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Abstract—Mobile crowdsensing is a novel paradigm to collect sensing data and extract useful information about regions of interest.

It widely employs incentive mechanisms to recruit a number of mobile users to fulfill coverage requirement in the interested regions.

In practice, sensing service providers face a pressing optimization problem: How to maximize the valuation of the covered interested
regions under a limited budget? However, the relation between two important factors, i.e., Coverage Maximization and Budget
Feasibility, has not been fully studied in existing incentive mechanisms for mobile crowdsensing. Furthermore, the existing approaches
on coverage maximization in sensor networks can work, when mobile users are rational and selfish. In this paper, we present the first
in-depth study on the coverage problem for incentive-compatible mobile crowdsensing, and propose BEACON, which is a Budget
fEAsible and strategy-proof incentive mechanism for weighted COverage maximizatioN in mobile crowdsensing. BEACON employs a

novel monotonic and computationally tractable approximation algorithm for sensing task allocation, and adopts a newly designed
proportional share rule based compensation determination scheme to guarantee strategy-proofness and budget feasibility. Our
theoretical analysis shows that BEACON can achieve strategy-proofness, budget feasibility, and a constant-factor approximation.
We deploy a noise map crowdsensing system to capture the noise level in a selected campus, and evaluate the system performance
of BEACON on the collected sensory data. Our evaluation results demonstrate the efficacy of BEACON.

Index Terms—Mobile crowdsensing, mechanism design, weighted coverage maximization

1 INTRODUCTION

N recent years, the number of mobile smart devices has

experienced a rapid and explosive growth in people’s daily
lives. According to the International Data Corporation (IDC)’
s report, the smartphone market is expected to grow to 1,873
million shipment units worldwide at the end of 2018 [47]. It is
widely believed that mobile devices will surpass other forms
of computing and communication in a short time [52].

Nowadays, most of the smart devices are equipped
with a rich set of cheap and powerful sensors, e.g., acceler-
ometer, digital compass, GPS, microphone, and camera.
These sensors can monitor mobile users’ surrounding
environment, and infer human activities and contexts. By
exploiting the capabilities of these embedded sensors on
mobile devices, people have developed numerous mobile
sensing applications in a wide range of domains, such as
environment monitoring [38], transportation [57], social
networking [32], etc. The paradigm of mobile crowdsens-
ing has also revolutionized wireless sensor networks, since
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it collects and disseminates sensing data by pervasive
smart devices, and eliminates the need for deploying spe-
cific sensor networks.

Although there have emerged a good number of attractive
mobile crowdsensing applications, most of them are based
on voluntary participation. Performing sensing tasks may
consume a significant amount of battery power and may
cause some other related costs, e.g., the charges from wire-
less carriers for sensing data transmission, potential privacy
threats when sharing location based data. Mobile users may
be unwilling to participate in the sensing activities unless
they are properly compensated. Therefore, incentive mecha-
nisms are highly needed to motivate enough number of
mobile users to contribute their sensory data, and thus to
guarantee the high quality of the sensing service.

We model the process of sensing task allocation as a cov-
erage problem. Coverage problem is a fundamental issue in
wireless sensor networks [21], which reflects how well an
area is monitored. Most of the existing work on sensor cov-
erage problems focus on sensor deployment pattern
design [42] and sensor selection algorithms under different
coverage models, e.g., coverage with disparate ranges [49],
coverage in three-dimensional spaces [3], and k-coverage [6].
However, in mobile crowdsensing, smart devices often
belong to different individuals who have their own inter-
ests. Mobile users may not be willing to behave coopera-
tively if it does not satisfy their best interests. The existing
coverage approaches in sensor networks do not work when
mobile users are rational and selfish. Consequently, it is
highly needed to design an incentive mechanism for
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coverage maximization in crowdsensing, considering the
strategic behaviors of mobile users.

An important factor of incentive mechanisms design for
mobile crowdsensing is budget feasibility. It is not practical
to always assume that the service provider has an unlimited
budget to cover compensations for mobile users. In reality, a
service provider is interested in maximizing coverage (thus
maximizing the quality of service) with a limited budget.

There exist many challenges in designing a budget feasi-
ble incentive mechanism for coverage maximization in
crowdsensing. We list the three major challenges as follows.

»  Strategy-Proofness: In mobile crowdsensing, mobile
users are rational and selfish, and tend to manipulate
cthe outcome of the mechanism if doing so can
increase their utilities / payoffs. Truthful users’ benefits
can be hurt if strategy-proofness (Please refer to Sec-
tion 2.2 for details) is not guaranteed. Designing a
strategy-proof incentive mechanism, in which truth-
fully revealing the private information (i.e., sensing
cost) maximizes the utility of each mobile user, is
not an easy job in practice [40]. The essential challenge
to ensure the property of strategy-proofness is to
design a monotone allocation algorithm [33]. How-
ever, the traditional greedy-based allocation algo-
rithms for coverage maximization [27], [34] fail to
satisfy the monotone property. New design technique
to guarantee the monotone property and then the strat-
egy-proofness should be further developed.

» Budget Feasibility: It is reasonable to assume that the
service provider has a budget constraint on recruiting
mobile users. The requirement on budget feasibility
leads to a new difficulty in incentive mechanism
design, i.e., the budget constraint is applied to com-
pensation instead of sensing cost, which is different
from the coverage problem in the algorithm design lit-
erature. The classical payment rule in mechanism
design is based on the critical payment, which is the
threshold bid that the winning user has to declare to
maintain the winning position. However, the critical
compensation in the budget feasible mechanism is
complicated and hard to bound, because the user has
different threshold bids in different winning positions.
Therefore, the compensation determination scheme
has to be designed in line with the budget constraint.
Unfortunately, classic mechanisms (e.g., VCG mecha-
nisms [11], [17], [48]) do not work in the budget-lim-
ited scenario.

» Valuation Maximization: The objective of the service
provider is to maximize her valuation on the col-
lected sensory data. In mobile crowdsensing, the val-
uation of the service provider can be formulated as
the valuation over the covered regions. Maximizing
valuation under a given budget can be proved to be
NP-hard, and thus finding the optimal solution is
normally computationally intractable. Although the
traditional greedy algorithms [27], [34] have guaran-
tee for good approximation ratio, they violate the
requirements of strategy-proofness and budget feasi-
bility. Several attempts from the perspective of
mechanism design have been conducted to derive
budget feasible mechanism with good approxima-
tion ratio [4], [8], [44], but they either are difficult to
deploy in practical mobile crowdsensing, or have
high computational complexity.
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In this paper, we conduct an in-depth study on the prob-
lem of weighted coverage maximization with selfish mobile
users, and propose a novel Budget fEAsible incentive mech-
anism for weighted COverage maximizatioN in mobile
crowdsensing, namely BEACON, to overcome the above
three mentioned challenges. BEACON employs a novel
monotonic and computationally efficient task allocation
algorithm to achieve strategy-proofness, and adopts a
newly designed proportional share rule based compensa-
tion determination scheme to guarantee budget feasibility.
Different from the previous works [4], [8], [44] that rely on
the randomization technique to derive good approximation
ratio, BEACON takes advantage of the linear program
rounding technique [2], [5] to design a deterministic mecha-
nism, achieving a constant approximation ratio.

We summarize the contributions of this paper as follows.

» First, considering the strategic behaviours of mobile
users, we model the weighted coverage maximiza-
tion under different coverage requirements in mobile
crowdsensing as budget-limited reverse auctions.

» Second, we consider budget feasibility in designing
incentive mechanisms for mobile crowdsensing, and
propose a deterministic mechanism for weighted
coverage maximization in mobile crowdsensing,
namely BEACON. We theoretically prove that BEA-
CON achieves strategy-proofness, budget feasibility,
a constant-factor approximation, and polynomial
time complexity.

» Finally, we deploy a crowdsensing system to construct
the noise map of one selected campus, and evaluate
the performance of BEACON based on the collected
data. Our evaluation results validate that BEACON
achieves much better performance than the state-of-
the-art mechanisms in terms of service provider’s val-
uation, winner ratio, and coverage ratio.

The rest of this paper is organized as follows. In Section 2,
we present the model of budget-limited reverse auction for
coverage problems in mobile crowdsensing. In Section 3,
we formulate this problem from the perspectives of algo-
rithm design and mechanism design. The detailed design of
BEACON is discussed in Section 4. In Section 5, we theoreti-
cally analyse BEACON. We extend BEACON to adapt to
different coverage models in Section 6. In Section 7, the eval-
uation results are reported. In Section 8, we review related
work. We conclude the paper in Section 9.

