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Basic Concepts
Set Operations

Definition

A set is an unordered collection of elements. → No duplications.

Examples and notations:

{a, b, c}
{x | x is an even integer} → {0, 2, 4, 6, · · · }
φ: empty set
N = {0, 1, 2, . . .}: natural numbers (nonnegative integers)
Z = {. . . ,−2,−1, 0, 1, 2, . . .}: integers
R: real numbers

E: even numbers

O: odd numbers
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Definition (2)

Cardinality of a set: |S| → number of distinct elements

Set Equality: S = T → x ∈ S iff x ∈ T
Subset: A set S is a subset of T , S ⊆ T , if every element of S is
an element of T

Proper subset: a subset of T is a subset other than the empty set ∅
or T itself (Use of word proper, proper subsequence or proper

substring)

Strict Subset: S is a strict subset, S ⊂ T , if not equal to T
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∪, ∩,→, S

Union: S ∪ T → the set of elements that are either in S or in T .

S ∪ T = {s|s ∈ S or s ∈ T}
{a, b, c} ∪ {c, d, e} = {a, b, c, d, e}
|S ∪ T| ≤ |S|+ |T|

Intersection: S ∩ T
S ∩ T = {s | s ∈ S and s ∈ T}
{a, b, c} ∩ {c, d, e} = {c}

Difference: S− T → set of all elements in S not in T

S− T = {s | s ∈ S but not in T} = S ∩ T
{1, 2, 3} − {1, 4, 5} = {2, 3}

Complement:

Need universal set U

S = {s | s ∈ U but not in S}
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×, 2S

Cartesian Product

S× T = {(s, t) | s ∈ S, t ∈ T}
In a graph G = (V,E), the edge set E is the subset of Cartesian

product of vertex set V . E ⊆ V × V .
Power Set

2S set of all subsets of S

Note: notation |2S| = 2|S|, meaning 2S is a good representation

for power set.

S = {a, b, c}, then
2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
Indicator Vector: We can use a zero/one vector to represent the

elements in power set. a b c

∅ 0 0 0

{a} 1 0 0

{b} 0 1 0

{a, b, c} 1 1 1
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Ordered Pair

(x, y): ordered pair of elements x and y; (x, y) 6= (y, x).

(x1, · · · , xn): ordered n-tuple → boldfaced x.

A1 × A2 × · · · × An = {(x1, · · · , xn) | x1 ∈ A1, · · · , xn ∈ An}.
A× A× · · · × A = An.

A1 = A.
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Definition

f is a set of ordered pairs s.t. if (x, y) ∈ f and (x, z) ∈ f , then
y = z, and f (x) = y.

Dom(f ): Domain of f , {x | f (x) is defined}.
f (x) is undefined if x 6∈ Dom(f ).
Ran(f ): Range of f , {f (x) | x ∈ Dom(f )}.
f is a function from A to B: Dom(f ) ⊆ A and Ran(f ) ⊆ B.
f : A→ B: f is a function from A to B with Dom(f ) = A.

X033533-Algorithm@SJTU Xiaofeng Gao Slide01-Prologue 11/45



Set
Function
Relations

Proof

Basic Concepts
Functions of Natural Numbers

Mapping and Operation

Injective (one-to-one): if x, y ∈ Dom(f ), x 6= y, then f (x) 6= f (y).
Inverse f−1: the unique function g s.t. Dom(g) = Ran(f ), and
g(f (x)) = x.

Surjective (onto): if Ran(f ) = B.

Bijective: both injective and surjective.

Composition: f ◦ g, domain {x | x ∈ Dom(g) ∧ g(x) ∈ Dom(f )},
value f (g(x)).
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Polynomial

A polynomial p is an expression of finite length constructed from

variables and constants, using only the operations of addition,

subtraction, multiplication, and non-negative integer exponents.

4x2y+ 3x− 5 is a polynomial.

−6y2 − 7
9
x is a polynomial.

1
x
+ x

3
4 is not a polynomial.

