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Algorithm

An algorithm is a procedure that consists of a finite set of instructions

which, given an input from some set of possible inputs, enables us to

obtain an output through a systematic execution of the instructions

that terminates in a finite number of steps.

Theorem proving is in general not algorithmic.

Theorem verification is often algorithmic.
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Quotation from Donald E. Knuth

“Computer Science is the study of

algorithms."

——Donald E. Knuth

What is Computer Science?

Computer Science is the study of problem

solving using computing machines. The

computing machines must be physically

feasible. Donald E. Knuth

(1938 – )

Stanford University
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Remark on Algorithm

The word ‘algorithm’ is derived from the name

ofMuhamma ibn Mūsā al-Khwārizmī

(780?-850?), a Muslim mathematician whose

works introduced Arabic numerals and algebraic

concepts to Western mathematics.

The word ‘algebra’ stems from the title of his

book Kitab al jahr wa’l-muqābala".

(American Heritage Dictionary)
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Algorithm vs. Program

A program is an implementation of an algorithm, or algorithms.

A program does not necessarily terminate.
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What is Computer Science?

I. Theory of Computation is to understand the notion of computation

in a formal framework.

Some well known models are: the general recursive function

model of Gödel and Church, Church’s λ-calculus, Post system
model, Turing machine model, RAM, etc.

II. Computability Theory studies what problems can be solved by

computers.

III. Computational Complexity studies how much resource is

necessary in order to solve a problem.

IV. Theory of Algorithm studies how problems can be solved.
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Linear Search, First Example of an Algorithm

The problem to start with: Search and Ordering.

Algorithm 1.1 LinearSearch

Input: An array A[1..n] of n elements and an element x.
Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.

1. j← 1

2. while j < n and x 6= A[j]
3. j← j+ 1

4. end while

5. if x = A[j] then return j else return 0
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Binary Search

Algorithm 1.2 BinarySearch

Input: An array A[1..n] of n elements sorted in nondecreasing order
and an element x.

Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.
1. low← 1; high← n; j← 0

2. while low ≤ high and j = 0

3. mid ← ⌊(low + high)/2⌋
4. if x = A[mid] then j← mid break

5. else if x < A[mid] then high← mid − 1

6. else low← mid + 1

7. end while

8. return j
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Analysis of BinarySearch

Suppose x ≥ 35. A run of BinarySearch on A[1..14] (see below) is

1 4 5 7 8 9 10 12 15 22 23 27 32 35

↓

12 15 22 23 27 32 35

↓

27 32 35

↓

35
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Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum if x ≥ A[n].
The number of comparisons is the same as the number of iterations.

In the second iteration, the number of elements in A[mid + 1..n] is
exactly ⌊n/2⌋.
In the j-th iteration, the number of elements in A[mid+ 1..n] is exactly
⌊n/2j−1⌋.
The maximum number of iteration is the j such that ⌊n/2j−1⌋ = 1,

which is equivalent to j− 1 ≤ log n < j.

Hence j = ⌊log n⌋+ 1.
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Merging Two Sorted Lists

Algorithm 1.3Merge

Input: An array A[1..m] of elements and three indices p, q and r. with
1 ≤ p ≤ q < r ≤ m, such that both the subarray A[p..q] and
A[q+ 1..r] are sorted individually in nondecreasing order.
Output: A[p..r] contains the result of merging the two subarrays
A[p..q] and A[q+ 1..r].
Comment: B[p..r] is an auxiliary array
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Merging Two Sorted Lists

1. s← p; t← q+ 1; k ← p

2. while s ≤ q and t ≤ r
3. if A[s] ≤ A[t] then
4. B[k]← A[s]
5. s← s+ 1

6. else

7. B[k]← A[t]
8. t← t + 1

9. end if
10. k← k + 1

11. end while

12. if s = q+ 1 then B[k..r]← A[t..r]
13. else B[k..r]← A[s..q]
13. end if

13. A[p..r]← B[p..r]
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Analysis of Merge

Suppose A[p..q] has m elements and A[q+ 1..r] has n elements. The
number of comparisons done by Algorithm Merge is

at least min{m, n};
E.g. 2 3 6 and 7 11 13 45 57

at most m+ n− 1.