2 PRELIMINARIES

In this section, we first present the system and auction model
for mobile crowdsensing, and then review the solution con-
cepts used in this paper from algorithmic game theory.

2.1 System Model and Auction Model

We use Fig. 1 to illustrate a mobile crowdsensing system. The
mobile crowdsensing system consists of three major compo-
nents: Service Provider, Data Contributors, and Service Sub-
scribers. The service provider continuously receives diverse
location-based sensing queries from service subscribers. After
integrating these sensing queries, the service provider
launches specific-purpose sensing tasks in the interested
regions. Mobile users, who choose to participate in mobile
crowdsensing, submit their preferred sensing task sets and
the sensing cost, to the service provider. The service provider
makes the decision on sensing task allocation and compensa-
tion calculation. The winning mobile users perform the
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Fig. 1. A mobile crowdsensing system.

assigned sensing task(s), and then upload the sensing data
through wireless communication infrastructures. The key fac-
tor to the success of mobile crowdsensing is whether the ser-
vice provider can recruit enough number of data contributors
to support the expected quality of the sensing based service.

In this paper, we focus on incentive mechanism design
for mobile crowdsensing, and model the data contributors
recruitment as a budget-limited reverse auction. In the
reverse auction, mobile users submit bids, and the service
provider allocates the sensing tasks, and pays compensa-
tions to the winning users. We explain the two important
parties in the budget-limited reverse auction.

Service Provider. The service provider launches sensing
tasks in the monitoring regions, and intends to maximize
the coverage of the regions under a budget B. For the prob-
lem of weighted coverage maximization, we first consider a
point coverage scenario, in which the service provider sets a
number of Points of Interests (Pols), denoted by a set
H = {h4, ho, ..., hy}, for sensing tasks. The service provider
has a valuation v; for a Pol h; € H if h; is covered. We also
consider other two coverage models: area coverage and multi-
ple coverage, in Section 6.

Data Contributor. We denote the set of data contributors
as M = {mq, mo,...,my}. From now on, we use data con-
tributor and mobile user interchangeably. Each data con-
tributor is capable of sensing a convex region around
herself, called Sensing Region. The semantics of sensing
regions is application specific. To simplify the illustration,
we model the sensing region of mobile user m; as a circular
disk around herself. A Pol is said to be covered by m; if the
euclidean Distance between the Pol and the location of m; is
less than the radius of the circular disk.

In the budget-limited auction, the mobile user m; submits
her chosen bundle of sensing tasks .S; C H, and declared sens-
ing cost ¢; to the service provider. Considering that different
sensing task bundle S, leads to different battery consumptions
and manual efforts, the sensing cost ¢; is dependent on the
specific choice of sensing task bundle. Thus, we use a
pair b, = (S;,¢;) to denote the bid of mobile user m;, and
denote the bidding profile of all the mobile users as
b= (b1, bs,...,br). Mobile user m; also has a participatory
sensing cost ¢;, which is private information to her, and is
known as type in mechanism design. Since mobile users are
rational and selfish, they may misreport their sensing costs to
obtain higher compensations. Thus the declared cost ¢; is not
necessarily equal to the truthful cost ¢;. The compensation to
the mobile user m; is denoted by p;, and the compensation
profile of mobile users is represented by p = (p1,p2, . .., pu)-

For mobile user m;, her utility u; is defined as the differ-
ence between compensation p; and sensing cost ¢&;: u; £ p; — é.

The valuation of service provider is defined as follows.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.16, NO.9, SEPTEMBER 2017

Definition 1. The valuation of service provider in mobile crowd-
sensing is defined as the valuation over all the Pols covered by
winning mobile users

V(M*) &

>, 1

}L]'E U m,,eM*Si

where M* is the set of winning mobile users.

2.2 Solution Concepts
We review the solution concepts used in this paper. A strong
solution concept from game theory is dominant strategy.

Definition 2 (Dominant Strategy [39]). Strategy s, is player
i’s dominant strategy, if for any strategy s, # s; and any other
players’ strategy profile s_;

wi(si,5-4) > ui(s), ;).

The concept of dominant strategy is the basis of incentive-
compatibility (IC), which means that revealing truthful infor-
mation is the dominant strategy for every player. An accom-
panying concept is individual-rationality (IR), meaning that
every player participating in the game expects to gain no
less utility than staying outside. The budget constraint
denotes that the total compensation must be bounded in a
given budget. We formally introduce the definition of Strat-
eqy-Proof and Budget Feasible Mechanism.

Definition 3 (Strategy-Proof and Budget Feasible
Mechanism [31], [44]). A mechanism is strategy-proof and
budget feasible when it satisfies incentive-compatibility, indi-
vidual-rationality, and budget constraint.

3 PROBLEM FORMULATION

In this section, we first briefly describe the problem of
weighted coverage maximization from two different per-
spectives: algorithm design in the computer science field
and mechanism design in the economic field. Then, we pro-
pose the formal definition of weighted coverage maximiza-
tion for mobile crowdsensing.

3.1 Algorithm Design Perspective

From the perspective of algorithm design, the sensing task
allocation can be modeled as the classical problem of
weighted coverage maximization [27]. The domain of elements
is the set of Pols H. Let x; = 1 denote that mobile user m; is
selected to cover the Pols in S; C H; otherwise, z; = 0. The
objective is to maximize the valuation on the covered points
under the constraint that the total cost must be less than a
given consumption C. We show the integer program for
weighted coverage maximization problem from the per-
spective of algorithm design.

Problem: Weighted Coverage Maximization: IP (C, M)

Objective: Maximize Z}LJ_GH (mm{l, ZWGM‘SB}L],@} X v]-)

Subject to:
> (wixe)<C, @
m;EM
z; € {0,1}, Vm; € M. 3)
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In the formulation, we use bidding cost ¢;, instead of pri-
vate sensing cost ¢;, because in classical algorithm design,
we do not consider the strategic behaviors of mobile users.
The weighted coverage maximization problem can be
proven to be NP-Hard by reducing from the set cover prob-
lem [27]. We take advantage of the submodularity of the
valuation function to design approximation algorithms. The
submodular function is defined as follows.

Definition 4 (Submodular Function). Let N be a finite set.
A function f:2V R is a submodular function if f(AU
{z}) = f(A) = f(BU{z}) — f(B), for any AC B CN and
x e N\B.

We show that the service provider’s valuation function is
submodular and non-decreasing.

Lemma 1. The valuation function of service provider is submod-
ular and non-decreasing.

Proof. By Definition 4, we just need to show that the service
provider’s valuation function satisfies
V(Ml U {ml}) — V(Ml) > V(MQ U {m7}) — V(Mz) for any
mobile user set M; C My, CM and m; € M\M,. From
Definition 1, we have

V(M1 U {m,}) — V(Ml) =

2.

}Lje‘si U m €My S

v = V(M2 U {mz}) - V(Mg)

S

}Ljéb'i\ U my, €My S

Apparently, for any two sets of mobile users M; C Mo,
we have V(M;) < V(My). Therefore, the valuation func-
tion V() is submodular and non-decreasing. 0

3.2 Mechanism Design Perspective

The essential difference of coverage problems in mobile
crowdsensing and in traditional wireless sensor networks is
that mobile users do not follow the designed algorithm
principle, but rather their own selfish interests. Game theory
is a powerful tool to capture such strategic behaviors. Based
on Myerson’s theorem [33], a single parameter mechanism, in
which players have single private information, is strategy-
proof when its allocation algorithm is monotone and pay-
ment scheme is based on critical payment.

Theorem 1 (Myerson’s theorem [33]). A single parameter
mechanism is strategy-proof iff:

e  Monotone allocation: Given mobile users’ bid profile
b, if mobile user m; wins by bidding b; = (S;, ¢;), then
she will also win by bidding b, = (S;,¢,), where
¢ < g

e Critical Compensation: The monotone allocation
implies that there exists a critical compensation p; for
each mobile user m; € M such that if her bidding cost
is lower than p;, she wins; otherwise, she loses.

In mechanism design, extra compensations should be paid
to guarantee the strategy-proofness of mechanisms. There-
fore, from the perspective of mechanism design, the budget
constraint is applied to compensation instead of cost, i.e., the
constraint (2) should be modified to >, , s (7 x p;) < B.

We now formally define the problem of weighted cover-
age maximization in mobile crowdsensing.

