
Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Introduction to Algorithm∗

Xiaofeng Gao

Department of Computer Science and Engineering
Shanghai Jiao Tong University, P.R.China

X033533-Algorithm: Analysis and Theory

∗

Special thanks is given to Prof. Yuxi Fu for sharing his teaching materials.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 1/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Outline

1 Basic Concepts in Algorithmic Analysis

Algorithm

Theoretical Computer Science

2 Search and Ordering

Search

Sort

3 Computational Complexity

Time Complexity

Space Complexity

4 Complexity Analysis

Estimating Time Complexity

Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 2/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

Algorithm

An algorithm is a procedure that consists of a finite set of instructions

which, given an input from some set of possible inputs, enables us to

obtain an output through a systematic execution of the instructions

that terminates in a finite number of steps.

Theorem proving is in general not algorithmic.

Theorem verification is often algorithmic.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 4/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

Quotation from Donald E. Knuth

“Computer Science is the study of

algorithms."

——Donald E. Knuth

What is Computer Science?

Computer Science is the study of problem

solving using computing machines. The

computing machines must be physically

feasible. Donald E. Knuth

(1938 – )

Stanford University

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 5/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

Remark on Algorithm

The word ‘algorithm’ is derived from the name

ofMuhamma ibn Mūsā al-Khwārizmī

(780?-850?), a Muslim mathematician whose

works introduced Arabic numerals and algebraic

concepts to Western mathematics.

The word ‘algebra’ stems from the title of his

book Kitab al jahr wa’l-muqābala".

(American Heritage Dictionary)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 6/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

Algorithm vs. Program

A program is an implementation of an algorithm, or algorithms.

A program does not necessarily terminate.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 7/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

What is Computer Science?

I. Theory of Computation is to understand the notion of computation

in a formal framework.

Some well known models are: the general recursive function

model of Gödel and Church, Church’s λ-calculus, Post system
model, Turing machine model, RAM, etc.

II. Computability Theory studies what problems can be solved by

computers.

III. Computational Complexity studies how much resource is

necessary in order to solve a problem.

IV. Theory of Algorithm studies how problems can be solved.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 9/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Linear Search, First Example of an Algorithm

The problem to start with: Search and Ordering.

Algorithm 1.1 LinearSearch

Input: An array A[1..n] of n elements and an element x.
Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.

1. j← 1

2. while j < n and x 6= A[j]
3. j← j+ 1

4. end while

5. if x = A[j] then return j else return 0

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 11/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Binary Search

Algorithm 1.2 BinarySearch

Input: An array A[1..n] of n elements sorted in nondecreasing order
and an element x.

Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.
1. low← 1; high← n; j← 0

2. while low ≤ high and j = 0

3. mid ← ⌊(low + high)/2⌋
4. if x = A[mid] then j← mid break

5. else if x < A[mid] then high← mid − 1

6. else low← mid + 1

7. end while

8. return j

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 12/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BinarySearch

Suppose x ≥ 35. A run of BinarySearch on A[1..14] (see below) is

1 4 5 7 8 9 10 12 15 22 23 27 32 35

↓

12 15 22 23 27 32 35

↓

27 32 35

↓

35

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 13/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum if x ≥ A[n].
The number of comparisons is the same as the number of iterations.

In the second iteration, the number of elements in A[mid + 1..n] is
exactly ⌊n/2⌋.
In the j-th iteration, the number of elements in A[mid+ 1..n] is exactly
⌊n/2j−1⌋.
The maximum number of iteration is the j such that ⌊n/2j−1⌋ = 1,

which is equivalent to j− 1 ≤ log n < j.

Hence j = ⌊log n⌋+ 1.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 14/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Merging Two Sorted Lists

Algorithm 1.3Merge

Input: An array A[1..m] of elements and three indices p, q and r. with
1 ≤ p ≤ q < r ≤ m, such that both the subarray A[p..q] and
A[q+ 1..r] are sorted individually in nondecreasing order.
Output: A[p..r] contains the result of merging the two subarrays
A[p..q] and A[q+ 1..r].
Comment: B[p..r] is an auxiliary array

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 15/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Merging Two Sorted Lists

1. s← p; t← q+ 1; k ← p

2. while s ≤ q and t ≤ r
3. if A[s] ≤ A[t] then
4. B[k]← A[s]
5. s← s+ 1

6. else

7. B[k]← A[t]
8. t← t + 1

9. end if
10. k← k + 1

11. end while

12. if s = q+ 1 then B[k..r]← A[t..r]
13. else B[k..r]← A[s..q]
13. end if

13. A[p..r]← B[p..r]
X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 16/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of Merge

Suppose A[p..q] has m elements and A[q+ 1..r] has n elements. The
number of comparisons done by Algorithm Merge is

at least min{m, n};
E.g. 2 3 6 and 7 11 13 45 57

at most m+ n− 1.

