

Matroid*	Consider a finite set S and a collection \mathbf{C} of subsets of S .
Xiaofeng Gao Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China X033533-Algorithm: Analysis and Theory	 (S, C) is called an independent system if A ⊂ B, B ∈ C ⇒ A ∈ C. We say that C is hereditary if it satisfies this property. Each subset in C is called an independent subset. Note that the empty set Ø is necessarily a member of C.
*Special Thanks is given to Prof. Ding-Zhu Du for sharing his teaching materials. X033533-Algorithm@SJTU Xiaofeng Gao Greedy Algorithm and Matroid 1/48	X033533-Algorithm@SJTU Xiaofeng Gao Greedy Algorithm and Matroid
Matroid Greedy Algorithm on Matroid Task Scheduling Problem	Matroid Greedy Algorithm on Matroid Task Scheduling Problem Matroid
An Example	Matroid
Example : Given an undirected graph $G = (V, E)$, Define H as: $\mathbf{H} = \{F \subseteq E \mid F \text{ is a Hamiltonian circuit or a union of disjoint paths}\}.$ Then (E, \mathbf{H}) is an independent system.	An independent system (S, \mathbb{C}) is a matroid if it satisfies the exchange property: $A, B \in \mathbb{C}$ and $ A > B \Rightarrow \exists x \in A \setminus B$ such that $B \cup \{x\} \in \mathbb{C}$.
Proof : (Hereditary) Given any $F \in \mathbf{H}$ and $P \subset F$. Since <i>F</i> is either a Hamiltonian circuit or a union of disjoint path, <i>P</i> must be a union of disjoint paths, which obviously belongs to \mathbf{H} . \Box	Thus a matroid should satisfy two requirements: hereditary and exchange property .

X033533-Algorithm@SJTU

X033533-Algorithm@SJTU

ly Algorithm on Matroid ask Scheduling Problem

Matric Matroid

Matric Matroid: Consider a matrix M. Let S be the set of row vectors of M and \mathbb{C} the collection of all linearly independent subsets of S. Then (S, \mathbb{C}) is a matroid.

Matroid

Proof:

- Hereditary: If $A \subset B$ and $B \in \mathbb{C}$, meaning *B* is a linearly independent subset of row vectors of *M*, then *A* must be linearly independent.
- Exchange Property: The exchange property is a well known fact for linearly independence. Say, If A, B are sets of linearly independent rows of M, and |A| < |B|, then dim span(A) < dim span(B). Choose a row x in B that is not contained in span(A). Then A ∪ {x} is a linearly independent subset of rows of M. □

X033533-Algorithm@SJTU	Xiaofeng Gao	Greedy Algorithm and Matroid	7/48	X033533-Algorithm@SJTU
Greedy Alg Task Se	Matroid orithm on Matroid heduling Problem	Independent System Matroid		Greedy Algorit Task Sche
More Examples				Notation

Uniform matroid $U_{k,n}$: A subset $X \subseteq \{1, 2, \dots, n\}$ is independent if and only if $|X| \leq k$.

Cographic matroid M_G^* : Let G = (V, E) be an arbitrary undirected graph. A subset $I \subseteq E$ is independent if the complementary subgraph $(V, E \setminus I)$ of G is connected.

Matching matroid: Let G = (V, E) be an arbitrary undirected graph. A subset $I \subseteq V$ is independent if there is a matching in *G* that covers *I*.

Disjoint path matroid: Let G = (V, E) be an arbitrary directed graph, and let *s* be a fixed vertex of *G*. A subset $I \subseteq V$ is independent if and only if there are edge-disjoint paths from *s* to each vertex in *I*.

9/4

Graphic Matroid M_G : Consider a (undirected) graph G = (V, E). Let S = E and **C** the collection of all edge sets each of which induces an acyclic subgraph of G. Then $M_G = (S, \mathbf{C})$ is a matroid.

Matroid

Proof:

- Hereditary: If *B* is an edge set which induces an acyclic subgraph of *G*, obviously any $A \subset B$ induces an acyclic subgraph.
- Exchange Property: consider $A, B \in \mathbb{C}$ with |A| > |B|.

Note that (V, A) has |V| - |A| connected components and (V, B) has |V| - |B| connected components.

Hence, *A* has an edge *e* connecting two connected components of (V, B), which implies $B \cup \{e\} \in \mathbb{C}$. \Box

X033533-Algorithm@SJTU Xiaofeng Gao Greedy Algorithm and Matroid

rithm on Matroid Independent

The word "matroid" is due to Hassler Whitney^[1], who first studied matric matroid (1935).

Actually the greedy algorithm first appeared in the combinatorial optimization literature by Jack Edmonds^[2] (1971).

An extension of matroid theory to **greedoid** theory was pioneered by Korte and Lovász, who greatly generalize the theory (1981-1984).

Hassler Whitney (1907-1989) Wolf Prize (1983)

[1] Hassler Whitney. On the abstract properties of linear dependence. *American Journal of Mathematics*, 57:509-533, 1935.