E.g. 2 3 66 and 7 11 13 45 57

If the two array sizes are ⌊n/2⌋ and ⌈n/2⌉, the number of
comparisons is between ⌊n/2⌋ and n− 1.
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Selection Sort

Algorithm 1.4 SelectionSort

Input: An array A[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. for i← 1 to n− 1

2. k← i

3. for j← i+ 1 to n

4. if A[j] < A[k] then k← j

5. end for

6. if k 6= i then interchange A[i] and A[k]
7. end for
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Analysis of SelectionSort

The number of comparisons carried out by Algorithm SelectionSort is

precisely
n−1
∑

i=1

(n− i) = n(n − 1)

2
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Insertion Sort

Algorithm 1.5 InsertionSort

Input: An array A[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. for i← 2 to n

2. x← A[i]
3. j← i− 1

4. while j > 0 and A[j] > x
5. A[j+ 1]← A[j]
6. j← j− 1

7. end while

8. A[j+ 1]← x

9. end for

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 21/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of InsertionSort

The number of comparisons carried out by Algorithm InsertionSort is

at least

n− 1

and at most
n

∑

i=2

(i− 1) =
n(n − 1)

2
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Bottom-Up Merge Sort

Algorithm 1.6 BottomUpSort

Input: An array A[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. t← 1

2. while t < n
3. s← t; t← 2s; i← 0

4. while i+ t ≤ n
5. Merge(A, i + 1, i+ s, i+ t)
6. i← i+ t
7. end while

8. if i+ s < n thenMerge(A, i + 1, i+ s, n)
9. end while
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An Example
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Analysis of BottomUpSort

Suppose that n is a power of 2, say n = 2k.

The outer while loop is executed k = log n times.

Step 8 is never invoked.

In the j-th iteration of the outer while loop, there are 2k−j = n/2j

pairs of arrays of size 2j−1.

The number of comparisons needed in the merge of two sorted

arrays in the j-th iteration is at least 2j−1 and at most 2j − 1.

The number of comparisons in BottomUpSort is at least
k

∑

j=1

(
n

2j
)2j−1 =

k
∑

j=1

n

2
=
n log n

2

The number of comparisons in BottomUpSort is at most
k

∑

j=1

(
n

2j
)(2j − 1) =

k
∑

j=1

(n− n

2j
) = n log n− n+ 1
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Time Complexity

Computational Complexity evolved from 1960’s, flourished in 1970’s

and 1980’s.

Time is the most precious resource.

Important to human.
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Running Time

Running time of a program is determined by:

input size

quality of the code

quality of the computer system

time complexity of the algorithm

We are mostly concerned with the behavior of the algorithm under

investigation on large input instances.

So we may talk about the rate of growth or the order of growth of the

running time
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Running Time vs Input Size
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Growth of Typical Functions
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Elementary Operation

Definition: We denote by an “elementary operation" any

computational step whose cost is always upperbounded by a constant

amount of time regardless of the input data or the algorithm used.

Example:

Arithmetic operations: addition, subtraction, multiplication and

division

Comparisons and logical operations

Assignments, including assignments of pointers when, say,

traversing a list or a tree
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Order of Growth

Our main concern is about the order of growth.

Our estimates of time are relative rather than absolute.

Our estimates of time are machine independent.

Our estimates of time are about the behavior of the algorithm

under investigation on large input instances.

So we are measuring the asymptotic running time of the algorithms.
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The O-Notation

The O-notation provides an upper bound of the running time; it may

not be indicative of the actual running time of an algorithm.

Definition (O-Notation)

Let f (n) and g(n) be functions from the set of natural numbers to the

set of nonnegative real numbers. f (n) is said to be O(g(n)), written
f (n) = O(g(n)), if

∃c.∃n0.∀n ≥ n0.f (n) ≤ cg(n)

Intuitively, f grows no faster than some constant times g.
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The Ω-Notation

The Ω-notation provides a lower bound of the running time; it may
not be indicative of the actual running time of an algorithm.