E.g. 2 3 66 and 7 11 13 45 57

If the two array sizes are ⌊n/2⌋ and ⌈n/2⌉, the number of
comparisons is between ⌊n/2⌋ and n− 1.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 17/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Selection Sort

Algorithm 1.4 SelectionSort

Input: An array A[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. for i← 1 to n− 1

2. k← i

3. for j← i+ 1 to n

4. if A[j] < A[k] then k← j

5. end for

6. if k 6= i then interchange A[i] and A[k]
7. end for

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 19/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of SelectionSort

The number of comparisons carried out by Algorithm SelectionSort is

precisely
n−1
∑

i=1

(n− i) = n(n − 1)

2

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 20/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Insertion Sort

Algorithm 1.5 InsertionSort

Input: An array A[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. for i← 2 to n

2. x← A[i]
3. j← i− 1

4. while j > 0 and A[j] > x
5. A[j+ 1]← A[j]
6. j← j− 1

7. end while

8. A[j+ 1]← x

9. end for

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 21/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of InsertionSort

The number of comparisons carried out by Algorithm InsertionSort is

at least

n− 1

and at most
n

∑

i=2

(i− 1) =
n(n − 1)

2

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 22/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Bottom-Up Merge Sort

Algorithm 1.6 BottomUpSort

Input: An array A[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. t← 1

2. while t < n
3. s← t; t← 2s; i← 0

4. while i+ t ≤ n
5. Merge(A, i + 1, i+ s, i+ t)
6. i← i+ t
7. end while

8. if i+ s < n thenMerge(A, i + 1, i+ s, n)
9. end while

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 23/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

An Example

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 24/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BottomUpSort

Suppose that n is a power of 2, say n = 2k.

The outer while loop is executed k = log n times.

Step 8 is never invoked.

In the j-th iteration of the outer while loop, there are 2k−j = n/2j

pairs of arrays of size 2j−1.

The number of comparisons needed in the merge of two sorted

arrays in the j-th iteration is at least 2j−1 and at most 2j − 1.

The number of comparisons in BottomUpSort is at least
k

∑

j=1

(
n

2j
)2j−1 =

k
∑

j=1

n

2
=
n log n

2

The number of comparisons in BottomUpSort is at most
k

∑

j=1

(
n

2j
)(2j − 1) =

k
∑

j=1

(n− n

2j
) = n log n− n+ 1

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 25/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Time Complexity

Computational Complexity evolved from 1960’s, flourished in 1970’s

and 1980’s.

Time is the most precious resource.

Important to human.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 27/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Running Time

Running time of a program is determined by:

input size

quality of the code

quality of the computer system

time complexity of the algorithm

We are mostly concerned with the behavior of the algorithm under

investigation on large input instances.

So we may talk about the rate of growth or the order of growth of the

running time

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 28/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Running Time vs Input Size

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 29/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Growth of Typical Functions

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 30/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Elementary Operation

Definition: We denote by an “elementary operation" any

computational step whose cost is always upperbounded by a constant

amount of time regardless of the input data or the algorithm used.

Example:

Arithmetic operations: addition, subtraction, multiplication and

division

Comparisons and logical operations

Assignments, including assignments of pointers when, say,

traversing a list or a tree

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 31/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Order of Growth

Our main concern is about the order of growth.

Our estimates of time are relative rather than absolute.

Our estimates of time are machine independent.

Our estimates of time are about the behavior of the algorithm

under investigation on large input instances.

So we are measuring the asymptotic running time of the algorithms.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 32/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

The O-Notation

The O-notation provides an upper bound of the running time; it may

not be indicative of the actual running time of an algorithm.