[2] Jack Edmonds. Matroids and the greedy algorithm. *Mathematical Programming*, 1:126-136, 1971.

8/48

Extension

An element *x* is called an extension of an independent subset *I* if $x \notin I$ and $I \cup \{x\}$ is independent.

An independent subset is maximal if it has no extension.

For any subset $F \subseteq S$, an independent subset $I \subseteq F$ is maximal in F if I has no extension in F.

u(F) and v(F)Greedy-MAX Algorithm

Maximal Independent Subset

Consider an independent system (S, \mathbb{C}) . For $F \subseteq S$, define

 $u(F) = \min\{|I| | I \text{ is a maximal independent subset of } F\}$

 $v(F) = \max\{|I| \mid I \text{ is an independent subset of } F\}$

Matroid Greedy Algorithm on Matroid Task Scheduling Problem $u(F)$ and $v(F)$ Greedy-MAX Algorithm	Matroid Greedy Algorithm on Matroid Task Scheduling Problem Matroid U(F) and v(F) Greedy-MAX Algorithm			
Matroid Theorem	Corollary			
Theorem : An independent system (S, \mathbb{C}) is a matroid if and only if for any $F \subseteq S$, $u(F) = v(F)$.				
Proof : (\Rightarrow) For two maximal independent subsets <i>A</i> and <i>B</i> , if $ A > B $, then there must exist an $x \in A$ such that $B \cup \{x\} \in \mathbb{C}$, contradicting the maximality of <i>B</i> .	Corollary : All maximal independent subsets in a matroid have the same size.			
(⇐) Consider two independent subsets <i>A</i> and <i>B</i> with $ A > B $. Set $F = A \cup B$. Then every maximal independent subset <i>I</i> of <i>F</i> has size $ I \ge A > B $. Hence, <i>B</i> cannot be a maximal independent subset of <i>F</i> , so <i>B</i> has an extension in <i>F</i> .	Proof : (Contradiction) Suppose <i>A</i> and <i>B</i> are two maximal independent subsets with $ A > B $, then <i>B</i> must have an extension in $A \cup B$, which violates its maximality property.			
Thus the definition of matroid could be either by exchange property or by $u(F) = v(F)$. X033533-Algorithm@SJTU Xiaofeng Gao Greedy Algorithm and Matroid 16/48	X033533-Algorithm@SJTU Xiaofeng Gao Greedy Algorithm and Matroid 17/48			
Matroid Greedy Algorithm on Matroid u(F) and $v(F)Greedy MAX Algorithm$	$\begin{array}{c} \text{Matroid} \\ \text{Greedy Algorithm on Matroid} \\ \end{array} \begin{array}{c} u(F) \text{ and } v(F) \\ \text{Greedy AAX Algorithm} \end{array}$			
Basis	Weighted Independent System			
	An independent system (S, \mathbb{C}) with a nonnegative function $c: S \to \mathbb{R}^+$ is called a weighted independent system.			
In a matroid (S, \mathbf{C}) , every maximal independent subset of S is called a basis (some reference call it base).	In a weighted matroid, there is a maximum weight independent subset which is a basis.			
Example : In a graphic matroid $M_G = (S, \mathbb{C}), A \in \mathbb{C}$ is a basis if and only if A is a spanning tree.	Note: we can define the associated strictly positive weight function $c(\cdot)$ to each element $x \in S$. Thus the weight function extends to subsets of <i>S</i> by summation:			
	$c(A) = \sum_{x \in A} c(x).$			

Matroid u(F) and v(F)Greedy-MAX Algorithm

Proof(2)

Now we express $c(A_G)$ and $c(A^*)$ in terms of $|S_i \cap A_G|$ and $|S_i \cap A^*|$.

Matroic

Firstly,
$$|S_i \cap A_G| - |S_{i-1} \cap A_G| = \begin{cases} 1, & \text{if } x_i \in A_G, \\ 0, & \text{otherwise.} \end{cases}$$

Therefore,

$$\begin{aligned} c(A_G) &= \sum_{x_i \in A_G} c(x_i) \\ &= c(x_1) \cdot |S_1 \cap A_G| + \sum_{i=2}^n c(x_i) \cdot (|S_i \cap A_G| - |S_{i-1} \cap A_G|) \\ &= \sum_{i=1}^{n-1} |S_i \cap A_G| \cdot (c(x_i) - c(x_{i+1})) + |S_n \cap A_G| \cdot c(x_n) \end{aligned}$$

Similarly,

$$c(A^*) = \sum_{i=1}^{n-1} |S_i \cap A^*| \cdot (c(x_i) - c(x_{i+1})) + |S_n \cap A^*| \cdot c(x_n)$$

Greedy Algorithm and Matroid

Greedy-MAX Algorithm

Xiaofeng Gao

Greedy Algorithm on Matroid

Proof (4)

X033533-Algorithm@SJTU

Thus,

$$1 \le \frac{c(A^*)}{c(A_G)} \le \rho = \max_{F \subseteq S} \frac{v(F)}{u(F)}.$$

Note: This theorem implies that if we use Greedy-MAX to find a subset $I \in \mathbb{C}$ with the maximum weight, the result will not be that bad.

