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Basic Concepts

Definition

@ A set is an unordered collection of elements. — No duplications.

@ Examples and notations:
o {a,b,c}
o {x|xisaneven integer} — {0,2,4,6,---}
¢: empty set
N ={0,1,2,...}: natural numbers (nonnegative integers)
Z={...,-2,—-1,0,1,2,...}: integers
R: real numbers
E: even numbers
O: odd numbers

© ¢ ¢ ¢ ¢ ¢

Basic Concepts

Definition (2)

@ Cardinality of a set: |S| — number of distinct elements
o Set Equality: S=T —-xe Sifftxe T

@ Subset: A setSisasubsetof 7,5 C T, if every element of S is
an element of T

@ Proper subset: a subset of T is a subset other than the empty set ()
or T itself (Use of word proper, proper subsequence or proper
substring)

@ Strict Subset: S is a strict subset, S C 7, if not equal to 7
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Set Operations

Set Operations

@ Union: SU T — the set of elements that are either in S or in 7.

e SUT={slsecSorseT}
o {a,b,c}U{c,d,e} ={a,b,c,d, e}
o |SUT| < |S|+ T
@ Intersection: SN T
o SNT={s|seSands e T}
o {a,b,c} N{c,d,e} = {c}
@ Difference: S — T' — set of all elements in S not in 7'
o S—T={s|seSbutnotinT} =SNT
o {1,2,3} —{1,4,5} ={2,3}
@ Complement:

° I_\Ieed universal set U
o §S={s|se UbutnotinS}
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@ Cartesian Product
o SxT={(s,t)|s€S,teT}
@ Inagraph G = (V,E), the edge set E is the subset of Cartesian
product of vertex set V. E C V' x V.
@ Power Set
o 25 set of all subsets of S
o Note: notation |25| = 2/5I, meaning 25 is a good representation
for power set.
o S={a,b,c},then
25 = {0, {a}, {b}, {c}. {a. b} {a,c}. {b.c}, {a, b, c}}

@ Indicator Vector: We can use a zero/one vector to represent the

elements in power set. | a b c
0 0 0 O

{a} 1 0 0

{b} 0 1 0

{a,b,c} |1 1 1
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Set Operations

Ordered Pair

Function Basic Concepts

Definition

@ (x,y): ordered pair of elements x and y; (x,y) # (v, x).

® (xy,--- ,x,): ordered n-tuple — boldfaced x.

@ Ay X Ay X -+ X Ay ={(x1, -+ ,x5) | X1 €A1y , %y € Ap}.
@ AXAxX--xA=A4"

o Al =4.
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@ f'is a set of ordered pairs s.t. if (x,y) € fand (x,z) € f, then
y=z,and f(x) = y.

@ Dom(f): Domain of f, {x | f(x) is defined}.

@ f(x) is undefined if x & Dom(f).

@ Ran(f): Range of f, {f(x) | x € Dom(f)}.

@ f'is a function from 4 to B: Dom(f) C A and Ran(f) C B.

@ f: A — B: fis a function from 4 to B with Dom(f) = A.
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Function Basic Concepts

Function
Functions of Natural Numbers

Mapping and Operation

@ Injective (one-to-one): if x,y € Dom(f), x # y, then f(x) # f ().

@ Inverse /~': the unique function g s.t. Dom(g) = Ran(f), and
g(f(x)) = x.

@ Surjective (onto): if Ran(f) = B.

@ Bijective: both injective and surjective.

@ Composition: f o g, domain {x | x € Dom(g) A g(x) € Dom(f)},
value f(g(x)).
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Polynomial

A polynomial p is an expression of finite length constructed from
variables and constants, using only the operations of addition,
subtraction, multiplication, and non-negative integer exponents.

@ 4x%y 4 3x — 5 is a polynomial.
° —6)? — %x is a polynomial.
° )l—c 4 xtisnota polynomial.

