

$\cup, \cap, \rightarrow, \overline{S}$

- Union: $S \cup T \rightarrow$ the set of elements that are either in S or in T.
 - $S \cup T = \{s | s \in S \text{ or } s \in T\}$
 - $\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$
 - $|S \cup T| \le |S| + |T|$
- Intersection: $S \cap T$
 - $S \cap T = \{s \mid s \in S \text{ and } s \in T\}$

•
$$\{a, b, c\} \cap \{c, d, e\} = \{c\}$$

- Difference: $S T \rightarrow \text{set of all elements in } S$ not in T
 - $S T = \{s \mid s \in S \text{ but not in } T\} = S \cap \overline{T}$

Xiaofeng Gao

Set

Slide01-Prologue

Set Operations

• $\{1,2,3\} - \{1,4,5\} = \{2,3\}$

• Complement:

X033533-Algorithm@SJTU

Ordered Pair

- Need universal set U
- $\overline{S} = \{s \mid s \in U \text{ but not in } S\}$

- (x, y): ordered pair of elements x and y; $(x, y) \neq (y, x)$.
- (x_1, \cdots, x_n) : ordered *n*-tuple \rightarrow boldfaced **x**.
- $A_1 \times A_2 \times \cdots \times A_n = \{(x_1, \cdots, x_n) \mid x_1 \in A_1, \cdots, x_n \in A_n\}.$
- $A \times A \times \cdots \times A = A^n$.
- $A^1 = A$.

Function Relations Proof

Set

- Cartesian Product
 - $S \times T = \{(s,t) \mid s \in S, t \in T\}$
 - In a graph G = (V, E), the edge set E is the subset of Cartesian product of vertex set V. E ⊆ V × V.

Set Operations

• Power Set

 $\times, 2^{S}$

- 2^S set of all subsets of S
- Note: notation $|2^{S}| = 2^{|S|}$, meaning 2^{S} is a good representation for power set.
- $S = \{a, b, c\}$, then $2S = \{a, b, c\}, (b) = \{c\}, (c, b) = \{c, c\}, (c, c) = \{c\}, ($
 - $2^{S} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$
- Indicator Vector: We can use a zero/one vector to represent the elements in power set.
 a b control a

Slide01-Prologue

а	b	С
0	0	0
1	0	0
0	1	0
1	1	1
	a 0 1 0 1	$ \begin{array}{cccc} a & b \\ \hline 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} $

X033533-Algorithm@SJTU

Set Function Basic Concepts

Xiaofeng Gao

Definition

- *f* is a set of ordered pairs s.t. if $(x, y) \in f$ and $(x, z) \in f$, then y = z, and f(x) = y.
- Dom(f): Domain of f, $\{x \mid f(x) \text{ is defined}\}$.
- f(x) is undefined if $x \notin Dom(f)$.
- Ran(f): Range of f, $\{f(x) \mid x \in Dom(f)\}$.
- f is a function from A to B: $Dom(f) \subseteq A$ and $Ran(f) \subseteq B$.
- $f: A \to B$: f is a function from A to B with Dom(f) = A.

Mapping and Operation

- Injective (one-to-one): if $x, y \in Dom(f), x \neq y$, then $f(x) \neq f(y)$.
- Inverse f^{-1} : the unique function g s.t. Dom(g) = Ran(f), and g(f(x)) = x.
- Surjective (onto): if Ran(f) = B.
- Bijective: both injective and surjective.
- Composition: $f \circ g$, domain $\{x \mid x \in Dom(g) \land g(x) \in Dom(f)\}$, value f(g(x)).

Polynomial

A polynomial p is an expression of finite length constructed from variables and constants, using only the operations of addition, subtraction, multiplication, and non-negative integer exponents.

Function

Functions of Natural Numbers

- $4x^2y + 3x 5$ is a polynomial.
- $-6y^2 \frac{7}{9}x$ is a polynomial.
- $\frac{1}{x} + x^{\frac{3}{4}}$ is not a polynomial.
- $3xy^{-2}$ is not a polynomial.

