

Set Function Relations ProofBasic Concepts Functions of Natural Numbers

Polynomial

^A polynomial *^p* is an expression of finite length constructed fromvariables and constants, using only the operations of addition, subtraction, multiplication, and non-negative integer exponents.

- $4x^2y + 3x 5$ is a polynomial.
- $-6y^2 \frac{7}{9}x$ is a polynomial.
- $\frac{1}{x} + x^{\frac{3}{4}}$ is not a polynomial.
- \bullet 3*xy*⁻² is not a polynomial.

f from \mathbb{N}^n to \mathbb{N} gives rise to predicate $M(\mathbf{x}, y)$ by: $M(x_1, \dots, x_n, y)$ iff $f(x_1, \dots, x_n) \simeq y$.

 FunctionRelationsProof

 \bullet Injective (one-to-one): if *x*, *y* ∈ *Dom*(*f*), *x* \neq *y*, then *f*(*x*) \neq *f*(*y*).

Inverse f^{-1} : the unique function *g* s.t. $Dom(g) = Ran(f)$, and

Composition: $f \circ g$, domain $\{x \mid x \in Dom(g) \land g(x) \in Dom(f)\},$

Mapping and Operation

 $g(f(x)) = x$.

value $f(g(x))$.

 \bullet Surjective (onto): if $Ran(f) = B$.

• Bijective: both injective and surjective.

Basic Concepts

R(*x*, *y*), *R*(*y*, *z*) \Rightarrow *R*(*x*, *z*) $\Big\}$ partial order

irreflexivity not $R(x, x)$

transitivity

Set Function Relations ProofBasic Concepts

Example

Function Relations ProofBasic Concepts Logical Notation

Hand Writing

- Small letters for elements and functions.
	- a, b, c for elements,
	- *f* , *g* for functions,
	- i, j, k for integer indices,
	- *x*, *y*, *^z* for variables,
- Capital letters for sets. *A*, *B*, *S*. *A* = { a_1 , · · · · *, a_n*}
- Bold small letters for vectors. **x**, **y**. **v** = $\{v_1, \dots, v_m\}$
- Bold capital letters for collections. **A**, **B**. $S = \{S_1, \dots, S_n\}$
- \bullet Blackboard bold capitals for domains (standard symbols). N, R, Z.
- German script for collection of functions. $\mathscr{C}, \mathscr{S}, \mathscr{T}$.
- \bullet Greek letters for parameters or coefficients. α , β , γ .
- Double strike handwriting for bold letters.

A proo^f of ^a statement is essentially ^a convincing argumen^t that the statement is true. ^A typical step in ^a proo^f is to derive statements from

- assumptions or hypotheses.
- statements that have already been derived.
- other generally accepted facts, using genera^l principles of logical reasoning.
- Proof by Construction
- Proof by Contrapositive
	- Proof by Contradiction
	- Proof by Counterexample
- Proof by Cases
- Proof by Mathematical Induction
	- The Principle of Mathematical Induction
	- Minimal Counterexample Principle
	- The Strong Principle of Mathematical Induction

Proof by Construction (∀*^x*, *^P*(*x*) holds)

Example: For any integers *^a* and *^b*, if *^a* and *^b* are odd, then *ab* is odd.

Proof: Since *^a* and *^b* are odd, there exist integers *^x* and *^y* such that $a = 2x + 1$, $b = 2y + 1$. We wish to show that there is an integer *z* so that $ab = 2z + 1$. Let us therefore consider *ab*.

> $ab = (2x+1)(2y+1)$ $= 4xy + 2x + 2y + 1$ $= 2(2xy + x + y) + 1$

Thus if we let $z = 2xy + x + y$, then $ab = 2z + 1$, which implies that ab is odd *ab* is odd. b is odd. \Box

X033533-Algorithm@SJTU Xiaofeng Gao Slide01-Prologue 25/45

DefinitionCategories

SetFunctionRelationsProof

Proof by Contradiction (*p* is true $\Leftrightarrow \neg p \rightarrow false$ is true)

SetFunctionRelationsProofDefinitionCategories

Proof by Contrapositive $(p \to q \Leftrightarrow \neg q \to \neg p)$

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$.

Proof: We change this statement by its logically equivalence: $\forall i, j, n \in \mathbb{N}$, if it is not the case that *i* ≤ \sqrt{n} or *j* ≤ \sqrt{n} , then *i* × *j* ≠ *n*. If it is not true that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i > \sqrt{n}$ and $j > \sqrt{n}$. Since $j > \sqrt{n} \ge 0$, we have

$$
i > \sqrt{n} \Rightarrow i \times j > \sqrt{n} \times j > \sqrt{n} \times \sqrt{n} = n.
$$

X033533-Algorithm@SJTU Xiaofeng Gao Slide01-Prologue 26/45

DefinitionCategories

Set FunctionRelations

It follows that $i \times j \neq n$. The original statement is true. \Box

Example: For any sets *A*, *B*, and *C*, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Then there exists *x* with $x \in A \cap C$, so that $x \in A$ and $x \in C$.

Since $C \subseteq B$ and $x \in C$, it follows that $x \in B$.

Therefore $x \in A \cap B$, which contradicts the assumption that $A \cap B =$ $=\emptyset$.