Definition (Ω-Notation)

Let f (n) and g(n) be functions from the set of natural numbers to the

set of nonnegative real numbers. f (n) is said to be Ω(g(n)), written
f (n) = Ω(g(n)), if

∃c.∃n0.∀n ≥ n0.f (n) ≥ cg(n)

Clearly f (n) = O(g(n)) if and only if g(n) = Ω(f (n)).
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The Θ-Notation

The Θ-notation provides an exact picture of the growth rate of the
running time of an algorithm.

Definition (Θ-Notation)

Let f (n) and g(n) be functions from the set of natural numbers to the

set of nonnegative real numbers. f (n) is said to be Θ(g(n)), written
f (n) = Θ(g(n)), if both f (n) = O(g(n)) and f (n) = Ω(g(n)).

Clearly f (n) = Θ(g(n)) if and only if g(n) = Θ(f (n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 35/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Example

Example: f (n) = 10n2 + 20n.

Since ∀n ≥ 1, f (n) ≤ 30n2, f (n) = O(n2);

Since ∀n ≥ 1, f (n) ≥ n2, f (n) = Ω(n2);

Since ∀n ≥ 1, n2 ≤ f (n) ≤ 30n2, f (n) = Θ(n2);
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Examples

akn
k + ak−1n

k−1 + · · · + a1n+ a0 = O(nk).
log n2 = O(n).

log nk = Ω(log n).

n! = O((n+ 1)!).
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Examples

Consider the series
∑n
j=1 log j. Clearly,

n
∑

j=1

log j ≤
n

∑

j=1

log n = n log n. Thus
n

∑

j=1

log j = O(n log n)

On the other hand,

n
∑

j=1

log j ≥
⌊n/2⌋
∑

j=1

log(
n

2
) = ⌊n/2⌋ log(n

2
) = ⌊n/2⌋ log n− ⌊n/2⌋

That is
n

∑

j=1

log j = Ω(n log n)
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Examples

log n! =
n
∑

j=1

log j = Θ(n log n).

2n = O(n!). (log 2n = n)

n! = O(2n
2
). (log 2n

2
= n2)
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The o-Notation

Definition (o-Notation)

Let f (n) and g(n) be functions from the set of natural numbers to the

set of nonnegative real numbers. f (n) is said to be o(g(n)), written
f (n) = o(g(n)), if

∀c.∃n0.∀n ≥ n0.f (n) < cg(n)
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The ω-Notation

Definition (ω-Notation)

Let f (n) and g(n) be functions from the set of natural numbers to the

set of nonnegative real numbers. f (n) is said to be ω(g(n)), written
f (n) = ω(g(n)), if

∀c.∃n0.∀n ≥ n0.f (n) > cg(n)
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Definition in Terms of Limits

Suppose lim
n→∞

f (n)/g(n) exists.

lim
n→∞

f (n)

g(n)
6=∞ implies f (n) = O(g(n)).

lim
n→∞

f (n)

g(n)
6= 0 implies f (n) = Ω(g(n)).

lim
n→∞

f (n)

g(n)
= c implies f (n) = Θ(g(n)).

lim
n→∞

f (n)

g(n)
= 0 implies f (n) = o(g(n)).

lim
n→∞

f (n)

g(n)
=∞ implies f (n) = ω(g(n)).
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A Helpful Analogy

f (n) = O(g(n)) is similar to f (n) ≤ g(n).
f (n) = o(g(n)) is similar to f (n) < g(n).

f (n) = Θ(g(n)) is similar to f (n) = g(n).

f (n) = Ω(g(n)) is similar to f (n) ≥ g(n).
f (n) = ω(g(n)) is similar to f (n) > g(n).
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Complexity Classes

An equivalence relation R on the set of complexity functions is

defined as follows: fRg if and only if f (n) = Θ(g(n)).

A complexity class is an equivalence class of R.

The equivalence classes can be ordered by ≺ defined as follows:

f ≺ g iff f (n) = o(g(n)).

