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Divide-and-Conquer Strategy

The divide-and-conquer strategy solves a problem P by:

(1) Breaking P into subproblems that are themselves smaller

instances of the same type of problem.

(2) Recursively solving these subproblems.

(3) Appropriately combining their answers.
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Key Works

The real work to implement Divide-and-Conquer strategy is done

piecemeal, where the key works lay in three different places:

(1) How to partition problem into subproblems.

(2) At the very tail end of the recursion, how to solve the smallest

subproblems outright.

(3) How to glue together the partial answers.
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Johann C.F. Gauss

Johann Carl Friedrich Gauss

1777 - 1855

1+ 2+ · · ·+ 100 =
100 · (1+ 100)

2
= 5050.
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Multiplication for Complex Numbers

Gauss once noticed that although the product of two complex

numbers

(a+ bi)(c + di) = ac− bd + (bc + ad)i

seems to involve four real-number multiplications, it can in fact be

done with just three: ac, bd, and (a+ b)(c + d), since

bc+ ad = (a+ b)(c+ d) − ac− bd.

In our big-O way of thinking, reducing the number of multiplications

from four to three seems wasted ingenuity. However, this modest

improvement becomes very significant when applied recursively.
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Multiplication for Integers

Suppose x and y are two n-bit integers, and assume for convenience

that n is a power of 2.

Lemma: ∀n ∈ N, ∃ n′ with n ≤ n′ ≤ 2n such that n′ is a power of 2.

As a first step toward multiplying x and y, we split each of them into

their left and right halves, which are n/2 bits long:

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR.

xy = (2n/2xL + xR)(2
n/2yL + yR) = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR.

The additions take linear time, as do the multiplications by powers of

2 (merely left-shifts). The significant operations are the four n/2-bit
multiplications; these we can handle by four recursive calls.
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Our method for multiplying n-bit numbers starts by making recursive

calls to multiply these four pairs of n/2-bit numbers, and then
evaluates the preceding expression in O(n) time.

Writing T(n) for the overall running time on n-bit inputs, we get the
recurrence relation:

T(n) = 4T(n/2) + O(n)

Solution: O(n2).

By Gauss’s trick, three multiplications, xLyL, xRyR, and

(xL + xR)(yL + yR), suffice, as

xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR.
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A divide-and-conquer algorithm for integer multiplication

MULTIPLY(x,y)

Input: positive integers x and y, in binary

Output: their product

1: n = max(size of x, size of y) rounded as a power of 2.
2: if n = 1 then

3: return xy.

4: end if

5: xL, xR = leftmost n/2, rightmost n/2 bits of x
6: yL, yR = leftmost n/2, rightmost n/2 bits of y
7: P1 = MULTIPLY(xL, yL)
8: P2 = MULTIPLY(xR, yR)
9: P3 = MULTIPLY(xL + xR, yL + yR)
10: return P1 × 2n + (P3 − P1 − P2)× 2n/2 + P2.

X033533-Algorithm@SJTU Xiaofeng Gao Divide and Conquer 11/73

Divide-and-Conquer
Applications

Sorting Networks

Basic Technique
An Introductory Example: Multiplication
Recurrence Relations

The time analysis

The recurrence relation: T(n) = 3T(n/2) + O(n)

⊲ The algorithm’s recursive calls form a tree structure.

⊲ At each successive level the subproblems get halved in size.

⊲ At the (log2 n)
th level, the subproblems get down to size 1, and

so the recursion ends.

⊲ The height of the tree is log2 n.

⊲ The branching factor is 3: each problem recursively produces

three smaller ones, with the result that at depth k in the tree there

are 3k subproblems, each of size n/2k.

For each subproblem, a linear amount of work is done in identifying

further subproblems and combining their answers. Therefore the total

time spent at depth k in the tree is 3k × O
( n

2k

)

=

(

3

2

)k

× O(n).
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The time analysis (cont’d)

3k × O
( n

2k

)

=

(

3

2

)k

× O(n).

At the very top level, when k = 0, we need O(n).

At the bottom, when k = log2 n, it is

O
(

3log2 n
)

= O
(

nlog2 3
)

Between these two endpoints, the work done increases geometrically

from O(n) to O(nlog2 3), by a factor of 3/2 per level.

The sum of any increasing geometric series is, within a constant

factor, simply the last term of the series. Therefore the overall running

time is

O(nlog2 3) ≈ O(n1.59).