3xy−2 is not a polynomial.
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Relation

If A is a set, a property M(x1, · · · , xn) that holds for some n-tuple
from An and does not hold for all other n-tuples from An is called an

n-ary relation or predicate on A.

Property x < y. 2 < 5, 6 < 4.

f from N
n to N gives rise to predicate M(x, y) by:

M(x1, · · · , xn, y) iff f (x1, · · · , xn) ≃ y.
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Equivalence Relation

A binary relation R on A is called equivalence relation if

reflexivity ∀x in A R(x, x)
symmetry R(x, y) ⇒ R(y, x)
transitivity R(x, y),R(y, z) ⇒ R(x, z)







equivalence

A binary relation R on A is called a partial order if

irreflexivity not R(x, x)
transitivity R(x, y),R(y, z) ⇒ R(x, z)

}

partial order
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Example

reflexive symmetric transitive

< No No Yes

≤ Yes No Yes

Parent of No No No

= Yes Yes Yes
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Hand Writing

Small letters for elements and functions.

a, b, c for elements,

f , g for functions,

i, j, k for integer indices,

x, y, z for variables,

Capital letters for sets. A, B, S. A = {a1, · · · , an}
Bold small letters for vectors. x, y. v = {v1, · · · , vm}
Bold capital letters for collections. A, B. S = {S1, · · · , Sn}
Blackboard bold capitals for domains (standard symbols). N, R,

Z.

German script for collection of functions. C , S , T .

Greek letters for parameters or coefficients. α, β, γ.

Double strike handwriting for bold letters.
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What is proof?

A proof of a statement is essentially a convincing argument that the

statement is true. A typical step in a proof is to derive statements from

assumptions or hypotheses.

statements that have already been derived.

other generally accepted facts, using general principles of logical

reasoning.
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Types of Proof

Proof by Construction

Proof by Contrapositive

Proof by Contradiction

Proof by Counterexample

Proof by Cases

Proof by Mathematical Induction

The Principle of Mathematical Induction

Minimal Counterexample Principle

The Strong Principle of Mathematical Induction
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Proof by Construction (∀x, P(x) holds)

Example: For any integers a and b, if a and b are odd, then ab is odd.

Proof: Since a and b are odd, there exist integers x and y such that

a = 2x+ 1, b = 2y+ 1. We wish to show that there is an integer z so

that ab = 2z+ 1. Let us therefore consider ab.

ab = (2x+ 1)(2y + 1)

= 4xy+ 2x+ 2y+ 1

= 2(2xy + x+ y) + 1

Thus if we let z = 2xy+ x+ y, then ab = 2z+ 1, which implies that

ab is odd. 2
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Proof by Contrapositive (p→ q⇔ ¬q→ ¬p)

Example: ∀i, j, n ∈ N, if i× j = n, then either i ≤ √
n or j ≤ √

n.

Proof: We change this statement by its logically equivalence:

∀i, j, n ∈ N, if it is not the case that i ≤ √
n or j ≤ √

n, then i× j 6= n.
If it is not true that i ≤ √

n or j ≤ √
n, then i >

√
n and j >

√
n.

Since j >
√
n ≥ 0, we have

i >
√
n⇒ i× j > √

n× j > √
n×√

n = n.

It follows that i× j 6= n. The original statement is true. 2
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Proof by Contradiction (p is true⇔¬p→ false is true)

Example: For any sets A, B, and C, if A ∩ B = ∅ and C ⊆ B, then
A ∩ C = ∅.

Proof: Assume A ∩ B = ∅, C ⊆ B, and A ∩ C 6= ∅.
Then there exists x with x ∈ A ∩ C, so that x ∈ A and x ∈ C.
Since C ⊆ B and x ∈ C, it follows that x ∈ B.
Therefore x ∈ A ∩ B, which contradicts the assumption that
A ∩ B = ∅. 2
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Proof by Contradiction (2)

Example:
√
2 is irrational. (A real number x is rational if there are

two integers m and n so that x = m/n.)

Proof: Suppose on the contrary
√
2 is rational.

Then there are integers m′ and n′ with
√
2 = m′

n′
.