@ 3xy~2 is not a polynomial.
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Basic Concepts
REELN

Basic Concepts
REELIN

Equivalence Relation

If A is a set, a property M(xi, - - - ,x,) that holds for some n-tuple
from A" and does not hold for all other n-tuples from A” is called an
n-ary relation or predicate on A.

@ Property x < y.2 < 5,6 < 4.

o f from N” to N gives rise to predicate M(x,y) by:
M(X], o 7xl17y) ifff(x17 o 7xn) =)
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@ A binary relation R on 4 is called equivalence relation if

reflexivity Vx in 4 R(x,x)
symmetry  R(x,y) = R(y,x) equivalence
transitivity R(x,y),R(y,z) = R(x,z)

@ A binary relation R on 4 is called a partial order if

irreflexivity not R(x, x)

transitivity R(x,y),R(y,z) = R(x,z) } partial order
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Basic Concepts
Relations Relations Logical Notation

Example Hand Writing

@ Small letters for elements and functions.
@ a, b, c for elements,
e f, g for functions,
@ i,J, k for integer indices,

‘ reflexive symmetric transitive @ x,, z for variables,
< ‘ No No Yes @ Capital letters for sets. 4, B, S. A = {ay,--- ,a,}
< Yes No Yes @ Bold small letters for vectors. X, y. v={vy, - ,v,}
Parent of No No No ) )
_ Yes Yes Yes @ Bold capital letters for collections. A, B. S = {S},---,S,}
@ Blackboard bold capitals for domains (standard symbols). N, R,

Z.
@ German script for collection of functions. ¢, .7, 7.
@ Greek letters for parameters or coefficients. «, 3, 7.

@ Double strike handwriting for bold letters.
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Definition
Categories

Proof Proof

What is proof? Types of Proof

. . . @ Proof by Construction
A proof of a statement is essentially a convincing argument that the

) . . . . @ Proof by Contrapositive
statement is true. A typical step in a proof is to derive statements from

@ Proof by Contradiction

@ assumptions or hypotheses. @ Proof by Counterexample

@ statements that have already been derived. @ Proof by Cases

@ other generally accepted facts, using general principles of logical @ Proof by Mathematical Induction
reasoning. @ The Principle of Mathematical Induction

@ Minimal Counterexample Principle
@ The Strong Principle of Mathematical Induction
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Categories

Proof

Proof by Construction (Vx, P(x) holds)

Example: For any integers a and b, if @ and b are odd, then ab is odd.

Proof: Since a and b are odd, there exist integers x and y such that
a=2x+1,b=2y+ 1. We wish to show that there is an integer z so
that ab = 2z + 1. Let us therefore consider ab.

ab = (2x+1)2y+1)
dxy +2x+ 2y + 1
= 2(2xy+x+y)+1

Thus if we let z = 2xy + x 4y, then ab = 2z + 1, which implies that
ab is odd. O
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Categories

Proof

Proof by Contrapositive (p — g < —g — —p)

Example: Vi,j,n € N, ifi x j = n, then either i < \/norj < /n.

Proof: We change this statement by its logically equivalence:
Vi,j,n € N, if it is not the case that i < \/n orj < /n, theni X j # n.

If it is not true that i < y/n orj < \/n, theni > y/nandj > \/n.

Since j > /n > 0, we have

i>\Vn=1ixj>\/nxj>nxn=n.

It follows that i x j # n. The original statement is true. O

X033533-Algorithm@SJITU Xiaofeng Gao Slide01-Prologue

Categories

Proof

Proof by Contradiction (p is true < —p — false is true)

Example: For any sets 4, B, and C,if A N B = () and C C B, then
ANC=1.

Proof: Assume ANB=0,C C B,and AN C # 0.
Then there exists x withx € AN C,sothatx € 4 and x € C.

Since C C B and x € C, it follows that x € B.

Therefore x € A N B, which contradicts the assumption that
ANB=10. O
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Categories

Proof

Proof by Contradiction (2)

Example: /2 is irrational. (A real number x is rational if there are
two integers m and n so that x = m/n.)

