimizing network cost in CVC falls into the category of
Quadratic Assignment Problem (QAP) which is one of the
most difficult problems in NP-hard class. Ilowever, CVC
imposes special constraints on communication cost and trallic
rates. Now, we analyze the computational complexity of CVC.
As we all know, in the NP-complete prove process, proving
that a special instance of one problem is NP-complete will
indicate the original problem is NP-complete. Therefore, in
this section, we prove that the special CVC instance in
which both fraffic cost and migration cost are ignored is NP-
complete.

Theorem 1. CVC is NP-complete.

Proof: In [28], Vazirani [ormally deline the decision
version of Bin Packing Problem in this way: given n items
with sizes ai,...,a, € (0,1] and a constant B, wc nced o find
a packing of items into unit-sized bins so that the number of
used bins is at most B. We can construct an instance of CVC
from an instance of bin packing problem as follows:

« Given n VMs vmy,...,vm, with computing requests
ai,...,an € [0,1], we have m hosts hy,...,h, with com-
puting capacity volumes vi,...,v, and power consump-
tion py,..., pm. In this case, assume

vi=...=vy,=1,and p1=... = pp.

There is a special host 4y who can accommodate all VMs,
i.e, co>Y,a; and when it is active, it consumes more
power than the total power consumption of all other hosts,
i.e, po>m-pp. Our goal is Lo {ind the nexl-stage VM
placement with minimum total power consumption.

« If there are VMs on host h;, the power of h; is p;.
Otherwise, its power is 0. Therefore the total power
consumption of hosts is num- p,,, since the power con-
sumption of each host is the same. Here num is the
number of active hosts in the new consolidation.

+ The cost to migrate vm; from one host to another is 0.



The VMs in CVC can be regarded as items while the hosts
as bins. Now we can see that bin packing instance has a
solution with B bins iff CVC instance has a solution with
total power B p,,. Therefore, CVC is NP-complete. |

Next, we prove CVC’s harness of approximation.

Theorem 2. For any € > 0, there is no approximation al-
gorithm having a guarantee of approximation ratio less than
3/2 — € for CVC, unless P =NP.

Proof: If there were such an algorithm, then we can
solve the deciding version of NP-hard problem Partition in
polynomial time, which is to decide if there is a way to
partition n non-negative numbers aj,...,a, into two sets, each

set equals to =Y ;a;. We can construct an instance of CVC in
this way: there are n VMs with sizes of aj,...,a, and the

capacities of hosts hy,...,h, all equal to 12,- a;. Obviously,
the answer to the partition question is yes iff the n VMs can
be packed into 2 hosts, and then answer is no iff more than
3 hosts are needed. Suppose that there is an approximation
algorithm having a guarantee of approximation ratio less than
3/2 —¢&, then this approximation algorithm can solve the
deciding version of partition question in polynomial time. This
is because if the approximation result of CVC is 2, the answer
to the partition question is yes. If the approximation result of
CVC is 3 or more, the answer to partition question is no since
the optimal result cannot be 2, otherwise the approximation
ratio 3/2 — & will not be salisfied (3/2 > 3/2 —¢€). This is
impossible unless P = NP! Therefore, for any € > 0, there
is no approximation algorithm having an approximation ratio
less than 3/2 — € for CVC unless P = NP. [ |

V. NICE: AN EFFICIENT SCHEME FOR CVC

Previous analyses show that CVC is NP-complete, which
cannot be solved within polynomial time. In this section,
we design an cfficient heuristic scheme to solve CVC. As
shown in Eqn. (7), our goal is to minimize host energy
consumption, network cost and migration cost through VM
consolidation. On one hand, we know from our VM migration
cost experiment that VM migration lasts relatively short, and
the total energy consumption and (raffic cosl il incurs are
relatively small. On the other hand, DCN consumes much less
energy than hosts in modern data center [16]. Based on these
observations, we propose a scheme named NICE (Network-
aware VM Consolldation scheme for Energy Conservation in
Data CEnter) 10 solve CVC efficiently.

NICE consists of three subroutines: FirstFit-Decr algorithm
for packing VMs into virtual hosts; Kernighan-Lin algorithm
for adjusting these virtual hosts to minimize infer-host traffic;
Greedy-Map algorithm for mapping virtual hosts to physical
hosts. Algorithm 1 describes NICE.