Example

	reflexive	symmetric	transitive
<	No	No	Yes
\leq	Yes	No	Yes
Parent of	No	No	No
=	Yes	Yes	Yes

Function Basic Concepts Relations Logical Notation Proof

Hand Writing

- Small letters for elements and functions.
 - *a*, *b*, *c* for elements,
 - *f*, *g* for functions,
 - *i*, *j*, *k* for integer indices,
 - *x*, *y*, *z* for variables,
- Capital letters for sets. A, B, S. $A = \{a_1, \dots, a_n\}$
- Bold small letters for vectors. $\mathbf{x}, \mathbf{y}, \mathbf{v} = \{v_1, \cdots, v_m\}$
- Bold capital letters for collections. A, B. $S = \{S_1, \dots, S_n\}$
- Blackboard bold capitals for domains (standard symbols). \mathbb{N} , \mathbb{R} , \mathbb{Z} .
- German script for collection of functions. $\mathscr{C}, \mathscr{S}, \mathscr{T}$.
- Greek letters for parameters or coefficients. α , β , γ .
- Double strike handwriting for bold letters.

X033533-Algorithm@SJTU	Xiaofeng Gao	Slide01-Prologue	18/45	X033533-Algorithm@SJTU	Xiaofeng Gao	Slide01-Prologue	20/45
	Set Function Relations Proof	Definition Categories Peano Axioms			Set Function Relations Proof	Definition Categories Peano Axioms	
What is proof?				Types of Proof			

A proof of a statement is essentially a convincing argument that the statement is true. A typical step in a proof is to derive statements from

- assumptions or hypotheses.
- statements that have already been derived.
- other generally accepted facts, using general principles of logical reasoning.

- Proof by Construction
- Proof by Contrapositive
 - Proof by Contradiction
 - Proof by Counterexample
- Proof by Cases
- Proof by Mathematical Induction
 - The Principle of Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction

22/45

X033533-Algorithm@SJTU

Proof by Construction ($\forall x, P(x)$ holds)

Example: For any integers *a* and *b*, if *a* and *b* are odd, then *ab* is odd.

Proof: Since *a* and *b* are odd, there exist integers *x* and *y* such that a = 2x + 1, b = 2y + 1. We wish to show that there is an integer *z* so that ab = 2z + 1. Let us therefore consider *ab*.

ab = (2x + 1)(2y + 1)= 4xy + 2x + 2y + 1 = 2(2xy + x + y) + 1

Thus if we let z = 2xy + x + y, then ab = 2z + 1, which implies that ab is odd.

Function Relations Proof Definition Categories Peano Axio

Proof by Contrapositive $(p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \le \sqrt{n}$ or $j \le \sqrt{n}$.

Proof: We change this statement by its logically equivalence: $\forall i, j, n \in \mathbb{N}$, if it is not the case that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i \times j \neq n$. If it is not true that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i > \sqrt{n}$ and $j > \sqrt{n}$. Since $j > \sqrt{n} \geq 0$, we have

$$i > \sqrt{n} \Rightarrow i \times j > \sqrt{n} \times j > \sqrt{n} \times \sqrt{n} = n.$$

It follows that $i \times j \neq n$. The original statement is true.

X033533-Algorithm@SJTU Xiaofeng Gao Slide01-Prologue 25/45	X033533-Algorithm@SJTU Xiaofeng Gao Slide01-Prologue 26/45
Set Function Relations ProofDefinition Categories Peano AxiomsProof by Contradiction (p is true $\Leftrightarrow \neg p \rightarrow false$ is true)	Set Function Relations Proof Definition Categories Peano Axioms Proof by Contradiction (2)
Example: For any sets <i>A</i> , <i>B</i> , and <i>C</i> , if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$. Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$. Then there exists <i>x</i> with $x \in A \cap C$, so that $x \in A$ and $x \in C$. Since $C \subseteq B$ and $x \in C$, it follows that $x \in B$. Therefore $x \in A \cap B$, which contradicts the assumption that $A \cap B = \emptyset$.	Example : $\sqrt{2}$ is irrational. (A real number <i>x</i> is <i>rational</i> if there are two integers <i>m</i> and <i>n</i> so that $x = m/n$.) Proof : Suppose on the contrary $\sqrt{2}$ is rational. Then there are integers <i>m'</i> and <i>n'</i> with $\sqrt{2} = \frac{m'}{n'}$. By dividing both <i>m'</i> and <i>n'</i> by all the factors that are common to both, we obtain $\sqrt{2} = \frac{m}{n}$, for some integers <i>m</i> and <i>n</i> having no common factors. Since $\frac{m}{n} = \sqrt{2}$, we can have $m^2 = 2n^2$, therefore m^2 is even, and <i>m</i> is also even.

27/45

Proof by Contradiction (Cont.)

Let m = 2k. Therefore, $(2k)^2 = 2n^2$.

Simplifying this we obtain $2k^2 = n^2$, which means *n* is also a even number.