Proof: Suppose on the contrary v/2 is rational.
Then there are integers m’ and n’ with v/2 = ’;—,l

By dividing both m’ and »’ by all the factors that are common to both,
we obtain /2 = °1, for some integers m and n having no common
factors.

2

Since 7 = V2, we can have m? = 2n?, therefore m? is even, and m is

also even.
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Categories

Proof

Proof by Contradiction (Cont.)

Categories

Proof

Proof by Cases (Divide domain into distinct subsets)

Let m = 2k. Therefore, (2k)? = 2n°.

Simplifying this we obtain 2k> = n?, which means 7 is also a even
number.

We have shown that m and n are both even numbers and divisible by
2. This contradicts the previous statement m and » have no common
factors. Therefore, /2 is irrational. O
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Example: Prove that if n € N, then 3n% + 1 + 14 is even.

Proof: Let n € N. We can consider two cases: 7 is even and » is odd.

Case 1. nis even. Let n = 2k, where k € N. Then

3 +n+14 = 3(2k)* +2k+ 14
= 12K +2k+ 14
2(6k* +k+7)

Since 6k? + k + 7 is an integer, 3n> 4 n + 14 is even if n is even.
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Categories

Proof

Proof by Cases (Cont.)

Categories

Proof

The Principle of Mathematical Induction

Case 2. nisodd. Let n = 2k + 1, where £ € N. Then

3 +n+14 = 32k+ 12+ (2k+1)+ 14
= 34> +dk+1)+ 2k + 1)+ 14
= 12K* + 12k +3+2k+ 1+ 14
= 12k + 14k + 18
= 2(6k* + 7k +9)

Since 6k> 4+ 7k 4 9 is an integer, 3n> + n + 14 is even if n is odd.

Since in both cases 3n% + n + 14 is even, it follows that if n € N, then
3n® + n + 14 is even. O
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Suppose P(n) is a statement involving an integer n. Then to prove that
P(n) is true for every n > ny, it is sufficient to show these two things:

@ P(ny) is true.
@ For any k > ny, if P(k) is true, then P(k + 1) is true.
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Categories

Proof

An Example for Mathematical Induction

Example: Let P(n) be the statement Y i = n(n + 1)/2. Prove that
P(n) is true for every n > 0.

Proof: We prove P(n) is true for n > 0 by induction.
Basis step. P(0) is 0 = 0(0 + 1)/2, and it is obviously true.

Induction Hypothesis. Assume P(k) is true for some £ > 0. Then
O+1+2+4---+hk=k(k+1)/2.

Proof of Induction Step. Now let us prove that P(k + 1) is true.

O+1 42+ - +hk+(k+1) = k(k+1)/2+(k+1)
1)(k/2+1)
D(k+2)/2 O

— (k+
(k +

33-Algorithm@SJTU Xia Ga Slide01-Prologue

Categories

Proof

An Example for Mathematical Induction (2)

Example: For any x € {0, 1}*, if x begins with 0 and ends with 1
(i.e., x = Oyl for some string y), then x must contain the substring 01.
(Note that * is the Kleene star. {0, 1}* means “every possible string
consisted of 0 and 1, including the empty string".)

Proof: Consider the statement P(n): If |x| = n and x = Oyl for some
string y € {0, 1}*, then x contains the substring 01. If we can prove
that P(n) is true for every n > 2, it will follow that the original
statement is true. We prove it by induction.

Basis step. P(2) is true.
Induction hypothesis. P(k) for k > 2.
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Categories

Proof

An Example for Mathematical Induction (2)

Proof of induction step. Let’s prove P(k + 1).
Since |x| = k+ L and x = Oyl, [y1| = k.

If y begins with 1 then x begins with the substring 01. If y begins with
0, then y1 begins with 0 and ends with 1;

by the induction hypothesis, y contains the substring 01, therefore x
does else. O
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Categories

Proof

The Minimal Counterexample Principle

Example: Prove Vn € N, 5" — 2" is divisible by 3.