A. FirstFit-Decr Subroutine

VMs vmy,...,vm, with computing requests cry,...,cr, are
to be placed on m hosts with computing capacity 1. Our goal is
to pack all VMs into minimum number of virtual hosts. We use

Algorithm 1: NICE

Input: Set of VMs V = {vm,...,vm,}; set of VM
computing requests CR = {cry,...,cr,}; Set of
hosts H = {hy,...,hy}; Lratfic ratc matrix
R = {rjtm, m> Communication cost matrix
F= {f(i7j)}771\771

Output: An VM consolidation assignment NICE for

each vm;

1 k,VH « FirstFit-Decr(V,CR) ; /¥ Group VMs */
2 VH «+ Kernighan-Lin(VH,R,k) ; /* Adjust k virtual hosts */
3 NICE « Greedy-Map(VH,PH) ; /% Map virtual hosts */

FirstTi(-Decr algorithm (o solve this sub-problem. We firs( sori
all VMs in non-increasing order according to their computing
request cry,...,cr, and then pack n VMs into virtual hosts
one by one. VH denotes the set of virtual hosts vhi,...,vh;
while u(vh;) indicates the utilization of vh;. The pseudo codes
are described in Algorithm 2:

Algorithm 2: FirstFit-Decr

Input: V; CR

Output: k,VH
1k: 1; /* Initial number of virtual hosts k is 1 */
2 u(vhi) < 0; /* Initial utilization for u(vh;) is 0 */

3 Sort all VMs in non-increasing order according to cr;;
4 for i=1tondo

5 flag — true;

6 for j=1to k do

7 if cri+u(vh;j) < 1 then
8 u(vhj) < cri+vhj;
9 Place vm; on vhj;
10 flag : false;

11 end

12 end

13 if flag is true then

14 k< k+1;

15 u(vhj) « cry;

16 Place vm; on vhy;

17 end

18 end

Next, we prove the effectiveness of FirstFit-Decr algorithm.

Theorem 3. The tight bound for FirstFit-Decr algorithm is
11

k <X —opt+ g, where k is the output of FirstFit-Decr and opt

is the optimal number of virtual hosts.

11
Proof: Tt is proven in [29] that FFD <. —optp+ g, where
FFD is the output of First Fit Decreasing algorithm in bin-
Iﬁcking p6roblem and optp is the optimal value. Thus, k <

B. Kernighan-Lin Subroutine

After FirstFit-Decr subroutine, n VMs are packed into k
virtual hosts. Since the communication cost between VMs in



the same virtual host is 0, we hope to minimize inter-host
tralfic by adjusting these k virtual hosts so that total traffic cost
can be reduced. This problem can be rephrased as a Graph
Partitioning Problem, which is to partition graph vertices into
k disjoint groups with minimum edge cut cost. The maximum
size of the groups is limited, varying according to different
scenarios, and each edge in the graph has corresponding cost.
Kernighan-Lin algorithm [30] minimizes the total cost of edge
cut by iteratively choosing two partitions from original &
partitions and exchanging some of their vertices to reduce total
cut cost. In NICE, we treat VMs as vertices, virtual hosts as
partitions and trallic ratc belween VMs as cdge cosl. Aller
applying Kernighan-Lin algorithm to k virtual hosts generated
by FirstFit-Decr subroutine, we get a new VH set whose inter-
host (raffic is minimized.

C. Greedy-Map Subroutine

In the last subroutine, we use a greedy algorithm to map k
virtual hosts to k physical hosts. Tn each iteration, we find vy,
and phg,, from the remaining virtual hosts and physical hosts,
whose mapping incurs iminimum (ralfic cost and migralion cost
C;n which is calculated according to Eqn. (2) and Eqn. (3).
Continue doing this until all virtual hosts are mapped. The
pseudo codes are described in Alg. 3.

Algorithm 3: Greedy-Map
Input: R, F, VH, H
Output: Mapping of virtual hosts to physical hosts
1 for i=1tokdo
2 for vi ¢ VH, he H do
3 Find vhg, and phg, with minimum C,;
4 Map vhgn t0 phey;
5
6
7

Delete vhg, from VH and delete phy,, from H;
end
end

VI. EVALUATION

In this section, we [irst presenl our experiment seltings, then
we show our evaluation results with corresponding analyses.

A. Experiment Settings

As shown in scclion III, in order (0 quantily trallic cost
and migration cost in CVC, communication cost f(s,d) is
introduced, which varies according to different circumstances
and network topologies. In our evaluation, we set f(s,d)
positively proportional to the length of transmission path
between host s and d, and this length depends on the specilic
network topology of DCN. Although many new DCN topolo-
gies have been proposed, such as DCell [9], BCube [10], VL2
[11], Portland [12], network topology used in most modern
data centers is more likely to be multi-rooted tree topology.
In the simulation, we have conducted experiment in which
we compare the performance of NICE under different DCN
topologies.