2395

Definition 5. Given Pol set H, mobile users M, and the bidding
profile b, the service provider needs a strategy-proof incentive
mechanism to recruit data contributors M* C M, such that the
service provider’s valuation V(M*) is maximized, subject to the
constraint that the total compensations do not exceed a budget B.

4 DESIGN oF BEACON

In this section, we present a strategy-proof and budget feasi-
ble incentive mechanism for weighted coverage maximiza-
tion in mobile crowdsensing, namely BEACON. BEACON
consists of two major components, Sensing Task Allocation
and Compensation Determination. Considering the computa-
tional intractability of the weighted coverage maximization,
we first propose an approximation allocation algorithm,
which adopts LP relaxation technique. Next, we present our
compensation determination scheme to guarantee strategy-
proofness and budget feasibility.

4.1 Sensing Task Allocation

According to Myerson’s theorem [33], the necessary condi-
tion of strategy-proof mechanisms is the monotonicity of
allocation algorithm. In the problem of coverage maximiza-
tion, a monotone greedy approach is a nature fit. We first
describe a classical but non-monotone greedy allocation
algorithm, namely GDY-MAX. We then design the task allo-
cation algorithm by modifying the GDY-MAX algorithm, to
satisfy the property of monotonicity.

Intuitively, a good greedy allocation rule is to select the
mobile users that cover a set of high valuable Pols, while
making the total compensations not exceed the budget B.
Given the selected mobile users M, we define the marginal
contribution of mobile user m; € M\ M as

fimEVMU{m;}) = V(M).

In the phase of greedy winner selection, mobile users are
sorted according to marginal contribution per cost ff“(fl—“',
where M,_; denotes the set of i — 1 mobile users that have
been previously selected, and M = @. In the sorted list, the
ith mobile user is m; € M\M,_; that has the currently max-
imal marginal contribution per cost, i.e.,
_ J, iMi

My = argmax ———.

m;eM\M,_;  Ci

If there are multiple candidate mobile users, we select one
of them randomly. The greedy rule and Lemma 1 imply that

fur !

C1 Co CMm

e ok

Following the order in G, we greedily add mobile users
into winner set until currently considered mobile user
m; violates budget feasible allocation condition, which is
defined as

oy
et

4)

CiS—X

2 V(Mi)'

This allocation condition guarantees that the total compen-
sations will be bounded in the budget B, which will be dis-
cussed in Section 5.1 in details.

1. To simplify the notations, in list G, we write f; instead of fi s, ;-
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By applying the above greedy allocation rule, we obtain a
feasible candidate solution, denoted by My, in which &
users are selected as winners. If we simply return such
greedy solution M, as the result, the approximation ratio of
such greedy heuristic allocation algorithm is unbounded.
Consider, for example, there are two Pols ; and hy with the
valuation v; = 1 and vy = p, respectively, and the budget is
set as 2(p + 1). The mobile user m; is interested in the sens-
ing task 51 = hy and has a sensing cost ¢; = 1, and the other
mobile user ms has an interested sensing task Sy = hs and a
sensing cost ¢; = (p+ 1). The optimal solution selects the
mobile user my and achieves the valuation p, while the solu-
tion picked by the greedy allocation rule involves the
mobile user m, and reaches the valuation 1. The approxima-
tion ratio for this instance is 1/p, which is unbounded.

Next, we introduce a MAX operation, which is widely
used to design well bounded algorithms in submodular
maximization [27], [34], to achieve a constant approxima-
tion ratio. We consider another feasible candidate solution.
Let m* denote the mobile user who covers the most valuable
Pols set, i.e. m"£ argmax,, oy V(m;). Obviously, the set
containing the single most capable mobile user {m*} is also
a feasible solution. The idea behind the MAX operation is to
take the maximum between these two candidate solutions.
We name this greedy allocation algorithm GDY-MAX, and
have the following result.

Lemma 2. We use OPTp(B, M) to denote the value of optimal
solution for weighted coverage maximization problem in mobile
crowdsensing Algorithm GDY-MAX has a constant-factor app-
roximation: =, i.e., OPTp(B, M) < 5% x max{V (M), V(m*)}.

Proof. Mobile users are sorted as describes in G, and let [ be

the maximum index that satisfies > ', ¢; < B. For the
convenience of analysis, considering an adding virtual
mobile user m*, whose sensing task bundle does not
intersect with the task bundles of all the mobile users M,

1 .
declares cost ¢t = B—>",_, ¢ and produces valuation

V(m*) :i( V(M) = V(M;)). The idea of set-

Cl+1
ting the sensing cost is to satisfy the budget feasibility
constraint. We set the detailed format of valuation V(m™)
so that the marginal contribution per cost of virtual
mobile user m™ is identical to that of mobile user m,;,; in
G, ie., V((:f) _ (MHSM (Mz>)
solution over mobile users M* = M U {m"} is the upper
bound of the optimal solution over mobile users M, and
the first [ mobile users selected in both M and M* are the
same due to the greedy allocation rule. Therefore, we can
analyze the approximation ratio of algorithm GDY-MAX
over the set of mobile users M*. For the sake of analysis,
we denote virtual mobile user m* as m;,; in G.

According to [27], we can get V(M) > (1— %)
OPTp(B,M™). We now use V(M,;;) as the benchmark.
Since mobile users are sorted according to their marginal
contribution per cost in non-increasing order, for every

Apparently, the optimal

ielk+1,...,14+1], we have (’;’ < f"i Adding these
inequalities together we get
cor B e I+1
Gl N S S Y (M) - VM) £ Y @ < B,
Frr 52 ~fen i=k+1

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.16, NO.9, SEPTEMBER 2017

which implies that

frr1
VM) - VM) ©

According to the definition of index k, we also have

Cl+1 S B x

frr1
6
VM) ©

Inequalities (5) and (6) imply that V(M)
2V (Mp+1). Thus, we get
V(M) = V(M) = V(M) + V(M)
< 2V(Myqr) + V(My)
<2V(m™) + 3V(My,).

Cry1 > o

- V(Mk) <

Finally, we get

OPTip(B,M) < OPTip(B,M*) £ — V(M)
-

V(m*)}.

Until now, we have completed the proof. 0

< 65_61 x max {V (M),

Although the algorithm GDY-MAX has a good approxima-
tion ratio, the MAX operation breaks the monotone property
of the algorithm. We can easily construct an example, in which
GDY — MAX(¢;, c_;) = M;, but GDY — MAX(¢}, c_;) = {m*},
when ¢, < ¢; for some mobile user m; € Mj, to show the
non-monotonicity of this maximum operation. Here,
GDY — MAX(¢;, c_;) denotes the set of the selected mobile
users after running the greedy allocation algorithm GDY-
MAX with the sensing cost vector ¢ = (¢;, c_;), and the vector
c_; denotes the sensing cost of all the mobile users except
from that of m;.

Chen et al. in [8] addressed this problem by adopting
randomized technique from algorithm design, which have
been shown to be impractical in large scale mobile crowd-
sensing systems in Section 7. Inspired by [5], [29], we turn
to the linear rounding technique to guarantee the monotone
of the allocation algorithm. Specifically, we can compare
V(m*) with the optimal solution of an integer relaxation
program, which is “close” to V(M}), and makes the MAX
operation monotone. As shown in Section 3, the weighted
coverage maximization problem can be formulated as an
integer program, and we rewrite the relaxation version as

B
Problem: Weighted Coverage Maximization: LP (g,Mf)

Objective: Maximize E hye <mm{1, g 771,26M’,Si9h_,$i} X Uj)

Subject to:
B
Z (zi x ¢;) < bR )
m;EM™
€[0,1], Vm; € M. ®)
In LP(£, M ™), we relax the variable z; to the real numbers

in range of [0, 1]. We note that, in constraint (7), the bound of
total cost is set to B/2. This is because the total cost of win-
ners in set M), is bounded by B/2.> We do not consider the

2. According to the GDY-MAX algorithm, we have the relation that

Ji < 2V(M, it _p
zrisz").Thus,ZlgiSk(7< x sk B

hs b
HZnZ =2 TVM,) 2

c] — g —
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mobile user m* in the linear program in order to avoid her
manipulation on the result. We also exclude the mobile
users with cost larger than B/2, denoted by M B/2, because
none of them can be involved into M;. We denote the
remaining buyers as M~ 2M\ ({m*} |J Mp»). The optimal
solution of LP(B/2,M~) can be obtained in polynomial
time, and denoted by OPTyp(2, M ™).