We have shown that *m* and *n* are both even numbers and divisible by 2. This contradicts the previous statement *m* and *n* have no common factors. Therefore, $\sqrt{2}$ is irrational.

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Proof: Let $n \in \mathbb{N}$. We can consider two cases: *n* is even and *n* is odd.

Case 1. *n* is even. Let n = 2k, where $k \in \mathbb{N}$. Then

$$3n^{2} + n + 14 = 3(2k)^{2} + 2k + 14$$

= $12k^{2} + 2k + 14$
= $2(6k^{2} + k + 7)$

Since $6k^2 + k + 7$ is an integer, $3n^2 + n + 14$ is even if *n* is even.

X033533-Algorithm@SJTU Xiaofeng Gao Slide01-Prologue 29/45	X033533-Algorithm@SJTU Xiaofeng Gao Slide01-Prologue 30/45
Set Function Relations Proof Definition Categories Peano Axioms Proof by Cases (Cont.)	Set Function Relations Proof Definition Categories Peano Axioms The Principle of Mathematical Induction
Case 2. <i>n</i> is odd. Let $n = 2k + 1$, where $k \in \mathbb{N}$. Then $3n^2 + n + 14 = 3(2k + 1)^2 + (2k + 1) + 14$ $= 3(4k^2 + 4k + 1) + (2k + 1) + 14$ $= 12k^2 + 12k + 3 + 2k + 1 + 14$ $= 12k^2 + 14k + 18$ $= 2(6k^2 + 7k + 9)$	 Suppose P(n) is a statement involving an integer n. Then to prove that P(n) is true for every n ≥ n₀, it is sufficient to show these two things: P(n₀) is true. For any k ≥ n₀, if P(k) is true, then P(k + 1) is true.
Since $6k^2 + 7k + 9$ is an integer, $3n^2 + n + 14$ is even if <i>n</i> is odd. Since in both cases $3n^2 + n + 14$ is even, it follows that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.	X033533-Algorithm@SJTU Xiaofeng Gao Slide01-Prologue 32/45

An Example for Mathematical Induction

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

Basis step. P(0) is 0 = 0(0+1)/2, and it is obviously true.

Induction Hypothesis. Assume P(k) is true for some $k \ge 0$. Then $0 + 1 + 2 + \cdots + k = k(k + 1)/2$.

Proof of Induction Step. Now let us prove that P(k + 1) is true.

 $0 + 1 + 2 + \dots + k + (k + 1) = k(k + 1)/2 + (k + 1)$ = (k + 1)(k/2 + 1)= (k + 1)(k + 2)/2

X033533-Algorithm@SJTU Xiaofeng Gao Slide01-Prologue X033533-Algorithm@SJTU Xiaofeng Gao Slide01-Prologue Categories Categories Proof Proof The Minimal Counterexample Principle An Example for Mathematical Induction (2) **Example:** Prove $\forall n \in \mathbb{N}, 5^n - 2^n$ is divisible by 3. **Proof of induction step.** Let's prove P(k + 1). **Proof:** If $P(n) = 5^n - 2^n$ is not true for every n > 0, then there are Since |x| = k + 1 and x = 0v1, |v1| = k. values of *n* for which P(n) is false, and there must be a smallest such value, say n = k. If y begins with 1 then x begins with the substring 01. If y begins with 0, then v1 begins with 0 and ends with 1; Since $P(0) = 5^0 - 2^0 = 0$, which is divisible by 3, we have k > 1, and $k - 1 \ge 0$. by the induction hypothesis, y contains the substring 01, therefore xdoes else. Since k is the smallest value for which P(k) false, P(k-1) is true. Thus $5^{k-1} - 2^{k-1}$ is a multiple of 3, say 3*i*.

An Example for Mathematical Induction (2)

Example: For any $x \in \{0, 1\}^*$, if *x* begins with 0 and ends with 1 (i.e., x = 0y1 for some string *y*), then *x* must contain the substring 01. (Note that * is the *Kleene star*. $\{0, 1\}^*$ means "every possible string consisted of 0 and 1, including the empty string".)

Proof: Consider the statement P(n): If |x| = n and x = 0y1 for some string $y \in \{0, 1\}^*$, then *x* contains the substring 01. If we can prove that P(n) is true for every $n \ge 2$, it will follow that the original statement is true. We prove it by induction.

Basis step. P(2) is true.

Induction hypothesis. P(k) for $k \ge 2$.

The Minimal Counterexample Principle (Cont.)