1≺ log log n≺ log n≺√n≺n 3
4 ≺n≺n log n≺n2≺2n≺n!≺2n2
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Space Complexity

The space complexity is defined to be the number of cells (work

space)) needed to carry out an algorithm, excluding the space

allocated to hold the input.

The exclusion of the input space is to make sense the sublinear space

complexity.
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Space Complexity

It is clear that the work space of an algorithm can not exceed the

running time of the algorithm. That is S(n) = O(T(n)).

Trade-off between time complexity and space complexity.
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Summary

Algorithm Time Complexity Space Complexity

LINEARSEARCH O(n) Θ(1)

BINARYSEARCH O(log n), Ω(1) Θ(1)

MERGE O(n), Ω(n1) Θ(n)

SELECTIONSORT Θ(n2) Θ(1)

INSERTIONSORT O(n2), Ω(n) Θ(1)

BOTTOMUPSORT Θ(n log n) Θ(n)
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Optimal Algorithm

In general, if we can prove that any algorithm to solve problem Π
must be Ω(f (n)), then we call any algorithm to solve problem Π in

time O(f (n)) an optimal algorithm for problem Π.
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HOW do we estimate time complexity?
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Counting the Iterations

Algorithm 1.7 Count1

Input: n = 2k, for some positive integer k.

Output: count = number of times Step 4 is executed.

1. count ← 0;

2. while n ≥ 1

3. for j← 1 to n

4. count ← count + 1

5. end for

6. n← n/2
7. end while

8. return count

while is executed k + 1 times; for is executed n, n/2, . . . , 1 times
k

∑

j=0

n

2j
= n

k
∑

j=0

1

2j
= n(2− 1

2k
) = 2n− 1 = Θ(n)
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Counting the Iterations

Algorithm 1.8 Count2

Input: A positive integer n.

Output: count = number of times Step 5 is executed.

1. count ← 0;

2. for i← 1 to n

3. m← ⌊n/i⌋
4. for j← 1 to m

5. count ← count + 1

6. end for
7. end for

8. return count

The inner for is executed n, ⌊n/2⌋, ⌊n/3⌋, . . . , ⌊n/n⌋ times

Θ(n log n) =

n
∑

i=1

(
n

i
− 1) ≤

n
∑

i=1

⌊n
i
⌋ ≤

n
∑

i=1

n

i
= Θ(n log n)
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Counting the Iterations

Algorithm 1.9 Count3

Input: n = 22
k
, k is a positive integer.

Output: count = number of times Step 6 is executed.

1. count ← 0;

2. for i← 1 to n

3. j← 2;

4. while j ≤ n
5. j← j2;

6. count ← count + 1

7. end while

8. end for

9. return count
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Counting the Iterations

For each value of i, the while loop will be executed when

j = 2, 22, 24, · · · , 22k .
That is, it will be executed when j = 22

0
, 22

1
, 22

2
, · · · , 22k .

Thus, the number of iterations for while loop is k + 1 = log log n+ 1

for each iteration of for loop.

The total output is n(log log n+ 1) = Θ(n log log n).
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Counting the Iterations

Algorithm 1.10 PSUM

Input: n = k2, k is a positive integer.

Output:
j
∑

i=1

i for each perfect square j between 1 and n.

1. k← √n;
2. for j← 1 to k

3. sum[j]← 0;

4. for i← 1 to j2

5. sum[j]← sum[j] + i;
6. end for
7. end for

8. return sum[1 · · · k]
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Counting the Iterations

Assume that
√
n can be computed in O(1) time.

The outer and inner for loop are executed k =
√
n and j2 times

respectively.

Thus, the number of iterations for inner for loop is

k
∑

j=1

j2
∑

i=1

1 =

k
∑

j=1

j2 =
k(k + 1)(2k + 1)

6
= Θ(k3) = Θ(n1.5).

The total output is Θ(n1.5).
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Counting the Frequency of Basic Operations

Definition

An elementary operation in an algorithm is called a basic operation if

it is of highest frequency to within a constant factor among all other

elementary operations.
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Method of Choice

When analyzing searching and sorting algorithms, we may

choose the element comparison operation if it is an elementary

operation.

In matrix multiplication algorithms, we select the operation of

scalar multiplication.