Definition (O-Notation)

Let f (n) and g(n) be functions from the set of natural numbers to the

set of nonnegative real numbers. f (n) is said to be O(g(n)), written
f (n) = O(g(n)), if

∃c.∃n0.∀n ≥ n0.f (n) ≤ cg(n)

Intuitively, f grows no faster than some constant times g.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 33/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

The Ω-Notation

The Ω-notation provides a lower bound of the running time; it may
not be indicative of the actual running time of an algorithm.

Definition (Ω-Notation)

Let f (n) and g(n) be functions from the set of natural numbers to the

set of nonnegative real numbers. f (n) is said to be Ω(g(n)), written
f (n) = Ω(g(n)), if

∃c.∃n0.∀n ≥ n0.f (n) ≥ cg(n)

Clearly f (n) = O(g(n)) if and only if g(n) = Ω(f (n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 34/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

The Θ-Notation

The Θ-notation provides an exact picture of the growth rate of the
running time of an algorithm.

Definition (Θ-Notation)

Let f (n) and g(n) be functions from the set of natural numbers to the

set of nonnegative real numbers. f (n) is said to be Θ(g(n)), written
f (n) = Θ(g(n)), if both f (n) = O(g(n)) and f (n) = Ω(g(n)).

Clearly f (n) = Θ(g(n)) if and only if g(n) = Θ(f (n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 35/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Example

Example: f (n) = 10n2 + 20n.

Since ∀n ≥ 1, f (n) ≤ 30n2, f (n) = O(n2);

Since ∀n ≥ 1, f (n) ≥ n2, f (n) = Ω(n2);

Since ∀n ≥ 1, n2 ≤ f (n) ≤ 30n2, f (n) = Θ(n2);

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 36/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Examples

akn
k + ak−1n

k−1 + · · · + a1n+ a0 = O(nk).
log n2 = O(n).

log nk = Ω(log n).

n! = O((n+ 1)!).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 37/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Examples

Consider the series
∑n
j=1 log j. Clearly,

n
∑

j=1

log j ≤
n

∑

j=1

log n = n log n. Thus
n

∑

j=1

log j = O(n log n)

On the other hand,

n
∑

j=1

log j ≥
⌊n/2⌋
∑

j=1

log(
n

2
) = ⌊n/2⌋ log(n

2
) = ⌊n/2⌋ log n− ⌊n/2⌋

That is
n

∑

j=1

log j = Ω(n log n)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 38/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Examples

log n! =
n
∑

j=1

log j = Θ(n log n).

2n = O(n!). (log 2n = n)

n! = O(2n
2
). (log 2n

2
= n2)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 39/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

The o-Notation

Definition (o-Notation)

Let f (n) and g(n) be functions from the set of natural numbers to the

set of nonnegative real numbers. f (n) is said to be o(g(n)), written
f (n) = o(g(n)), if

∀c.∃n0.∀n ≥ n0.f (n) < cg(n)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 40/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

The ω-Notation

Definition (ω-Notation)

Let f (n) and g(n) be functions from the set of natural numbers to the

set of nonnegative real numbers. f (n) is said to be ω(g(n)), written
f (n) = ω(g(n)), if

∀c.∃n0.∀n ≥ n0.f (n) > cg(n)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 41/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Definition in Terms of Limits

Suppose lim
n→∞

f (n)/g(n) exists.

lim
n→∞

f (n)

g(n)
6=∞ implies f (n) = O(g(n)).

lim
n→∞

f (n)

g(n)
6= 0 implies f (n) = Ω(g(n)).

lim
n→∞

f (n)

g(n)
= c implies f (n) = Θ(g(n)).

lim
n→∞

f (n)

g(n)
= 0 implies f (n) = o(g(n)).

lim
n→∞

f (n)

g(n)
=∞ implies f (n) = ω(g(n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 42/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

A Helpful Analogy

f (n) = O(g(n)) is similar to f (n) ≤ g(n).
f (n) = o(g(n)) is similar to f (n) < g(n).

f (n) = Θ(g(n)) is similar to f (n) = g(n).

f (n) = Ω(g(n)) is similar to f (n) ≥ g(n).
f (n) = ω(g(n)) is similar to f (n) > g(n).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 43/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Complexity Classes

An equivalence relation R on the set of complexity functions is

defined as follows: fRg if and only if f (n) = Θ(g(n)).