Algorithm 1. Sensing Task Allocation

Input: A mobile user set M, A Pol set H, a budget B, and a
biding profile b.
Output: A set of winning mobile users M*.
M, — @;
m* — argmax,, oy V(m;); mp < argmax,, cy f—j,
while M\ M, # @ and c;» < £ x V(/Mk{jw do
My = M U {mi+};
My arg MaxX,,. ev m,, C—:,
M~ — M\ ({m*} UMpp);
OPTLp(g ,M™) < Optimal solution for the integer relaxa-
tion program LP(? ,M7);
8 if OPTp(2,M") > % x V(m*) then
9 M* — My;
10 else
11 M* — {m*};
12 return M*;

N O Ul W N =

We now formally present the detailed steps of sensing
task allocation in Algorithm 1. In Lines 3-5, we obtain the
first candidate solution M, by greedily selecting mobile
users from the sorted list G. Different from GDY-MAX, we
compare V(m*) with the optimal solution of the linear pro-
gram LP(B/2,M™), rather than V(M}) in Line 8. Let 6

5)2. If the optimal value OPT;p(2, M")

is greater than 0 x V(m"), then we select M, as the final
winning mobile user set; otherwise, we select {m*}. The
constant factor 6 reflects the “closeness” between
OPTLp(g ,M7™) and uy(M}). The setting of the constant fac-
tor here guarantees a good approximation ratio of Algo-
rithm 1, which will be discussed in Section 5.2. The most
time consumption part of Algorithm 1 is the calculation of
candidate solution M, which needs O(M2) time. Thus,
the time complexity of Algorithm 1is O(M?). We have the
following lemma for Algorithm 1.

denote the constant (

Ge
e—

Lemma 3. Sensing task allocation algorithm is monotone.

Proof. To prove the monotonicity of the algorithm, we have
to show that any winning mobile user m; € M* will still
be selected as a winner when she decreases her cost,
¢; < ¢;. We distinguish the following two cases:

D> If M* = {m*}, then it implies that OPT.p(J,M")
<0 x V(m*). Since the cost of mobile user m*
does not affect the value of OPTp(¥,M™~) and
V(m*), m* will still be selected as a winner if she
changes declared cost.

> IfM* = M, we have OPTp(§,M~) > 6 x V(m").
We assume that mobile user m; € M. decreases
her cost from ¢; to ¢; while the bidding costs of the
other users c_; stay the same. On the one hand,
the value of OPTLp(g ,M™) increases when m;
decreases her cost, so the allocation condition at
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Line 8 in Algorithm 1 still holds. On the other
hand, in the list G, the mobile user m,; is moved
forward since ¢, < ¢;. We assume that the new
position index is j <. According to the submo-
dularity and non-decreasing property of the func-
tion V(-), the marginal contribution of mobile
user m; at index i is less than that at index j, i.e.,
fimioy < fim;_,, and we also have V(M;_, U {i}) >
V(M;-1 U{i}). We can get that

fim, - E fz‘wj,l
My U{i}) = 2 VM U {d})

cg <Ci§5V(

Therefore, the budget feasible allocation condition
is also satisfied. Thus, the mobile user m; is still

the winner.
We can conclude that the mobile user m; € M* still
stays in the winner set when she decreases her cost.
Therefore, the task allocation algorithm is monotone. O

4.2 Compensation Determination

The basic idea behind compensation determination scheme
can be described as follows. If M* = {m*}, we directly set p*
as B. Suppose we want to determine the compensation
for mobile user m; € M*. Similar to the list G, we consider
a newly sorted list G_; without mobile user m;. We
assume that mobile user m; stays at the jth position in
G_;. We calculate the maximum cost p;.< i) that mobile user

m; should declare to win the auction instead of mobile
user m; at the jth position in G_;. Since variable p;, may
take different values as a function of index j, we take the
maximum of these values, and set it as the critical com-
pensation for m;. Winning mobile users achieve their
maximum utilities under this compensation determina-
tion rule, and thus they have no reason to manipulate the
auction.
For easy illustration, we first introduce a few notations.

> MI; denotes the first j selected mobile users in G_;.
> fj (or f]’.‘ A ) denotes the marginal contribution of
-1
the mobile user m; in G_;.
> K is the smallest index that satisfies ¢y Zg X

!
K4l jn list G_;.

V(M;c’+1)
>  For the convenience of the analysis, we denote ;(;) =
VAR fz/\/\/l’

7 Bio) =5 X v

In the phase of compensation determination, for losers,
we set their compensations to zeros. To calculate the com-
pensation p; for a winner m; € M*, we first sort the mobile
users in M\{m;} according to the marginal contribution per
cost similarly as before

e fshs L fin
C

1 T CM-t

Then the critical compensation p; can be determined in the
following stages. In the jth stage (1 < j < (k' + 1)), we cal-
culate the competing cost c,’i(j) that the mobile user m;
should bid so that at the jth position in G_;, m; will be
selected as a winner, instead of m;. This competing declared

cost ¢} ;) should satisfy the following two conditions.
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Algorithm 2. Compensation Determination

Input: A mobile user set M, a Pol set H, a budget B, a biding
profile b, and a set of winning mobile users M*.
Output: A compensation profile of mobile users p.

1 p—0
2 if M* = {m"} then
3 p =B
4  return p;
5 foreach m; € M* do
6 M~ — M\{m;}; =L M —@
7 My — ArgMax,, cyg-i o /
8 while M\ M | # @ and ¢; < gm do
IV T
9 () — M‘}ff 5 B — % m
10 pi « max{p;, min{e;), B} };
11 M = M U {m}; j<—j+1;
12 M < ArgMaX,, cy-i\m; Ct
fﬁw’ x<j L\w
B e By — 2 W
14 D — max{p“mm{a G }}

15 return p;

» First, at the position j in G_;, mobile user m;’s mar-
ginal contribution per cost should be larger than that
of mj, ie.,

Fim f/

, f;lM;A X Gj
= GG S%G =T ©)
j

) should satisfy the budget feasible alloca-

%) CJ‘

> Second, ¢,
tion condition at the jth position in G_;, i.e,,

!
B fiIM'-,
Lo < By == X 10
Ci(j) *ﬁl(J) D) V(M;,lu{mi}) (10)
From the two conditions, we can get c( )< pl()
min{a;(j), B;;y}- In Inequality (9), fi,W}fl monotomcally

increases while ¢;/ fj/- decreases with the index j, hence o;;
(and then p] ;) varies at different positions in G—;. We take
the maximum of pj; at different positions, and regard it as
the critical compensation for the mobile user m;, i.e.,

max p/-(]-). (11)

1<j<(H+1)" "

pi =

We describe the detailed steps of the compensation
determination in Algorithm 2. The time complexity of it
is O(M?).

Most of the budget feasible mechanisms [8], [45], [46],
[56] rely on the compensation determination scheme to
guarantee the property of strategy-proofness. The main
idea behind the proof is similar. For the completeness of the
work, we present the proof here.

Lemma 4. The compensation profile p is the critical compensa-
tions for mobile users.

Proof. We show that p; is the critical compensation for the
mobile user m; € M*. Let r € [0, ¥ + 1] indicate the index
of the maximum p;( 5 InG_;ie, pi= o (- We distinguish
the following two cases.
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> If the cost that m; declares is lower than p;, i.e.,
¢ <pi= pg(r), then she will be selected as a win-

ner at the rth position in G, because ¢; < ;) and
¢ < Big)

>  Otherwise, we can claim that m; will be rejected in
the allocation process when she declares a higher
cost than p;. We consider the following two differ-
ent scenarios.

e We consider the first scenario, in which
%i(r) < By, implying pgm = (). The mobile
user m; will be placed behind the rth position
in G_;, when she declares a higher cost: ¢; >
(). In sorted list G_;, for each j € [r+1,
K + 1], if () is not less than a;(;), then m; will
not be allocated at this position since ¢; >
o) > ;). Otherwise, if ;) < ;) at the jth
position, we can obtain the followmg equali-
ties according to the maximality of index r

&) > Pigy = %) > Pigg) = iy

Therefore, declaring a hlgher cost leads to
thatc; > a;) > ,31 , which violates the bud-
get feasible allocated condition (i.e., Inequal-
ity (10)) at the jth position. Therefore, m; can
not win the auction in this scenario.

e We consider the second scenario, in which
%) > By, implying p,’m) = By()- Similarly, in
sorted list G_;, for each j € [0,k + 1], if B, is
larger than g;(;) at the jth position, obviously,
m; will not be allocated since c¢; > Biwr) >
Bi(;)- Otherwise, if B, is smaller than g, at
some jth position, then the below inequalities
can be obtained

IBi e p;’,(r) ﬂl (r)

We can get ¢ > B,) > @, and thus m;

can also not be allocated at the jth position.
Until now, we have proved that p; is indeed a thresh-
old compensation for m;. Then our claim holds. 0

> pz ) = i)

5 ANALYSIS oOF BEACON

In this section, we give theoretical analyses of BEACON. We
first prove that BEACON is strategy-proof and budget feasi-
ble, and then analyse the approximation ratio of it.