We can do even better!
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Master Theorem

If

T(n) = aT(⌈n/b⌉) + O(nd)

for some constants a > 0, b > 1, and d ≥ 0, then

T(n) =







O(nd) if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a.
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Proof of Master Theorem
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Proof of Master Theorem

Assume that n is a power of b. This will not influence the final bound

in any important way: n is at most a multiplicative factor of b away

from some power of b.

Next, notice that the size of the subproblems decreases by a factor of

b with each level of recursion, and therefore reaches the base case

after logb n levels. This is the height of the recursion tree.

The branching factor of the recursion tree is a, so the kth level of the

tree is made up of ak subproblems, each of size n/bk.

The total work done at this level is

ak × O
( n

bk

)d

= O(nd)×
( a

bd

)k

.
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Proof of Master Theorem

The total work done is

logb n
∑

k=0

(

ak × O
( n

bk

)d
)

=

lognb
∑

k=0

(

O(nd)×
( a

bd

)k
)

.

It’s the sum of a geometric series with ratio a/bd .

⊲ The ratio is less than 1. Then the series is decreasing, and its sum

is just given by its first term, O(nd).
⊲ The ratio is greater than 1. The series is increasing and its sum is

given by its last term, O(nlogb a):

nd
( a

bd

)logb n

= nd
(

alogb n

(blogb n)d

)

= alogb n = a(loga n)(logb a) = nlogb a.

⊲ The ratio is exactly 1. In this case all O(log n) terms of the series
are equal to O(nd).
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BinarySearch Algorithm

BINARYSEARCH(A[1 . . . n])

Input: An array A[1..n] in nondecreasing order and an x.
Output: j if x = A[j], 1 ≤ j ≤ n, and 0 otherwise.

1: low← 1; high← n; j← 0;

2: while low ≤ high and j = 0

3: mid ← ⌊(low + high)/2⌋;
4: if x = A[mid] then j← mid break;

5: else if x < A[mid] then high← mid − 1;

6: else low← mid + 1;

7: end while

8: return j
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The Time Analysis

To find a key x in A[1, · · · , n] in sorted order, we first compare x with
A[n/2], and depending on the result we recurse either on the first half
of the array A[1, · · · , n/2 − 1], or on the second half A[n/2, · · · , n].

The recurrence function is

T(n) = T
(⌈n

2

⌉)

+ O(1),

By Master Theorem, a = 1, b = 2, d = 0, and thus the running time

should be O(log n).
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MergeSort Algorithm

MERGESORT(a[1 . . . n])

Input: an array of numbers a[1 . . . n]
Output: A sorted version of this array

1: if n > 1 then

2: return MERGE(MERGESORT(a[1 . . . ⌊n/2⌋]),
3: MERGESORT(a[⌊n/2⌋+ 1 . . . n⌋]),
4: else return a.
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MergeSort Algorithm (Cont.)

MERGE(x[1 . . . k], y[1 . . . ℓ])

Input: two sorted arrays x and y

Output: A sorted version of the union of x and y

1: if k = 0 then return y[1 . . . ℓ]
2: if ℓ = 0 then return x[1 . . . k]
3: if x[1] ≤ y[1] then
4: return x[1]◦MERGE(x[2 . . . k], y[1 . . . ℓ])
5: else return y[1]◦MERGE(x[1 . . . k], y[2 . . . ℓ]).
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The Time Analysis

The recurrence relation:

T(n) = 2T(n/2) + O(n);

By Master Theorem

T(n) = O(n log n).
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An n log n Lower Bound for Sorting

Sorting algorithms can be depicted as trees.

The depth of the tree – the number of comparisons on the longest

path from root to leaf, is exactly the worst-case time complexity of the

algorithm.

Consider any such tree that sorts an array of n elements. Each of its

leaves is labeled by a permutation of {1, 2, . . . , n}.

every permutation must appear as the label of a leaf.

This is a binary tree with n! leaves. Thus, the depth of our tree – and
the complexity of our algorithm – must be at least

log(n!) ≈ log
(

√

π (2n+ 1/3) · nn · e−n
)

= Ω(n log n),

where we use Stirling’s formula.
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A Sorting Permutation Tree

An example sorts for {a1, a2, a3}:
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Median

Themedian of a list of numbers is its 50th percentile: half the

numbers are bigger than it, and half are smaller.

If the list has even length, there are two choices for what the middle

element could be, in which case we pick the smaller of the two, say.

The purpose of the median is to summarize a set of numbers by a

single, typical value.