As for rallic ralc malrix, cven (hough trallic ralcs belween
VMs vary from time to time, it is shown in [13] that a large
fraction of inncr VMSs traffic ratcs arc rclatively constant,
Besides, VM consolidation doesn’t affect the total cost of
outer traffic, i.e., (he (ralflic belween hosl and ouler Tnlerned,
Therefore when we conduct NICE, we can use current tratfic
rales (o calculate traffic cost (o lind out the best consolidation
scheme and adjust VMs according to this scheme. In the next
round of NICT:, wc usc rencwed (ralfic malrix (o recalculale
fralfic cosl. In our simulation, we generale (rallic rale matrix
bascd on lwo models. The lirst global trallic model assumes
that cach YM sends trallic (o all other YMs al cqual rate, and
the rates lor diflerent VM vary, The sceond local (raflic model
partitions VMs into groups, and each VM only communicates
with VMs in the same group. We mix up these two models to
gel the (rallic rale malrix used in our simulation, which can
redlect trallic paliern in reality according (o [13], Simulations
are implemented on Visual Studio 2012 and carried out on
a 64-bit Intel Xeon E5645 2.5GHZ 2-processors Server with
32GB memory. The various parameters are listed in Table II:

TABLE II
NICE SIMULATION PARAMETERS

System Parameter Settings

from 16 to 512

number of hosts
number of VMs from 32 to 1024

Network Topology Tree, VL2, FatTree, BCube

T 1Ty /Pyl PF/PY™ 600s / 14s / 100w / 150w / 12w

B. Simulation Results

As shown in Section II, [2] [3] dealt with VM consolidation
problem, but they didn’t consider network performance im-
provement issue. [17] [18] [19] [20] [21] only tried to improve
nelwork energy elficiency while [13] [23] only deall with VM
placement problem, taking no consideration of VM consol-
idation. Since there is no other VM consolidation scheme
jointly considering host energy consumption, network cost and
migration cost at the same time, we show the efficiency of
NICE through the comparison of total cost before and after
NICE. The total cost is the sum of host energy consumption,
network cost and migration cost. Before NICE, n VMs are
randomly placed in m hosts.

We firs( cvaluale the performance of NICE againsl dillcr-
ent problem scales. We set the number of hosts to 2/(i =
4,5,6,7,8,9) and the number of VMs twice of the number
of hosts. The data center topology we evaluate here is multi-
rooted tree topology. Fig. 2(a) shows the total cost before and
after conducting NICE. We can see that NICE can reduce large
amount of total cost against different problem scales.

Next, we evaluate the performance of NICE against dif-
ferent DCN topologies, e.g., Tree, VL2, FatTree and BCube.
Communication cost matrices F are calculated for different
DCN topologies. We set the number of hosts to 128 and
the number of VMs to 256. Fig. 2(b) shows the total cost
of the four topologies before and after NICE. We can see
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that NICE works well for different DCN topologies. We can
also see that before and after NICE, the total cost varies with
different DCN topologies. These variations are mainly due to
the differences of network topologies. We can see that total
cost of BCube is the largest. This is because connecting the
same number of hosts, BCube has more levels than the other
three topologies, and this results in higher communication cost.
In all, NICE can save about 20% total cost for different DCN
topologies.

Fig. 3(a) shows the performance of NICE against different
VM densities. We first sel the number of hosls 10 256 and
then incrementally increase the number of VMs by half of
the number of hosts. We can see that NICE still can save
large amount of total cost as the density of VMs increases.
But the percentage of total cost it saved slowly decreases.
This is because as the number of VMs increases, utilization of
data center increases, and this reduces the potential of saving
energy through VM consolidation in data center. Therefore,
when there are too many VMs running in the data center, we
should not conduct NICE because this may do more harm than
good.

In the end, we evaluate the performance of NICE against d-
iflerent mixture of global and local raflic model. We gradually
sct the percentage ol local (rallic rale in (he olal (raflic rate
from 0%,...,100% and evaluate the performance of NICE.
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Fig. 3(b) shows the simulation results and we can see that as
the local tratfic increases, the total cost increases. However, we
can also sce thal as (he local (ralfic incrcascs, the lofal cost
saving increases, too. This is because the more unbalanced the
trallic is, the greater the potential of traflic cosl saving is, and
NICE can exploil this greater potential o save more trallic
cost.

From the above results and analyses, we can conclude that
NICE can solve CVC effectively under different scenarios.

VII. CONCLUSION

In this paper, we formulate Combined VM Consolidation
(CVC) problem (o reduce host energy consumplion, (ralfic
cost and migration cost in cloud data center. We analyze
cost functions for host energy consumption and network cost
thoroughly and formulate VM migration cost function by real-
trace experiments in a testbed of 6 servers. We prove that CVC
is a NP-complete problem, which is inappproximable by a
factor of 3/2 — e. Correspondingly, we propose an eflicient
heuristic scheme named NICE: Network-aware VM Con-
solldation scheme for Energy Conservation in Data CEnter
to solve CVC. NICE consists of three subroutines: FirstFit-
Decr algorithm for packing VMs into virtual hosts; Kernighan-
Lin algorithm for adjusting virtual hosts; and Greedy-Map
algorithm for mapping virtual hosts to physical hosts. Our
simulation resulls validaie the clficiency of NICE, In all,



lo the best of our knowledge, we arc lhe first work jointly
considering host energy conservation, network scalability and
energy saving and migration cost of VM consolidation in cloud
data center.
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