5.1 Economic Properties

Before proving strategy-proofness of BEACON, we present
the following two lemmas.

Lemma 5. BEACON satisfies Incentive-Compatibility.

Proof. By Lemmas 3, 4 and Theorem 1, we conclude that
reporting truthful sensing cost is a dominant strategy for
each mobile user, and thus BEACON satisfies IC. O

Lemma 6. BEACON satisfies Individual-Rationality.

Proof. The losers have not caused any cost, which must be
no larger than their compensations (zeros). We now show
that the claim also holds for winner m; € M*. It is enough
to show that ¢; < p for certain index j in G_;, since p; is

the maximum over all possible p} ;. We consider mobile
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user m;, who takes the place of m; in G_;. The allocation le./\/l X ¢y
result before m; in G is the same with the allocation result pi < —F——— (15)
before m; in G_;, i.e.,, M;_; = M;_,. Since m; is allocated T\M’r,]
in G, it implies that m, satisfies the budget feasible alloca-
tion condition, and we have f
, p<B M (16)
B fim, B Jim, SR VIML o

i <o - . (12
CE ML) 2 VML oG P (2 | R

According to the individual rationality property of BEA-
In G, mobile user m; is placed before m; and we have CON in Lemma 5, we get ¢; < p;. Since the mobile user

m; does not win in the first (i — 1) positions in the list G,

!
Jimi s > Fimiy S o< f'IM’ X6 . (13) we have p’( ) < cifor0<j< (i—1). These.two inequal-
Ci ¢ JW, : ities implies that pm < p7<r for 0 < j < (i —1). There-
fore, r must be at least 7, and we have M,_; C M;fl.
From the inequalities of (12) and (13) and Lemma 6, we We can assume that M. U{i}CM._, UM,. Since
can get that & = ¢; < min{a,(j), iy} < pi(;) < pic O otherwise M _, U {i} = M/ _, UM, applying Inequality
We have the following theorem for BEACON. (16) and M,y € M;_,, we have

Theorem 2. BEACON is a strategy-proof mechanism. 7 . _
. Lo fi|/\/l,j_1 > i‘M;-,l > 2 X V(MT—I U {Z})
Proof. According to Lemmas 6 and 5, BEACON satisfies = = B

both IR and IC. Therefore, BEACON is a strategy-proof b 2 in M M M an
mechanism for mobile crowdsensing by Definition 3. O x V( é 1Y k) (B &) .
Before proving the budget feasibility for BEACON, we
first prove a useful lemma. Inequalities (17) implies p; < V 5B, and we obtain a
L 7 F bil c i mobil contradiction.
emma 7. For mobile usei}‘set M; C My € M and mobile user Let M, = M'/r'—l U{i} and M, = M/r L UM,. Since
My = arg max,, ci,\m, l‘%“, we have M; C M, we assume that mobile user m, satisfies
V(My) — V(M) - ey (14) My = argMax,, ev,\m, ”Lfl In G_;, mobile user m, has
¢ — ci = e the maximum marginal contribution per cost at position
ZHLEMQ ¢ ijeMl J g h g 1 ibuti p P iti
I, 7!
Proof. We prove this lemma by contradiction. Assume that r, and thus “' <~ Now, we can get the following
the lemma does not hold, and for each m; € My\M;, inequalities by using 1nequahty (15) and Lemma 7.
we get
2) — 1 M 2) 1 My My
VM) = VL) i VM) = V) e
znli€M2 G — ngEMl CGj Gt . Z"LLEMZ = Zm/eMl < o o (18)
! /
Adding these inequalities together, we have < Frna_, < Tim,
Cr bi
V(M2) - V(Ml) S thEMZ\Ml ft|M1 e
ZmieMz ¢ — ijeMl ¢ theMg\Ml < We also know that p; > v X B. Hence, we get
_ Zr:ueMZ\Ml ft|M1 . f\M ) f\M ) X V(Mk) V(Mk)
Zm'eM: Ci — Zﬂ]‘EM Cj — < » S ! (19)
A Yy 1 Di fl‘M1;1 x B B
This implies that V(M) —V(M1) > 32, vy, fomy s )
which contradicts the submodularity of the V(- In the list G, we have
function. ]
. 2V(M
We can show that the critical compensations for winners h > é > 2 fi = (B )
can be well bounded. a @ k
o ) . Thus,
Lemma 8. For winning mobile user m7 € M*, her critical com-
pensation p; is upper bounded by i v ;X B. Z . B o 1<z Ji Zl<]<], fi B
— =2 M) 2
Proof. It is easy to show that the claim holds when lsj<k VML)
M* = {m*}. We consider the case, in which M* = M. For
- 7, We also have
contradiction, we assume that p; > v X Bform; € M,,.
Let r denote the index of maximum pﬁj in G_; that B
7 = argmax;e( w41 Pj(;- According to our compensation Z Ct— Z ¢ = Z ¢ < Z G5 (20)

EM m;EM i €M,
scheme, compensation p; satisfies the following two e My €M \My Ik

inequalities:
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Combining these inequalities (18), (19), and (20), we get

2(V(My) = V(My)) - V(M) —
5 <

V(M)
ZHLJ€M2\M1 Cj

< f“My L~ V(Mk).
D B

Thus, V(M;) < 2 x V(M) =2 x V(M._, U{i}). Together
with inequality (16), we get

Sy o Tiv, 2 X VML UG)) | VMY
pi bi B B B

Hence, we get a contradiction p; < V(JN(/H*) x B. Therefore,
the critical compensation p; is upper bounded by

V( )><B a

Based on Lemma 8, we have the following theorem.
Theorem 3. BEACON is a budget feasible mechanism.

Proof. By Lemma 8, p; < % B, for m; € M*. Adding these

. . e Ji
inequalities, we get 3=, .y« i < =i B = B. There-

fore, BEACON is budget feasible. a

5.2 Approximation Ratio

Before giving the approximation ratio of BEACON, we first
consider another non-linear program for weighted coverage
maximization. By using this non-linear program and pipage
rounding technique [2], we analyze the “closeness” between
OPTp(Z,M™) and OPTp(2,M™), which is basis for the
proof of approximation ratio.

B
Problem: Weighted Coverage Mazximization : NLP (571\41’)

Objective:
Maximize Z 1— H (1—a) | xv;
h;eH m;EM™,S;dh;
Subiject to:
B
> (wixa) <5, 1)
m;EM™ 2
€ [0,1], VYm; € M. (22)

We reformulate the objective function as a nonlinear func-
tion, and the set of constraints, denoted by Q, is identical
with that in LP(Z,M~). The relationship between
NLP(Z,M~)and LP(§,M") is given in the following lemma.
Lemma 9. For any x satisfies constraints Q, we have

NLP(z) > (1 -1) LP(x).

Proof. It suffices to show that 1 — ][, ey~ g5, (1 — i) =

(1- %)min{l, D miem- ian; xl} for all 7; € H. We indicate

k as the maximum number of sensing task bundles a Pol

can appear in. Applying the AM-GM inequalities, we have

1-J[ a-e)>1- | e Sih, T ' (23)
;) > - .

m; EM™,S;5h;
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>  When Zm e s5;5n, % > 1, the RHS 1s at least
1—-(1-9) ', which is larger than 1 —, then our
claim holds.

> We consider the case, in which

Dment- s,an, T < 1. Set function g(t) =1 — (1 - Hk,
It is easy to check that g(¢) is monotone increasing

other

and concave in [0,1], so g(t) > (1 —1t)g(0) +
tg(l) = t[l - (1-3) k}. Thus, combining with
Inequality (23), we get

1 k
1-— H (1—a)> Z .1:{1—(1—]—9}
m;EM™,S;3h; m;EM™,5;3h;

1
() 2
m;EM™,S;3h;
1\ .
> 1——|ming 1, Z T p.
€ m; €M™ ,S;3h;

Finally, the lemma holds. 0

Let OPT.p(5,M ™) and OPTpp (5, M) denote the value of
the optimal outcome of program LP(Z, M) and IP(§, M "),
respectively. We can get the following lemma by using the
pipage rounding technique [2], which is a general method
of designing constant-factor approximation algorithm for
optimization problems with budget-type constraints.