Computing the median of n numbers is easy: just sort them. The

drawback is that this takes O(n log n) time, whereas we would ideally
like something linear.

We have reason to be hopeful, because sorting is doing far more work

than we really need – we just want the middle element and don’t care

about the relative ordering of the rest of them.
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Selection

Input: A list of numbers S; an integer K.

Output: The kth smallest element of S.
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A randomized divide-and-conquer algorithm for selection

For any number v, imagine splitting list S into three categories:

elements smaller than v, i.e., SL;

those equal to v, i.e., Sv (there might be duplicates);

and those greater than v, i.e., SR respectively.

selection(S, k) =











selection(SL, k) if k ≤ |SL|

v if |SL| < k ≤ |SL|+ |Sv|

selection(SR, k − |SL| − |Sv|) if k > |SL|+ |Sv|.
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How to choose v?

It should be picked quickly, and it should shrink the array

substantially, the ideal situation being

|SL|, |SR| ≈
|S|

2
.

If we could always guarantee this situation, we would get a running

time of

T(n) = T(n/2) + O(n) = O(n).

But this requires picking v to be the median, which is our ultimate

goal!

Instead, we follow a much simpler alternative: we pick v randomly

from S.
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How to choose v? (cont’d)

Worst-case scenario would force our selection algorithm to perform

n+ (n− 1) + (n− 2) + · · ·+
n

2
= Θ(n2)

Best-case scenario: O(n).

Where, in this spectrum from O(n) to Θ(n2), does the average
running time lie? Fortunately, it lies very close to the best-case time.
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The efficiency analysis

v is good if it lies within the 25th to 75th percentile of the array that it

is chosen from.

A randomly chosen v has a 50% chance of being good,

Lemma: On average a fair coin needs to be tossed two times before a

“heads” is seen.

Proof: E := expected number of tosses before head is seen.
We need at least one toss, and it’s heads, we’re done.

If it’s tail (with probability 1/2), we need to repeat. Hence

E = 1+
1

2
E,

whose solution is E = 2

X033533-Algorithm@SJTU Xiaofeng Gao Divide and Conquer 33/73



Divide-and-Conquer
Applications

Sorting Networks

Search and Sort
Median
Matrix Multiplication

The efficiency analysis (cont’d)

Let T(n) be the expected running time on an array of size n, we get

T(n) ≤ T(3n/4) + O(n) = O(n).
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The product of two n× n matrices X and Y is a third n× n matrix
Z = XY , with (i, j)th entry

Zij =

n
∑

k=1

XikYkj

That is, Zij is the dot product of the ith row of X with the jth column

of Y .

In general, XY is not the same as YX; matrix multiplication is not

commutative.

The preceding formula implies an O(n3) algorithm for matrix

multiplication.
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Volker Strassen

Volker Strassen (1936 – )

In 1969, the German mathematician Volker Strassen announced a

surprising O(n2.81) algorithm.
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Divide and conquer

X =

[

A B

C D

]

, Y =

[

E F

G H

]

Then

XY =

[

A B

C D

] [

E F

G H

]

=

[

AE + BG AF + BH
CE + DG CF + DH

]

To compute the size-n product XY , recursively compute eight size-n/2
products AE, BG, AF, BH, CE, DG, CF, DH and then do some

O(n2)-time addition.

The recurrence is

T(n) = 8T(n/2) + O(n2)

with solution O(n3).
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Strassen’s trick

XY =

[

P5 + P4 − P2 + P6 P1 + P2
P3 + P4 P1 + P5 = P3 − P7

]

where

P1 = A(F − H) P5 = (A+ D)(E + H)
P2 = (A + B)H P6 = (B− D)(G+ H)
P3 = (C + D)E P7 = (A− C)(E + F)
P4 = D(G− E)

The recurrence is

T(n) = 7T(n/2) + O(n2)

with solution O(nlog2 7) ≈ O(n2.81).
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Introduction

Previously, we examined sorting algorithms for serial computers

(random-access machines, RAM’s) that allow only one operation to

be executed at a time.

In this section, we investigate sorting algorithms based on a

comparison-network model of computation, in which many

comparison operations can be performed simultaneously.

Comparison Network VS RAM’s

⊲ Comparison network can only perform comparisons. (Cannot

deal with Counting Sort etc)

⊲ Comparison network run parallel operations.
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Definition

A comparison network is composed solely of wires and comparators.

A comparator is a device with two inputs, x and y, and two outputs, x′

and y′, that performs the following function:

x′ = min{x, y}, y′ = max{x, y}.