A complexity class is an equivalence class of R.

The equivalence classes can be ordered by ≺ defined as follows:

f ≺ g iff f (n) = o(g(n)).

1≺ log log n≺ log n≺√n≺n 3
4 ≺n≺n log n≺n2≺2n≺n!≺2n2

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 44/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Space Complexity

The space complexity is defined to be the number of cells (work

space)) needed to carry out an algorithm, excluding the space

allocated to hold the input.

The exclusion of the input space is to make sense the sublinear space

complexity.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 46/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Space Complexity

It is clear that the work space of an algorithm can not exceed the

running time of the algorithm. That is S(n) = O(T(n)).

Trade-off between time complexity and space complexity.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 47/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Summary

Algorithm Time Complexity Space Complexity

LINEARSEARCH O(n) Θ(1)

BINARYSEARCH O(log n), Ω(1) Θ(1)

MERGE O(n), Ω(n1) Θ(n)

SELECTIONSORT Θ(n2) Θ(1)

INSERTIONSORT O(n2), Ω(n) Θ(1)

BOTTOMUPSORT Θ(n log n) Θ(n)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 48/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Optimal Algorithm

In general, if we can prove that any algorithm to solve problem Π
must be Ω(f (n)), then we call any algorithm to solve problem Π in

time O(f (n)) an optimal algorithm for problem Π.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 49/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

HOW do we estimate time complexity?

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 51/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

Algorithm 1.7 Count1

Input: n = 2k, for some positive integer k.

Output: count = number of times Step 4 is executed.

1. count ← 0;

2. while n ≥ 1

3. for j← 1 to n

4. count ← count + 1

5. end for

6. n← n/2
7. end while

8. return count

while is executed k + 1 times; for is executed n, n/2, . . . , 1 times
k

∑

j=0

n

2j
= n

k
∑

j=0

1

2j
= n(2− 1

2k
) = 2n− 1 = Θ(n)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 52/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

Algorithm 1.8 Count2

Input: A positive integer n.

Output: count = number of times Step 5 is executed.

1. count ← 0;

2. for i← 1 to n

3. m← ⌊n/i⌋
4. for j← 1 to m

5. count ← count + 1

6. end for
7. end for

8. return count

The inner for is executed n, ⌊n/2⌋, ⌊n/3⌋, . . . , ⌊n/n⌋ times

Θ(n log n) =

n
∑

i=1

(
n

i
− 1) ≤

n
∑

i=1

⌊n
i
⌋ ≤

n
∑

i=1

n

i
= Θ(n log n)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 53/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

Algorithm 1.9 Count3

Input: n = 22
k
, k is a positive integer.

Output: count = number of times Step 6 is executed.

1. count ← 0;

2. for i← 1 to n

3. j← 2;

4. while j ≤ n
5. j← j2;

6. count ← count + 1

7. end while

8. end for

9. return count

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 54/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

For each value of i, the while loop will be executed when

j = 2, 22, 24, · · · , 22k .
That is, it will be executed when j = 22

0
, 22

1
, 22

2
, · · · , 22k .

Thus, the number of iterations for while loop is k + 1 = log log n+ 1

for each iteration of for loop.

The total output is n(log log n+ 1) = Θ(n log log n).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 55/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

Algorithm 1.10 PSUM

Input: n = k2, k is a positive integer.

Output:
j
∑

i=1

i for each perfect square j between 1 and n.

1. k← √n;
2. for j← 1 to k

3. sum[j]← 0;

4. for i← 1 to j2

5. sum[j]← sum[j] + i;
6. end for
7. end for

8. return sum[1 · · · k]

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 56/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

Assume that
√
n can be computed in O(1) time.

The outer and inner for loop are executed k =
√
n and j2 times

respectively.

Thus, the number of iterations for inner for loop is

k
∑

j=1

j2
∑

i=1

1 =

k
∑

j=1

j2 =
k(k + 1)(2k + 1)

6
= Θ(k3) = Θ(n1.5).

The total output is Θ(n1.5).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 57/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Frequency of Basic Operations

Definition

An elementary operation in an algorithm is called a basic operation if

it is of highest frequency to within a constant factor among all other

elementary operations.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 58/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Method of Choice

When analyzing searching and sorting algorithms, we may

choose the element comparison operation if it is an elementary

operation.