Example: $\sqrt{2}$ is irrational. (A real number *x* is *rational* if there are two integers *m* and *n* so that $x = m/n$.)

Proof: Suppose on the contrary $\sqrt{2}$ is rational.

Then there are integers *m'* and *n'* with $\sqrt{2} = \frac{m'}{n'}$.

By dividing both *^m*′ and *ⁿ*′ by all the factors that are common to both, we obtain $\sqrt{2} = \frac{m}{n}$, for some integers *m* and *n* having no common factors.

Since $\frac{m}{n} = \sqrt{2}$, we can have $m^2 = 2n^2$, therefore m^2 is even, and *m* is also even.

Proof by Contradiction (Cont.)

Let *m* = 2*k*. Therefore, $(2k)^{2} = 2n^{2}$.

Simplifying this we obtain $2k^2 = n^2$, which means *n* is also a even number.

We have shown that *m* and *n* are both even numbers and divisible by 2. This contradicts the previous statement *m* and *n* have no common factors. Therefore $\sqrt{2}$ is irrational factors. Therefore, $\sqrt{2}$ is irrational.

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Proof: Let *ⁿ* [∈] ^N. We can consider two cases: *ⁿ* is even and *ⁿ* is odd.

Case 1. *n* is even. Let $n = 2k$, where $k \in \mathbb{N}$. Then

$$
3n2 + n + 14 = 3(2k)2 + 2k + 14
$$

= 12k² + 2k + 14
= 2(6k² + k + 7)

Since $6k^2 + k + 7$ is an integer, $3n^2 + n + 14$ is even if *n* is even.

An Example for Mathematical Induction

Example: Let $P(n)$ be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that *P*(*n*) is true for every *n* \geq 0.

Proof: We prove $P(n)$ is true for $n \geq 0$ by induction.

Basis step. $P(0)$ is $0 = 0(0 + 1)/2$, and it is obviously true.

Induction Hypothesis. Assume $P(k)$ is true for some $k \geq 0$. Then $0 + 1 + 2 + \cdots + k = k(k+1)/2.$

Proof of Induction Step. Now let us prove that $P(k + 1)$ is true.

 $0 + 1 + 2 + \cdots + k + (k + 1) = k(k + 1)/2 + (k + 1)$ $=$ $(k+1)(k/2+1)$ $=$ $(k+1)(k+2)/2$

An Example for Mathematical Induction (2)

Example: For any $x \in \{0, 1\}^*$, if *x* begins with 0 and ends with 1 (i.e., $x = 0y1$ for some string *y*), then *x* must contain the substring 01. (Note that [∗] is the *Kleene star*. {⁰, ¹}[∗] means "every possible string consisted of ⁰ and 1, including the empty string".)

Proof: Consider the statement $P(n)$: If $|x| = n$ and $x = 0$ is for some string $y \in \{0, 1\}^*$, then *x* contains the substring 01. If we can prove that $P(n)$ is true for every $n \ge 2$, it will follow that the original statement is true. We prove it by induction.

Basis step. $P(2)$ is true.

Induction hypothesis. $P(k)$ for $k > 2$.

The Minimal Counterexample Principle (Cont.)

However, we have

$$
5^{k} - 2^{k} = 5 \times 5^{k-1} - 2 \times 2^{k-1}
$$

= 5 \times (5^{k-1} - 2^{k-1}) + 3 \times 2^{k-1}
= 5 \times 3j + 3 \times 2^{k-1}

This expression is divisible by 3. We have derived ^a contradiction, which allows us to conclude that our original assumption is false. \Box

An Example for the Weakness of Mathematical Induction

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Proof: Define $P(n)$ be the statement that "*n* is either prime or the product of two or more primes". We will try to prove that $P(n)$ is true for every $n > 2$.

Basis step. $P(2)$ is true, since 2 is a prime. \checkmark

Induction hypothesis. $P(k)$ for $k \geq 2$. (as usual process)

Proof of **induction step.** Let's prove $P(k + 1)$.

If $P(k + 1)$ is prime, \checkmark If $P(k + 1)$ is not a prime, then we should prove that $k + 1 = r \times s$, where *r* and *s* are positive integers greater than 1 and less than $k + 1$.

However, from $P(k)$ we know nothing about *r* and $s \rightarrow ?$???

 Function Relations ProofDefinitionCategoriesPeano Axioms

Set

Giuseppe Peano (1858-1932)

- In 1889, Peano published the first set of axioms.
- Build a rigorous system of arithmetic, number theory, and algebra.
- ^A simple but solid foundation to construct the edifice of modern mathematics.
- The fifth axiom deserves special comment. It is the first formal statement of what we now call the "induction axiom" or "the principle of mathematical induction".

Peano Five Axioms

- Axiom 1.0 is a number.
- Axiom 2. The successor of any number is ^a number.
- Axiom 3. If *^a* and *^b* are numbers and if their successors are equal, then *^a* and *^b* are equal.
- Axiom 4. 0 is not the successor of any number.
- Axiom 5. If *^S* is ^a set of numbers containing ⁰ and if the successor of any number in *^S* is also in *^S*, then *^S* contains all the numbers.