In traversing a linked list, we may select the “operation" of

setting or updating a pointer.

In graph traversals, we may choose the “action" of visiting a

node, and count the number of nodes visited.
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Master theorem

If

T(n) = aT(⌈n/b⌉) + O(nd)
for some constants a > 0, b > 1, and d ≥ 0, then

T(n) =











O(nd) if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a.
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Analysis for MERGESORT

The recurrence relation:

T(n) = 2T(n/2) + O(n);

By Master Theorem

T(n) = O(n log n).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 61/73

Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Performance of INSERTIONSORT
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Worst Case Analysis

Consider the following algorithm:

1. if n is odd then k ← BinarySearch(A, x)
2. else k ← LinearSearch(A, x)

In the worst case, the running time is Ω(log(n)) and O(n).
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Average Case Analysis

Take Algorithm InsertionSort for instance. Two assumptions:

A[1..n] contains the numbers 1 through n.

All n! permutations are equally likely.

The number of comparisons for inserting element A[i] in its proper
position, say j, is on average the following

i− 1

i
+

i
∑

j=2

i− j+ 1

i
=
i− 1

i
+

i−1
∑

j=1

j

i
=
i

2
− 1

i
+
1

2

The average number of comparisons performed by Algorithm

InsertionSort is

n
∑

i=2

(
i

2
− 1

i
+
1

2
) =

n2

4
+
3n

4
−

n
∑

i=1

1

i
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Amortized Analysis

In amortized analysis, we average out the time taken by the operation

throughout the execution of the algorithm, and refer to this average as

the amortized running time of that operation.

Amortized analysis guarantees the average cost of the operation, and

thus the algorithm, in the worst case.

This is to be contrasted with the average time analysis in which the

average is taken over all instances of the same size. Moreover, unlike

the average case analysis, no assumptions about the probability

distribution of the input are needed.
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Amortized Analysis

Consider the following algorithm:

1. for j← 1 to n

2. x← A[j]
3. Append x to the list

4. if x is even then

5. while pred(x) is odd do delete pred(x)
6. end if

7. end for
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An Example

5 7 3 4 9 8 7 3

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 68/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Analysis

Worst Case Analysis: If no input numbers are even, or if all even

numbers are at the beginning, then no elements are deleted, and hence

each iteration of the for loop takes constant time. However, if the

input has n− 1 odd integers followed by one even integer, then the

number of deletions is n− 1, and the number of while loops is n− 1.

The overall running time is O(n2).

Amortized Analysis: The total number of elementary operations of

insertions and deletions is between n and 2n− 1. So the time

complexity is Θ(n). It follows that the time used to delete each
element is O(1) amortized time.
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Input Size and Problem Instance

Suppose that the following integer

21024 − 1

is a legitimate input of an algorithm. What is the size of the input?
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Input Size and Problem Instance

Algorithm 1.9 FIRST
Input: A positive integer n and an array A[1..n] with A[j] = j for
1 ≤ j ≤ n.
Output:

∑n
j=1 A[j].

1. sum← 0;

2. for j← 1 to n

3. sum← sum + A[j]
4. end for

5. return sum

The input size is n. The time complexity is O(n). It is linear time.
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Input Size and Problem Instance

Algorithm 1.10 SECOND

Input: A positive integer n.

Output:
∑n
j=1 j.

1. sum← 0;

2. for j← 1 to n

3. sum← sum + j
4. end for

5. return sum

The input size is k = ⌊log n⌋+ 1. The time complexity is O(2k). It is
exponential time.
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Commonly Used Measures

In sorting and searching problems, we use the number of entries

in the array or list as the input size.

In graph algorithms, the input size usually refers to the number

of vertices or edges in the graph, or both.

In computational geometry, the size of input is usually expressed

in terms of the number of points, vertices, edges, line segments,

polygons, etc.

In matrix operations, the input size is commonly taken to be the

dimensions of the input matrices.

In number theory algorithms and cryptography, the number of

bits in the input is usually chosen to denote its length. The

number of words used to represent a single number may also be

chosen as well, as each word consists of a fixed number of bits.
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