Lemma 10. Given the optimal fractional solution x* of the linear
program LP(5 M ™), we can obtain an integer solution =™ for
NLP(§,M"), such that OPTip(5.M~) =LP(z*) < 25
NLP (™) < 29 OPTp (5, M ).

Proof. By applying Lemma 9, we get

(1 - —) LP(z*) < NLP(z"). (24)
Using the pipage rounding technique, we start from the
fractional solution z* to obtain an integer solution z,
such that INLP(z*) < NLP(z). We briefly describe the
steps.

1)  Set 2™ = z*, and repeat the following steps until
z'* is a {0, 1}-vector or has at most one fractional
variable.

a) For any two fractional variables, denoted by z},
and 3, in z’*, we construct vector E, and €1, €.
¢
EI =e,—¢€; X —k7
Cj
where ey, (e;) is the vector with 1 at the kth
(jth) position and 0 otherwise

Cj Cj
: J J

€1 = min 1—a,xt—= 527m1n T 1—x
{ ks JCL ) k7( J)Ck

b) If NLP(z"* + & E,) > NLP(z"* — e2E,), = =
(" + &1 E,), otherwise, z”* = (z'* — &2 F,).

2) If 2’ is already a {0, 1}-vector, we set z™" = z'*.
Otherwise, we round up the single fractional
variable, denoted by z}, to 1. We consider {z}
as a candidate feasible solution, and the remain-
der integer variables in z”*, denoted by z”,, is
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another candidate feasible solution. We take the
maximum between these two candidate solu-
tions as the integer solution z™, ie. z™ =
arg max{NLP(z*;), NLP(z}) }.

The correctness of the above procedure follows from
the factor that z™* + 1 E, and z'* — e, F, are feasible vec-
tors in Q with at least one less fractional variable. Fur-
thermore, the objective function NLP(z" +¢E,) is
convex w.r.t. . Since NLPz"™) < -—2-NLP(z"* +¢E,) +

e1ter

L_NLP(z"* — &2 E,), we know that

£1+eg

NLP(z"*) < max{NLP(z"* + &1 E,), NLP(z" — &2 E,)}.

Therefore, in the above procedure, the value of NLP(z"*)
never goes down. After Step 1), " has at most one frac-
tional variables. In Step 2), we take the maximum
between the two candidate solutions as the integer solu-
tion ™, which guarantees that

NLP(z*) < NLP(z") < NLP(z;) + NLP(z})
1 v
= §NLP(w*) < maz{NLP(z";),NLP(z})} = NLP(z""). (25)

Putting the inequalities (24) and (25) together, we get

2 ) 2 B
© NLP(z™) < % 0OPTp (=,
e—1 e—1 2

LP(z") < M’). (26)

Until now, we have completed the proof. ]
We now present the approximation ratio of BEACON.

Theorem 4. BEACON gQuarantees a constant factor approxima-
tion ratio: %

Proof. Recall that in Algorithm 1, we first compute the opti-
mal fractional solution over M~ with a budget B/2.
Applying Lemma 10, we have OPTp(Z M) <-2&
OPTp(5,M ™). Using the similar method in the analysis
of Lemma 2, we can prove that OPTp(Z, M~) <2<

— e—1
max{V (M), V(m*)}. Thus, we get

B 6e? N
o—
We distinguish two cases. If OPTp(5,M"™) > (8‘1‘312)2

V(m*), the above inequality implies that V(M) >
V(m*), and applying Lemma 2, we get OPTp(B,M) <
3¢V (M},). The desired approximation ratio is achieved.

e—1

Otherwise, if OPT|p (%” MT) < (cfielz)Q

V(m*), we have

OFTp(B,M) < OPT;p(B,M~) + OFPI1p(B,Mp)) + V(m")
S OPTLP(B, Mi) + 3V(m*)

B
< 20PTp (57 Mi) + 3V(m*)

. ((elf—i),zw)wm*).

. 1)2
We can get a constant approximation ratio (e=1)

12e2+3(e—1)% O
6 EXTENSIONS TO DIFFERENT COVERAGE MODELS

In this section, we extend BEACON to adapt to Area Cover-
age and Multiple Coverage.
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Interested Regions

Sensing Regions

Fig. 2. Zones and valid zones in area coverage.

6.1 Area Coverage

Area coverage is required in many sensing applications, such
as air pollution monitoring or electromagnetic field radiation
monitoring. In area coverage, the service provider would like
to maximize the coverage of the interested regions under a
budget constraint. We can transform the area coverage to the
point coverage by regarding Valid Zones as Pols.

Definition 6 (Valid Zone). Given the set of sensing regions
(i.e., the sensing circular disks of mobile users) and the inter-
ested geographic regions, a zone is a region, in which any two
points are covered by the same set of sensing regions. A zone is
valid if it intersects with the interested regions.

In Fig. 2, zones are denoted as Z; to Z;;, among which Z;
to Z; are valid zones. The service provider virtually puts a
“Pol” in each valid zone, and assigns the valuation on the
“Pol” with the size of the intersection area of valid zone and
interested regions. A valid zone is covered if and only if the
associated “Pol” is covered. We transform the area coverage
to the point coverage, and thus BEACON can be applied in
area coverage scenario.

6.2 Multiple Coverage
Since mobile devices are diverse in terms of the capabilities of
embedded sensors, residual battery level, and other factors,
the sensory data may have different qualities. Therefore, in
some mobile sensing applications, the service provider need
to cover each Pol multiple times to guarantee the requested
quality of service or to achieve high fault tolerance.

We can simply model the service provider’s valuation on
a Pol h; € H as v; = ¢; X 0;, in which ©; is the valuation of
single coverage on h;, and ¢; is the minimum between actual
coverage times and the required coverage times on h;.” It is
easy to verify that the valuation function V(-) of the service
provider in multiple coverage also satisfies the submodular
property. Therefore, BEACON are also suitable here.

7 NUMERICAL RESULTS

In this section, we show the numerical results from our eval-
uations based on the sensory data collected from a practical
mobile crowdsensing system.

A Noise Map Crowdsensing System. Noise pollution is a
serious problem in many cities. Although authorities in
some big cities have deployed professional measurement

3. This valuation format is derived from the place-centric crowdes-
nig applicaitons discussed in [9], such as research prototypes [10], [50]
and commercial systems [14], [16]. We can adopt other valuation for-
mats in different mobile crowdsensing applications. The requirement is
that the valuation functions should satisfy the submodularity.
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Fig. 3. The noise map of a selected campus from 11 a.m. to 1 p.m..

devices to monitor the noise level in the cities, the noise
maps they create are usually not fine-grained enough to
reflect the noise variations in spatial and temporal dimen-
sions. Furthermore, this method is expensive both in hard-
ware as well as manpower. Mobile crowdsensing is a novel
approach to solve this dilemma, and some noise map
crowdsensing systems have been developed, e.g., Noi-
seTube [36] and Noisemap [35]. We deploy a noise map
crowdsensing system in a selected campus (around 3 km?).
We modify the source code of NoiseTube, which has been
published on Google Code under the GNU LGPL v2.1 [37],
and launch it on Google Nexus 7 tablet. We virtually deploy
noise measurement Pols on the main roads in the campus,
and set the distance between two Pols as 10 m. There are
total 792 Pols deployed in the campus. We recruit 15 volun-
teers to collect sensory data by walking around the campus
from 11 a.m. to 1 p.m. every day in one week. Their sensing
ranges are set as 5 m. Each piece of collected sensory data
contains noise level in dB(A), timestamp, and GPS location.
By averaging the collected noise levels on each Pol, we cre-
ate the noise map of the campus, shown in Fig. 3.