Each comparator operates in O(1) time.
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Wire

A wire transmits a value from place to place.

⊲ Connect the output of one comparator to the input of another;

⊲ The network input wires or output wires.

Assume a comparison networks contains n input wires

< a1, a2, · · · , an >, through which the values to be sorted enter the
network, and n output wires < b1, b2, · · · , bn > , which produce the

results computed by the network.

Draw a comparison network on n inputs as a collection of n horizontal

lines with comparators stretched vertically.
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An Example

Data move from left to

right.

Interconnections must be

acyclic.

If a comparator has two

input wires with depths dx
and dy, then its output wire

have depth

max{dx, dy}+ 1. (Initially

is 0)
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Sorting Network

A sorting network is a comparison network for which the output

sequence is monotonically increasing (b1 ≤ b2 ≤ · · · ≤ bn) for every
input sequence.

We are discussing a family of comparison networks according to the

input size.
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Zero-One Principle

The zero-one principle says that if a sorting network works correctly

when each input is drawn from the set {0,1}, then it works correctly

on arbitrary input numbers (e.g., integers, reals, or any linearly

ordered set).

This principle allow us to focus on the operations for input sequences

consisting solely of 0’s and 1’s.

Once we have constructed a sorting network and proved that it can

sort all zero-one sequence, we shall appeal to 0-1 principle to prove

its correctness on arbitrary values.

Note: the proof of 0-1 principle relies on the notion of monotonically

increasing function.
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Lemma

Lemma: If a comparison network transforms the input sequence

a =< a1, a2, · · · , an > into the output sequence

b =< b1, b2, · · · , bn >, then for any monotonically increasing
function f , the network transforms the input sequence

f (a) =< f (a1), f (a2), · · · , f (an) > into the output sequence

f (b) =< f (b1), f (b2), · · · , f (bn) >.
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Proof (by Induction)

Consider a comparator whose input values are x and y. The upper

output is min{x, y} while the lower output is max{x, y}.

If we apply f (x) and f (y) as the inputs, the operation of the
comparator yields the value of upper min{f (x), f (y)} and lower
max{f (x), f (y)}.

Since f is monotonically increasing, x ≤ y implies f (x) ≤ f (y).
Thus we have

min{f (x), f (y)} = f (min{x, y}),

max{f (x), f (y)} = f (max{x, y}),

which completes the proof of the claim as the base case.
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Proof (Continued)

We use induction on the depth of each wire in a general comparison

network to prove a stronger result than the statement of the lemma:

If a wire assumes the value ai when the input sequence is a, then it

assumes the value f (ai) when the input sequence is f (a).

Since the output wires are included in this statement, proving it will

prove the lemma.
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Proof (Continued)

Basis: A wire at depth 0 is an input wire ai. When f (a) is applied to
the network, the input wire carries f (ai).

Induction: A wire at depth d ≥ 1 is the output of a comparator at

depth d, and the input wires to this comparator are at a depth strictly

less than d. By inductive hypothesis, if the input wires carry values ai
and aj with input sequence a, then they carry f (ai) and f (aj) with
input sequence f (a).

By previous claim, the output wires of this comparator then carry

f (min{ai, aj}) and f (max{ai, aj}). Since the carry min{ai, aj} and
max{ai, aj} when the input sequence is a, the lemma is proved.
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An Example
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Zero-One Principle

Theorem: If a comparison network with n inputs sorts all 2n possible

sequences of 0’s and 1’s correctly, then it sorts all sequences of

arbitrary numbers correctly.

Proof: (Contradiction) Suppose there exists a sequence of arbitrary

numbers that the network does not correctly sort. That is , there exists

an input sequence < a1, a2, · · · , an > containing elements ai and aj,

such that ai < aj, but the network places aj before ai in the output
sequence.
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Proof (Continued)

Define a monotonically increasing function f as

f (x) =

{

0 if x ≤ ai,
1 if x > ai.

Since the network places aj before ai, by previous lemma, it will place

f (aj) before f (ai) in the output sequence when
< f (a1), f (a2), · · · , f (an) > is input.

However, since f (aj) = 1 and f (ai) = 0, the network fails to sort the

zero-one sequence < f (a1), f (a2), · · · , f (an) > correctly.

A contradiction!
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Construction of a Sorting Network

To construct a sorting network, we need three steps:

Step 1: Construct a Bitonic Sorter⇒ to sort bitonic sequence.