Proof: If P(n) = 5" — 2" is not true for every n > 0, then there are
values of n for which P(n) is false, and there must be a smallest such
value, say n = k.

Since P(0) = 5% — 29 = 0, which is divisible by 3, we have k > 1,
andk—1>0.

Since & is the smallest value for which P(k) false, P(k — 1) is true.
Thus 551 — 2= is a multiple of 3, say 3;.
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Categories

Proof

The Minimal Counterexample Principle (Cont.)

Categories

Proof

An Example for the Weakness of Mathematical Induction

However, we have

sF—2F = sx st o2 x okt
5x (5571 =2y 43 2k!
= 5x3j+3x2:1

This expression is divisible by 3. We have derived a contradiction,
which allows us to conclude that our original assumption is false. O
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Example: Prove that Vi € N with n > 2, it has prime factorizations.

Proof: Define P(n) be the statement that “n is either prime or the
product of two or more primes”. We will try to prove that P(n) is true
for every n > 2.

Basis step. P(2) is true, since 2 is a prime. v’
Induction hypothesis. P(k) for £ > 2. (as usual process)
Proof of induction step. Let’s prove P(k + 1).

If P(k + 1) is prime, v/
If P(k + 1) is not a prime, then we should prove that k + 1 = r X s,
where 7 and s are positive integers greater than 1 and less than & + 1.

However, from P(k) we know nothing about » and s — ???
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Categories

Proof

Categories

Proof

The Strong Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer n. Then to prove that
P(n) is true for every n > ny, it is sufficient to show these two things:
@ P(np) is true.
@ For any k > ny, if P(n) is true for every n satisfying ng < n <k,
then P(k + 1) is true.

Also called the principle of complete induction, or course-of-values
induction.
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To Complete the Example

Example: Prove that Va € N with n > 2, it has prime factorizations.

Continue the Proof:

Induction hypothesis. For £ > 2 and 2 < n < k, P(n) is true. (Strong
Principle)

Proof of induction step. Let’s prove P(k + 1).

If P(k+ 1) is prime, v/

If P(k + 1) is not a prime, by definition of a prime, k + 1 = r X s,

where 7 and s are positive integers greater than 1 and less than & + 1.

It follows that 2 < » < kand 2 < s < k. Thus by induction
hypothesis, both 7 and s are either prime or the product of two or more
primes. Then their product k£ + 1 is the product of two or more
primes. P(k + 1) is true.
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e Peano Axioms
Proof

Giuseppe Peano (1858-1932)

- Peano Axioms
Proof

Peano Five Axioms

@ In 1889, Peano published the first set of axioms.

@ Build a rigorous system of arithmetic, number theory, and
algebra.

@ A simple but solid foundation to construct the edifice of modern
mathematics.

@ The fifth axiom deserves special comment. It is the first formal
statement of what we now call the “induction axiom" or “the
principle of mathematical induction".
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@ Axiom 1. 0 is a number.
@ Axiom 2. The successor of any number is a number.

@ Axiom 3. If g and b are numbers and if their successors are
equal, then a and b are equal.

@ Axiom 4. 0 is not the successor of any number.

@ Axiom 5. If S'is a set of numbers containing 0 and if the
successor of any number in S is also in S, then S contains all the
numbers.
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S Peano Axioms
Proof

Peano Axioms vs Theorem of Mathematical Induction

S Peano Axioms
Proof

Let S(n) be a statement about n € N. Suppose

Q@ S(1) is true, and

© S(z + 1) is true whenever S(¢) is true for ¢ > 1.
Then S(n) is true for all n € N.
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Let A = {n € N | S(n) is false}. It suffices to show that 4 = ().

If A # (), A would contain a smallest positive integer, say ny € N,
s.tng < nm,n € A.

Thus, the statement S(n) is false and because of hypothesis (1),
no > 1.

Since ny is the smallest element of 4, the statement S(ng — 1) is true.
Thus, by hypothesis (2), S(np — 1) is true which implies that S(ng) is
true, a contradiction which implies that 4 = (). O
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