We implement BEACON, and evaluate its performance
based on the collected data set. We partition the data set into
three subsets by regions, and summarize the datasets” infor-
mation in Table 1. Here, # SD is the abbreviation of the num-
ber of sensory data, and « denote the number of sensory data
that cover one Pol. In the mobile crowdsensing system for
noise map construction, we can recruit several mobile users
to cover one Pol multiple times, providing fault tolerance
guarantee and then the high data quality. Therefore, we
adopt the multiple coverage model, and set the required cov-
erage time for each Pol as 3. We now describe the detailed
setting for parameters of the simulation. The valuation of
covering the Pol h; for ¢; times is v; = min{g;, 3} X ¥;, where
0; is the valuation of single coverage and is randomly
selected from the range [1,10]. We regard one piece of sen-
sory data in the datasets as one data contributor*. We build a
set of experiment configurations by sampling different num-
bers of data contributors from the datasets. The number of
data contributors varies from 200 to 2,000 with increment of

4. Since the scale of crowdsensing system we deployed is relatively
small, we use this method to simulate a large scale crowdsensing sys-
tem. This assumption does not affect the insights we derived from the
evaluation results.
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TABLE 1
Summary of Three Data Sets

DataSets #SD #Pols #Pols(k >3) #Pols(k < 3)
DataSet1 4,744 792 417 375
Data Set2 2,669 505 271 234
DataSet3 2,708 358 181 177

200. For the data contributor m;, her interested sensing task
bundle is the set of Pols within her sensing region, and her
sensing cost ¢; is uniformly distributed over [1,10]. We
assume that budget spans from 1,500 to 15,000 with incre-
ment of 1,500. All the results of performance are average
over 400 instances. We adopt the Gurobi optimizer [18], a
commercial optimization solver, to obtain the optimal solu-
tion of the linear programming LP(§,M") in Algorithm 1.
We also implement greedy algorithm (denoted as GDY) in
paper [27], a near-optimal uniform price (denoted as Uni-
form) described in technical report [1], and the randomized
mechanism (denoted as Random) from paper [8] as bench-
marks.” Algorithm GDY is not strategy-proof and assumes
the full knowledge of the data contributors’ private costs.
Metrics. We evaluate three metrics:

» Service Provider’s Valuation: The valuation over the
covered Pols.

»  Winner Ratio: The percentage of winning data con-
tributors over the all data contributors.

» Coverage Ratio: The percentage of covered Pols. We
call a Pol is covered, when it is covered by at least
one winning data contributors.

7.1 Impacts on Service Provider’s Valuation

We present the simulation results on service provider’s valu-
ation in this section. As the evaluation results of the three
data sets are similar, so we just show the results over Data
Set 1 here. Fig. 4a shows the service provider’s valuation on
the data set 1 when the number of data contributors is fixed
at 1,000 and the budget varies from 1,500 to 15,000. From the
figure, we can observe that when the budget increases, the
valuation of service provider increases simultaneously in
algorithms BEACON and Random. The reason is that when
the budget becomes larger, more data contributors can be
recruited, leading to higher Pol coverage. When the budget
increases more than 3,000, the greedy algorithm GDY can
cover almost all Pols and obtain a stable and near optimal
performance. Algorithm GDY works well in practice, but it
does not have any guarantee on preventing strategic behav-
iours of data contributors. By contrast, BEACON has good
system performance: it approaches the result of GDY when
the budget becomes larger, and BEACON also achieves strat-
egy-proofness. The uniform price mechanism is comparable
with BEACON when the budget is small. Note that in the
uniform price mechanism, in some instances the service
provider’s valuation decreases while the budget increases.
This is because we estimate a threshold price according to
the distribution of sensing cost, and the valuation maximiz-
ing group we select may not be the optimal one when the
budget is large. Despite its theoretically good guarantees, the

5. We do not implement the deterministic mechanism in [8], because
it needs to solve the optimal solution to a submodular maximization
problem, and thus is computationally inefficient in practical mobile
crowdsensing system.
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Fig. 4. Impacts on service provider’s valuation and winner ratio on data set 1.

randomized mechanism Random performs poorly in prac-
tice, even worse than the uniform price mechanism. This is
due to the fact that in order to guarantee bounded approxi-
mation in worst cases, Random has some probability to
choose the data contributor with maximum valuation. In
practical mobile crowdsensing system, the valuation pro-
duced by one data contributor is relatively smaller than that
produced by the greedy procedure, so it largely degrades the
system performance when just choosing one data contribu-
tor. BEACON avoids this degradation by using the linear
programming technique during data contributors selection.
Fig. 4b shows the valuation of service provider when the
budget is fixed at 12,000 and the number of data contribu-
tors varies from 200 to 2,000. We can see that service
provider’s valuation grows with the increase of data con-
tributors in all the four algorithms. This is because the ser-
vice provider can use the fixed budget more effectively
among more data contributors, i.e., the service provider can
select data contributors with lower costs to cover Pols under
a certain budget. Again, BEACON approaches the perfor-
mance of GDY, and outperforms Uniform and Random.

7.2 Impacts on Winner Ratio

We now show the winner ratio of GDY, BEACON, Uniform
and Random. By fixing the budget at 12,000 and varying the
number of data contributors from 200 to 2,000, we calculate
the winner ratio, and plot the results in Fig. 4c. We can see
that the winner ratio of algorithm GDY, BEACON and Ran-
dom decreases with the increment of data contributors. This
is because larger number of data contributors leads to more
intense competition on limited Pols, and thus the winner
ratio decreases. The winner ratio of the uniform price mecha-
nism maintains around 0.5 when the number of data contrib-
utors is less than 1,400, and decreases when the number of
data contributors becomes larger. According to the principle
of uniform price mechanism, the percentage of data contrib-
utors in one group still stays the same in different number of
total data contributors. Mechanism Uniform can select
almost all the data contributors in one group as the winners

1
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—— M=200, B=30000
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Fig. 5. Coverage ratio of BEACON.

when the number of total data contributors are small. There-
fore, the winner ratio of mechanism Uniform maintains at a
stabilized level in small scale of mobile crowdsensing.

Remark. The evaluation results in Fig. 4 demonstrate that
BEACON not only has good theoretical properties, but also
works well in practical mobile crowdsensing systems. BEA-
CON always outperforms the uniform price mechanism in
all set of simulations. This indicates that different pricing is
necessary, and the uniform price mechanisms, which are
used in current crowdsourcing platforms is not efficient in
mobile crowdsensing systems. Although the mechanism
Random has good approximation ratio in theory, it per-
forms poorly in practice, even worse than the performance
achieved by the uniform price mechanism.

7.3 Impacts on Coverage Ratio

As the results of algorithms GDY, Uniform and Random are
similar to those in Fig. 4, we just show the coverage ratio of
BEACON over three different data sets in Fig. 5. The number
of data contributors is set as 200 and 2,000, and the budget is
set as 1,500 and 30,000.° From Fig. 5, we can observe that, in
each data set, the coverage ratio grows when the budget or
the number of data contributors increases. On one hand, the
service provider can use the fixed budget more effectively
when there are more data contributors. On the other hand,
the service provider can recruit more data contributors to
cover more Pols when the budget becomes large. We can
also see that the coverage ratio of data set 3 is better than that
of the other two data sets. This is because the number of Pols
in data set 3 is the smallest, and when the same number of
Pols are covered, data set 3 has highest coverage ratio. BEA-
CON achieves the best coverage ratio (around 86.5 percent),
when the budget is 30,000 and the number of data contribu-
tors is 2,000 in data set 3. BEACON does not achieve full cov-
erage when the budget is large, because some Pols are not
covered by any buyer from the selected 2,000 buyers.

8 RELATED WORK

In this section, we briefly review related work.

8.1 Coverage in Wireless Sensor Networks

There is a lot of work on designing algorithms for coverage
problems in sensor networks. We refer to [21] for a compre-
hensive survey. Some work focus on designing optimal
deployment patten to adapt different coverage scenarios.
For instance, Sheng et al. [42] designed approximate deploy-
ment patterns for bounded areas. Bai et al. [6] considered the
optimally of multi-coverage deployment patterns. Recently,
Willson et al. [51] improved the approximation ratio for

6. In this set of simulations, we set the budget as 30,000, because we
want to investigate the coverage ratio of BEACON under a relatively
large budget.
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Fig. 6. The approximation ratios of current budget feasible mechanisms
for the problem of weighted coverage maximization. The approximation
ratio of Anari et al. [4] is obtained under the assumption of large scale
crowdsourcing markets.

maximizing lifetime of k-coverage. There is also some work
considering different coverage models. For example,
Wan et al. [49] designed approximation algorithms for cover-
age with disparate ranges. Alam et al. [3] studied on the cov-
erage problems in three-dimensional space.