Step 2: Construct a Merger⇒ to merge two sorted sequence.

Step 3: Construct a Sorter⇒ to sort an arbitrary sequence.
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Step 1: Construct a Bitonic Sorter

We start from Bitonic sequence.

A Bitonic Sequence is a sequence that monotonically increases and

then monotonically decreases, or can be circularly shifted to become

monotonically increasing and then monotonically decreasing.

Examples: <1,4,6,8,3,2>, <6,9,4,2,3,5>, <9,8,3,2,4,6>
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Half-Cleaner

A half-cleaner is a comparison network of depth 1, in which input line

i is compared with line i+
n

2
for i = 1, 2, · · · ,

n

2
(assume n is even).
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Half-Cleaner (2)

When a bitonic sequence of 0’s and 1’s is applied as input to a

half-cleaner, it produces an output sequence with smaller values in the

top-half, and larger values in the bottom-half. Both halves are bitonic.

In fact, at least one of the halves is clean, say, consists of either all 0’s

or all 1’s.
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Half-Cleaner Lemma

Lemma: If the input to a half-cleaner is a bitonic sequence of 0’s and

1’s, then the output satisfies the following properties:

⊲ both the top half and the bottom half are bitonic;

⊲ every element in the top half is at least as small as every element

of the bottom half, and at least one half is clean.
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Proof

The comparison network HALF-CLEANER[n] compares inputs i and

i+ n/2 for i = 1, 2, · · · , n/2. Without loss of generality, suppose that

the input is of the form 00 · · · 011 · · · 100 · · · 0 (the situation of
11 · · · 100 · · · 011 · · · 1 are symmetric).

There are three possible cases depending upon the block of

consecutive 0’s and 1’s in which the midpoint n/2 falls, and one of
these cases is further split into two cases. In each of the cases, the

lemma holds.
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Case Analysis
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Case Analysis (Cont.)

X033533-Algorithm@SJTU Xiaofeng Gao Divide and Conquer 63/73

Divide-and-Conquer
Applications

Sorting Networks

Comparison Networks
Zero-One Principle
Construction of a Sorting Network

The Bitonic Sorter

By recursively combing half-cleaners, we can build a bitonic sorter,

which is a network that sorts bitonic sequences.
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Bitonic-Sorter[n]
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An Example of n = 8
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Depth D(n)

The depth D(n) of BITONIC-SORTER[n] is given by the recurrence

D(n) =

{

0 if n = 1;
D(n/2) + 1 if n = 2k and k ≥ 1,

Easy to see, D(n) = ln n.

Thus, a zero-one bitonic sequence can be sorted by

BITONIC-SORTER[n], which has a depth of ln n.

By zero-one principle, any bitonic sequence of arbitrary numbers can

be sorted by this network.
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Step 2: Construct a Merger

Merging Network can merge two sorted input sequences into one

sorted output sequence.

Given two sorted sequences, if we reverse the order of the second

sequence and then concatenate the two sequences, the resulting

sequence is bitonic.

For instance:

X = 00000111;

Y = 00001111;

YR = 11110000;

X ◦ YR = 0000011111110000.
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MERGER[n]

Given two sorted sequences < a1, a2, · · · , an/2 > and

< an/2+1, an/2+2, · · · , an >, we want the effect of bitonically sorting
the sequence < a1, a2, · · · , an/2, an, an−1, · · · , an/2+1 >.

Since the first half-cleaner of BITONIC-SORTER[n] compares inputs i

with n/2+ i, for i = 1, 2, · · · , n/2, we make the first stage of the
merging network compare inputs i and n− i+ 1.

The order of the outputs from the bottom of the first stage of

MERGER[n] are reversed compared with the order of outputs from an

ordinary half-cleaner.
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Comparison between MERGER[n] and HALF-CLEANER[n]
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MERGER[n]
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Step 3: Construct a Sorter

The sorting network SORTER[n] are composed by two copies of

SORTER[n/2] and one MERGER[n] recursively.
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An Example with n = 8
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Performance Analysis

The depth D(n) of SORTER[n] is the depth D(n/2) of SORTER[n/2]
plus the depth ln n of MERGER[n].

Consequently, the depth of SORTER[n] is given by the recurrence

D(n) =

{

0 if n = 1;
D(n/2) + ln n if k ≥ 1.

By Master’s Theorem, the solution is D(n) = Θ(ln2 n). Thus we can
sort n numbers in parallel in O(ln2 n) time.
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