By dividing both m′ and n′ by all the factors that are common to both,

we obtain
√
2 = m

n
, for some integers m and n having no common

factors.

Since m
n
=

√
2, we can have m2 = 2n2, therefore m2 is even, and m is

also even.
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Proof by Contradiction (Cont.)

Let m = 2k. Therefore, (2k)2 = 2n2.

Simplifying this we obtain 2k2 = n2, which means n is also a even
number.

We have shown that m and n are both even numbers and divisible by

2. This contradicts the previous statement m and n have no common

factors. Therefore,
√
2 is irrational. 2
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Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if n ∈ N, then 3n2 + n+ 14 is even.

Proof: Let n ∈ N. We can consider two cases: n is even and n is odd.

Case 1. n is even. Let n = 2k, where k ∈ N. Then

3n2 + n+ 14 = 3(2k)2 + 2k + 14

= 12k2 + 2k + 14

= 2(6k2 + k + 7)

Since 6k2 + k + 7 is an integer, 3n2 + n+ 14 is even if n is even.
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Proof by Cases (Cont.)

Case 2. n is odd. Let n = 2k + 1, where k ∈ N. Then

3n2 + n+ 14 = 3(2k + 1)2 + (2k + 1) + 14

= 3(4k2 + 4k + 1) + (2k + 1) + 14

= 12k2 + 12k + 3+ 2k + 1+ 14

= 12k2 + 14k + 18

= 2(6k2 + 7k + 9)

Since 6k2 + 7k + 9 is an integer, 3n2 + n+ 14 is even if n is odd.

Since in both cases 3n2 + n+ 14 is even, it follows that if n ∈ N, then

3n2 + n+ 14 is even. 2
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The Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer n. Then to prove that
P(n) is true for every n ≥ n0, it is sufficient to show these two things:

P(n0) is true.

For any k ≥ n0, if P(k) is true, then P(k + 1) is true.
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An Example for Mathematical Induction

Example: Let P(n) be the statement
∑n
i=0 i = n(n + 1)/2. Prove that

P(n) is true for every n ≥ 0.

Proof: We prove P(n) is true for n ≥ 0 by induction.

Basis step. P(0) is 0 = 0(0+ 1)/2, and it is obviously true.

Induction Hypothesis. Assume P(k) is true for some k ≥ 0. Then

0+ 1+ 2+ · · ·+ k = k(k + 1)/2.

Proof of Induction Step. Now let us prove that P(k + 1) is true.

0+ 1+ 2+ · · ·+ k + (k + 1) = k(k + 1)/2 + (k + 1)

= (k + 1)(k/2 + 1)

= (k + 1)(k + 2)/2 2
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An Example for Mathematical Induction (2)

Example: For any x ∈ {0, 1}∗, if x begins with 0 and ends with 1
(i.e., x = 0y1 for some string y), then x must contain the substring 01.

(Note that ∗ is the Kleene star. {0, 1}∗ means “every possible string
consisted of 0 and 1, including the empty string".)

Proof: Consider the statement P(n): If |x| = n and x = 0y1 for some

string y ∈ {0, 1}∗, then x contains the substring 01. If we can prove
that P(n) is true for every n ≥ 2, it will follow that the original

statement is true. We prove it by induction.

Basis step. P(2) is true.

Induction hypothesis. P(k) for k ≥ 2.
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An Example for Mathematical Induction (2)

Proof of induction step. Let’s prove P(k + 1).

Since |x| = k + 1 and x = 0y1, |y1| = k.
If y begins with 1 then x begins with the substring 01. If y begins with

0, then y1 begins with 0 and ends with 1;

by the induction hypothesis, y contains the substring 01, therefore x

does else. 2
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The Minimal Counterexample Principle

Example: Prove ∀n ∈ N, 5n − 2n is divisible by 3.

Proof: If P(n) = 5n − 2n is not true for every n ≥ 0, then there are

values of n for which P(n) is false, and there must be a smallest such
value, say n = k.