However, none of the existing work considers the cover-
age problem with selfish and rational sensor nodes.

8.2 Mobile Crowdsensing

Recently, incentive mechanisms for mobile crowdsensing
have been widely studied in the literature [13], [15], [22], [24],
[28], [30], [54]. In paper [22], [30], the authors designed
dynamic price scheme for participatory sensing without con-
sidering the strategic behaviors of mobile users. Papers [23],
[41] takes the quality of collected data into account when
designing the incentive mechanisms for mobile crowdsens-
ing. Kawajiri [26] designed incentive mechanisms to steer
mobile users to collect data at certain locations, and
then improve the overall quality of sensing services.
Karaliopoulos et al. discussed the influence of mobility
on the user recruitment in mobile crowdsensing [24].
Xiong et al. [53] and Zhang et al. [55] coupled the energy effi-
ciency with the probabilistic coverage constraint during
recruiting workers for mobile crowdsensing. Some incentive
mechanisms have been designed for task allocation in crowd-
sourcing markets [25], [46]. These mechanisms cannot be
directly applied in mobile crowdsensing, because the location
property of sensing tasks should be taken into account.

The most closely related works about considering cover-
age problem in mobile crowdsensing are MSening auc-
tion [54], Optimal auction [28], Posted-Pricing [19],
TRAC [13], MCS [20], OMZ(G) [56], and Lyapunov-based
VCG auction [15]. MSensing auction [54] maximizes service
provider’s profit, but does not consider the location-aware
coverage requirement. Optimal auction [28] and Posted-Pric-
ing [19] minimize the expected compensation under certain
quality constraint for the sensing service, which is the dual
problem to the budget feasible coverage problem considered
in our paper. TRAC minimizes the total cost of winning
mobile users under the constraint that all Pols have to be cov-
ered, without any bound for the expenditure of recruiting
mobile users. MCS is a truthful scheduling mechanism for
mobile crowdsensing. MCS investigates the coverage prob-
lem in the time dimension, and proposes polynomial-time
mechanisms in both offline and online scenarios. OMZ(G)
are online budget feasible incentive mechanisms for coverage
maximization, but their approximation ratio analysis is based
on some distribution of valuation and cost, and then is weak.
Gao et al. studied the problem of mobile user selection in a
general time-dependent and location-aware participatory
sensing system, providing the long-term user participation
incentive [15]. They considered the different information sce-
nario, and proposed a Lyapunov-based VCG auction for the
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online sensor selection. The problem formulation in their
paper is to maximize the social welfare under the participa-
tory constraint. However, in this paper, we considered
another fundamental problem, aiming to maximize the valu-
ation of the service provider with a budget constraint.

8.3 Budget Feasible Mechanism Design

Budget feasible incentive mechanism design is a newly
emerging branch in mechanism design, and is initially stud-
ied by Singer [44]. In Fig. 6, we present the approximation
ratios of the current budget feasible mechanisms in the litera-
ture for the problem of weighted coverage maximization.
Singer designed a two-approximation mechanism for the case
of symmetric submodular function, and a randomized mech-
anism for the general submodular function with a loose
approximation ratio 1/112 ~ 0.00892 [44]. Chen et al. [8]
improved the theoretical results of Singer’s work. For the case
of submodular function, Chen et al. designed a randomized
budget feasible mechanism with an approximation ratio of
1/7.91 ~ 0.126 in polynomial time and a deterministic one
with an approximation ratio of 1/8.34 ~ 0.120 in exponential
time. Chen et al. also demonstrated that no mechanism can

achieve an approximation ratio better than 1/(1+ v/2) ~
0.414and 1/2 = 0.5 for deterministic and randomized mecha-
nisms, respectively. Dobzinski et al. considered the procure-
ment auction with a general complement-free objective
function in the budget feasibility model [12]. They proposed a
randomized universally truthful mechanism, achieving an
approximation ratio O(m). Later, Bei et al. improved the

approximation ratio to a sub-logarithmic one O(lﬂf#) for the

complement-free objective function, and a constant approxi-
mation ratio for the XOS objective function [7]. Bei et al.
also designed a constant approximation mechanism for all
subadditive functions in Bayeisan environment. Anari
et al. investigated the budget-feasible mechanism design for
large crowdsourcing markets, in which the cost (utility) of
individual worker is small compared to the budget (valua-
tion) of the service provider [4]. For the case of submodular
valuation function, they designed deterministic mechanisms
that achieve the approximation ratios of 1/2 and 1/3 with
exponential and polynomial time complexity, respectively,
under the assumption of large scale markets. Budget feasible
incentive mechanisms have also been applied into social net-
work [45] and crowdsourcing markets [46]. Singer considered
the unweighted coverage model for the influence maximiza-
tion in social network [45], while we investigated various
weighted coverage models, such as area coverage and multi-
ple coverage,in mobile crowdsensing.

The works [8] and [44] adopted the randomization tech-
nique in algorithm design to tackle the issue of the non-
monotonicity of the MAX operation in GDY-MAX
algorithm, and then to guarantee the strategy-proofness.
However, the randomized mechanisms do not perform well,
and even are impractical for large scale markets. On one
hand, at each running time, the randomized mechanism
might return different outcomes for the same inputs, which
causes unfairness among mobile users. For some instances,
the mobile users with a large coverage range and a low sens-
ing cost might be dropped out with a certain probability, in
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order to guarantee the overall expected performance. It is
difficult for the service provider to explain such design ratio-
nale behind the randomized mechanism for the losing
mobile users, resulting in that the randomized mechanism is
difficult to deploy in practice. On the other hand, in the large
scale mobile crowdsensing systems, the service provider
always offers a high budget, which is significantly larger
than the sensing cost of the individual mobile user.” This
implies that the mobile user with the largest valuation would
seldom be the optimal solution in such scenario. However, in
order to satisfy the performance guarantee in the worst cases,
the randomized mechanisms [8], [44] have a substantial
probability (e.g., 0.4 in [8]) to return the most capable mobile
user with the highest coverage valuation as the result, lead-
ing to the average performance degradation. Based on these
reasons, we can safely conclude that the randomized budget
feasible mechanisms are not suitable for practical mobile
crowdsensing markets. Although the deterministic budget
feasible mechanism in paper [8] achieves the approximation
ratio of 1/8.34 ~ 0.120, it requires an exponential running
time to compute the optimal solution for a submodular
maximization problem. Therefore, we turn to design a deter-
ministic, computationally efficient and budget feasible
mechanism for mobile crowdsensing markets.

In this paper, we rely on the linear programming round-
ing technique (refer to as pipage rounding in [2]) and the
characterization of compensations in [44] to develop a deter-
ministic, computationally efficient, strategy-proof, and bud-
get feasible mechanism for the problem of weighted
coverage maximization in mobile crowdsensing. BEACON
can efficiently compute the optimal solution to the linear
programming in the allocation algorithm, bypassing the
hardness of solving the submodular optimization problem
in [8]. Although BEACON has a weaker approximation
ratio (1/33 &~ 0.03) than that (1/8.34 =~ 0.120) of the deter-
ministic mechanism in [8], BEACON has polynomial time
complexity, which is more desirable for practical markets.
We also emphasize that BEACON is a deterministic mecha-
nism, overcoming the issues caused by the randomized
mechanisms. The approximation ratio of BEACON is inde-
pendent on the scale of mobile crowdsensing markets. With
the assumption of large scale markets, the allocation algo-
rithm of BEACON is identical to that in [4]. Thus, we can
couple with the payment rule and the analysis technique
in [4] to derive a better approximation ratio.

Pipage rounding is a generalized method of designing
constant-factor approximation algorithm for optimization
problems with budget-type constraints [2], and has been
applied to solve the optimization problems in different net-
work scenarios, such as optimal selection of monitoring
nodes in multi-channel multi-radio WMNss [43].

9 CONCLUSION

In this paper, we have made an in-depth study on the prob-
lem of weighted coverage maximization for mobile crowd-
sensing. We have proposed a budget feasible and strategy-
proof incentive mechanism for mobile crowdsensing,
namely BEACON. Our theoretical analysis has showed that
BEACON achieves budge feasibility, strategy-proofness,

7. We note that the large scale markets we discuss here is consistent
with the definition in paper [4].
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and a constant approximation ratio. We have evaluated the
performance of BEACON based on the collected sensory
data from a practical crowdsensing system. The evaluation
results have shown that BEACON has good performance,
in terms of the service provider’s valuation, winner ratio,
and coverage ratio.
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