In matrix multiplication algorithms, we select the operation of

scalar multiplication.

In traversing a linked list, we may select the “operation" of

setting or updating a pointer.

In graph traversals, we may choose the “action" of visiting a

node, and count the number of nodes visited.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 59/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Master theorem

If

T(n) = aT(⌈n/b⌉) + O(nd)
for some constants a > 0, b > 1, and d ≥ 0, then

T(n) =











O(nd) if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 60/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Analysis for MERGESORT

The recurrence relation:

T(n) = 2T(n/2) + O(n);

By Master Theorem

T(n) = O(n log n).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 61/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Performance of INSERTIONSORT

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 63/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Worst Case Analysis

Consider the following algorithm:

1. if n is odd then k ← BinarySearch(A, x)
2. else k ← LinearSearch(A, x)

In the worst case, the running time is Ω(log(n)) and O(n).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 64/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Average Case Analysis

Take Algorithm InsertionSort for instance. Two assumptions:

A[1..n] contains the numbers 1 through n.

All n! permutations are equally likely.

The number of comparisons for inserting element A[i] in its proper
position, say j, is on average the following

i− 1

i
+

i
∑

j=2

i− j+ 1

i
=
i− 1

i
+

i−1
∑

j=1

j

i
=
i

2
− 1

i
+
1

2

The average number of comparisons performed by Algorithm

InsertionSort is

n
∑

i=2

(
i

2
− 1

i
+
1

2
) =

n2

4
+
3n

4
−

n
∑

i=1

1

i

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 65/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Amortized Analysis

In amortized analysis, we average out the time taken by the operation

throughout the execution of the algorithm, and refer to this average as

the amortized running time of that operation.

Amortized analysis guarantees the average cost of the operation, and

thus the algorithm, in the worst case.

This is to be contrasted with the average time analysis in which the

average is taken over all instances of the same size. Moreover, unlike

the average case analysis, no assumptions about the probability

distribution of the input are needed.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 66/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Amortized Analysis

Consider the following algorithm:

1. for j← 1 to n

2. x← A[j]
3. Append x to the list

4. if x is even then

5. while pred(x) is odd do delete pred(x)
6. end if

7. end for

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 67/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

An Example

5 7 3 4 9 8 7 3

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 68/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Analysis

Worst Case Analysis: If no input numbers are even, or if all even

numbers are at the beginning, then no elements are deleted, and hence

each iteration of the for loop takes constant time. However, if the

input has n− 1 odd integers followed by one even integer, then the

number of deletions is n− 1, and the number of while loops is n− 1.

The overall running time is O(n2).

Amortized Analysis: The total number of elementary operations of

insertions and deletions is between n and 2n− 1. So the time

complexity is Θ(n). It follows that the time used to delete each
element is O(1) amortized time.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 69/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Input Size and Problem Instance

Suppose that the following integer

21024 − 1

is a legitimate input of an algorithm. What is the size of the input?

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 70/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Input Size and Problem Instance

Algorithm 1.9 FIRST
Input: A positive integer n and an array A[1..n] with A[j] = j for
1 ≤ j ≤ n.
Output:

∑n
j=1 A[j].

1. sum← 0;

2. for j← 1 to n

3. sum← sum + A[j]
4. end for

5. return sum

The input size is n. The time complexity is O(n). It is linear time.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 71/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Input Size and Problem Instance

Algorithm 1.10 SECOND

Input: A positive integer n.

Output:
∑n
j=1 j.

1. sum← 0;

2. for j← 1 to n

3. sum← sum + j
4. end for

5. return sum

The input size is k = ⌊log n⌋+ 1. The time complexity is O(2k). It is
exponential time.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 72/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Commonly Used Measures

In sorting and searching problems, we use the number of entries

in the array or list as the input size.

In graph algorithms, the input size usually refers to the number

of vertices or edges in the graph, or both.

In computational geometry, the size of input is usually expressed

in terms of the number of points, vertices, edges, line segments,

polygons, etc.

In matrix operations, the input size is commonly taken to be the

dimensions of the input matrices.

In number theory algorithms and cryptography, the number of

bits in the input is usually chosen to denote its length. The

number of words used to represent a single number may also be

chosen as well, as each word consists of a fixed number of bits.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 73/73