Since P(0) = 50 − 20 = 0, which is divisible by 3, we have k ≥ 1,

and k − 1 ≥ 0.

Since k is the smallest value for which P(k) false, P(k − 1) is true.
Thus 5k−1 − 2k−1 is a multiple of 3, say 3j.

X033533-Algorithm@SJTU Xiaofeng Gao Slide01-Prologue 36/45



Set
Function
Relations

Proof

Definition
Categories
Peano Axioms

The Minimal Counterexample Principle (Cont.)

However, we have

5k − 2k = 5× 5k−1 − 2× 2k−1

= 5× (5k−1 − 2k−1) + 3× 2k−1

= 5× 3j+ 3× 2k−1

This expression is divisible by 3. We have derived a contradiction,

which allows us to conclude that our original assumption is false. 2
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An Example for the Weakness of Mathematical Induction

Example: Prove that ∀n ∈ N with n ≥ 2, it has prime factorizations.

Proof: Define P(n) be the statement that “n is either prime or the
product of two or more primes”. We will try to prove that P(n) is true
for every n ≥ 2.

Basis step. P(2) is true, since 2 is a prime. X

Induction hypothesis. P(k) for k ≥ 2. (as usual process)

Proof of induction step. Let’s prove P(k + 1).

If P(k + 1) is prime, X
If P(k + 1) is not a prime, then we should prove that k + 1 = r × s,
where r and s are positive integers greater than 1 and less than k + 1.

However, from P(k) we know nothing about r and s −→ ???
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The Strong Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer n. Then to prove that
P(n) is true for every n ≥ n0, it is sufficient to show these two things:

P(n0) is true.

For any k ≥ n0, if P(n) is true for every n satisfying n0 ≤ n ≤ k,
then P(k + 1) is true.

Also called the principle of complete induction, or course-of-values

induction.
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To Complete the Example

Example: Prove that ∀n ∈ N with n ≥ 2, it has prime factorizations.

Continue the Proof:

Induction hypothesis. For k ≥ 2 and 2 ≤ n ≤ k, P(n) is true. (Strong
Principle)

Proof of induction step. Let’s prove P(k + 1).

If P(k + 1) is prime, X
If P(k + 1) is not a prime, by definition of a prime, k + 1 = r × s,
where r and s are positive integers greater than 1 and less than k + 1.

It follows that 2 ≤ r ≤ k and 2 ≤ s ≤ k. Thus by induction
hypothesis, both r and s are either prime or the product of two or more

primes. Then their product k + 1 is the product of two or more

primes. P(k + 1) is true.
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Giuseppe Peano (1858-1932)

In 1889, Peano published the first set of axioms.

Build a rigorous system of arithmetic, number theory, and

algebra.

A simple but solid foundation to construct the edifice of modern

mathematics.

The fifth axiom deserves special comment. It is the first formal

statement of what we now call the “induction axiom" or “the

principle of mathematical induction".
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Peano Five Axioms

Axiom 1. 0 is a number.

Axiom 2. The successor of any number is a number.

Axiom 3. If a and b are numbers and if their successors are

equal, then a and b are equal.

Axiom 4. 0 is not the successor of any number.

Axiom 5. If S is a set of numbers containing 0 and if the

successor of any number in S is also in S, then S contains all the

numbers.
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Peano Axioms vs Theorem of Mathematical Induction

Let S(n) be a statement about n ∈ N. Suppose

1 S(1) is true, and

2 S(t + 1) is true whenever S(t) is true for t ≥ 1.

Then S(n) is true for all n ∈ N.
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Proof

Let A = {n ∈ N | S(n) is false}. It suffices to show that A = ∅.

If A 6= ∅, A would contain a smallest positive integer, say n0 ∈ N,

s.t.n0 ≤ n, n ∈ A.

Thus, the statement S(n0) is false and because of hypothesis (1),
n0 > 1.

Since n0 is the smallest element of A, the statement S(n0 − 1) is true.
Thus, by hypothesis (2), S(n0 − 1) is true which implies that S(n0) is
true, a contradiction which implies that A = ∅. �
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