However, we have

$$5^{k} - 2^{k} = 5 \times 5^{k-1} - 2 \times 2^{k-1}$$

= 5 \times (5^{k-1} - 2^{k-1}) + 3 \times 2^{k-1}
= 5 \times 3i + 3 \times 2^{k-1}

This expression is divisible by 3. We have derived a contradiction, which allows us to conclude that our original assumption is false. \Box

An Example for the Weakness of Mathematical Induction

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "*n* is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Induction hypothesis. P(k) for $k \ge 2$. (as usual process)

Proof of induction step. Let's prove P(k + 1).

If P(k + 1) is prime, \checkmark If P(k + 1) is not a prime, then we should prove that $k + 1 = r \times s$, where *r* and *s* are positive integers greater than 1 and less than k + 1.

However, from P(k) we know nothing about r and $s \longrightarrow ???$

```
X033533-Algorithm@SJTU
                               Xiaofeng Gao
                                            Slide01-Prologue
                                                                                                 X033533-Algorithm@SJTU
                                                                                                                                Xiaofeng Gao
                                                                                                                                            Slide01-Prologue
                                                                                                                                                                                  38/45
                                                                                                                                             Categories
                                            Categories
                                    Proof
                                                                                                                                     Proof
The Strong Principle of Mathematical Induction
                                                                                                 To Complete the Example
                                                                                                     Example: Prove that \forall n \in \mathbb{N} with n \ge 2, it has prime factorizations.
                                                                                                     Continue the Proof:
    Suppose P(n) is a statement involving an integer n. Then to prove that
                                                                                                     Induction hypothesis. For k \ge 2 and 2 \le n \le k, P(n) is true. (Strong
    P(n) is true for every n \ge n_0, it is sufficient to show these two things:
                                                                                                    Principle)
      • P(n_0) is true.
                                                                                                     Proof of induction step. Let's prove P(k + 1).
      • For any k > n_0, if P(n) is true for every n satisfying n_0 < n < k,
                                                                                                    If P(k+1) is prime, \checkmark
         then P(k+1) is true.
                                                                                                    If P(k + 1) is not a prime, by definition of a prime, k + 1 = r \times s,
                                                                                                     where r and s are positive integers greater than 1 and less than k + 1.
    Also called the principle of complete induction, or course-of-values
    induction.
                                                                                                     It follows that 2 \le r \le k and 2 \le s \le k. Thus by induction
                                                                                                     hypothesis, both r and s are either prime or the product of two or more
                                                                                                     primes. Then their product k + 1 is the product of two or more
                                                                                                     primes. P(k+1) is true.
```


Giuseppe Peano (1858-1932)

- In 1889, Peano published the first set of axioms.
- Build a rigorous system of arithmetic, number theory, and algebra.
- A simple but solid foundation to construct the edifice of modern mathematics.
- The fifth axiom deserves special comment. It is the first formal statement of what we now call the "induction axiom" or "the principle of mathematical induction".

Peano Five Axioms

- Axiom 1. 0 is a number.
- Axiom 2. The successor of any number is a number.
- Axiom 3. If *a* and *b* are numbers and if their successors are equal, then *a* and *b* are equal.
- Axiom 4. 0 is not the successor of any number.
- Axiom 5. If *S* is a set of numbers containing 0 and if the successor of any number in *S* is also in *S*, then *S* contains all the numbers.

X033533-Algorithm@SJTU Xiaofeng Gao Slide01-Prologue 42/45	X033533-Algorithm@SJTU Xiaofeng Gao Slide01-Prologue 43/45
X033533-Algorithm@SJTUXiaofeng GaoSlide01-Prologue42/45Note: The section Relations ProofDefinition Categories Peano AxiomsDefinition Categories Peano AxiomsDefinition Categories DefinitionDefinition CategoriesDefinition CategoriesDefinition CategoriesDefinition CategoriesDefinition Definition Definition Definition Definition DefinitionDefin	X033533-Algorithm@SJTUXiaofeng GaoSlide01-Prologue43/45Function Relations ProofDefinition Categories Peano AxiomsProofDefinition Categories Peano AxiomsDefinition Categories Peano AxiomsDefinition Categories Definition Categories Peano AxiomsDefinition Categories Peano AxiomsDefinition Categories Definition CategoriesDefinition Categories Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition <br< th=""></br<>
Then $S(n)$ is true for all $n \in \mathbb{N}$.	Since n_0 is the smallest element of A , the statement $S(n_0 - 1)$ is true. Thus, by hypothesis (2), $S(n_0 - 1)$ is true which implies that $S(n_0)$ is true, a contradiction which implies that $A = \emptyset$.