It is bounded by the size of the maximum size independent subset of *S* versus the minimum size maximal independent subset of *S*. Say,

$$\frac{1}{\rho} \cdot c(A^*) \le c(A_G) \le c(A^*).$$

Greedy Algorithm on Matroid Task Scheduling Problem

Greedy-MAX Algorithm

Proof(3)

Define
$$\rho = \max_{F \subseteq S} \frac{v(F)}{u(F)}$$
. Then we have
 $c(A^*) = \sum_{i=1}^{n-1} |S_i \cap A^*| \cdot (c(x_i) - c(x_{i+1})) + |S_n \cap A^*| \cdot c(x_n))$
 $\leq \sum_{i=1}^{n-1} v(S_i) \cdot (c(x_i) - c(x_{i+1})) + v(S_n) \cdot c(x_n)$
 $\leq \sum_{i=1}^{n-1} \rho \cdot u(S_i) \cdot (c(x_i) - c(x_{i+1})) + \rho \cdot u(S_n) \cdot c(x_n)$
 $\leq \sum_{i=1}^{n-1} \rho \cdot |S_i \cap A_G| \cdot (c(x_i) - c(x_{i+1})) + \rho \cdot |S_n \cap A_G| \cdot c(x_n)$
 $= \rho \cdot c(A_G).$

Greedy Algorithm and Matroid

Greedy-MAX Algorithm

Corollary for Matroid

X033533-Algorithm@SJTU

Corollary: If (S, \mathbf{C}, c) is a weighted matroid, then Greedy-MAX algorithm performs the optimal solution.

Xiaofeng Gao

Greedy Algorithm on Matroid

Matroi

Proof: Since in a matroid for any $F \subseteq S$, u(F) = v(F), the corollary can be directly derived from the previous theorem. \Box

Greedy Algorithm on Matroid

Minimizing or Maximizing?

Let $M = (S, \mathbb{C})$ be a matroid.

The algorithm Greedy-MAX(M, c) returns a set $I \in \mathbb{C}$ maximizing the weight c(I).

Greedy-MAX Algorithm

If we would like to find a set $I \in \mathbb{C}$ with minimal weight, then we can use Greedy-MAX with weight function

```
c^*(x_i) = m - c(x_i), \qquad \forall x_i \in I,
```

where *m* is a real number such that $m > \max_{x_i \in S} c(x_i)$.

An Example: Graphic Matroid

Minimum Spanning Tree: For a connected graph G = (V, E) with edge weight $c : E \to \mathbb{R}^+$, computing the minimum spanning tree.

Greedy-MAX Algorithm

If we set $c_{\max} = \max_{e \in E} c(e)$ and define $c^*(e) = c_{\max} - c(e)$, for every edge $e \in E$, then the MST problem is equivalent to find the maximum weight independent subset in the graphic matriod M_G .

This is because every maximum weight independent set is a base, i.e., a spanning tree which contains a fixed number of edges.

$$c^*(A) = (|V| - 1)c_{\max} - c(A)$$

An independent subset that maximizes the quantity $c^*(A)$ must minimize c(A).

X033533-Algorithm@SJTUXiaofeng GaoGreedy Algorithm and Matroid29/48	X033533-Algorithm@SJTU Xiaofeng Gao Greedy Algorithm and Matroid 30/48
$\begin{array}{c} \text{Matroid} \\ \text{Greedy Algorithm on Matroid} \\ \text{Task Scheduling Problem} \end{array} \begin{array}{c} u(F) \text{ and } v(F) \\ \text{Greedy-MAX Algorithm} \end{array}$	$\begin{array}{c} & \text{Matroid} \\ \textbf{Greedy Algorithm on Matroid} \\ & \text{Task Scheduling Problem} \end{array} u(F) \text{ and } v(F) \\ \textbf{Greedy-MAX Algorithm} \end{array}$
An Example (Cont.)	More Examples
	Matric matroid : Given a matrix M , compute a subset of vectors of maximum total weight that span the column space of M .
Thus if we implement Greedy-MAX to M_G , we will achieve a solution exactly the same as the Kruskal Algorithm.	Uniform matroid : Given a set of weighted objects, compute its <i>k</i> largest elements.
We could also use the property of Greedy-MAX on Matroid to validate the correctness of the Kruskal algorithm.	Cographic matroid : Given a graph with weighted edges, compute its minimum spanning tree.
	Matching matroid : Given a graph, determine whether it has a perfect matching.
	Disjoint path matroid : Given a directed graph with a special vertex <i>s</i> , find the largest set of edge-disjoint paths from <i>s</i> to other vertices.

X033533-Algorithm@SJTU

Greedy Algorithm on Matroid

u(F) and v(F)Greedy-MAX Algorithm

Matroid v.s. Greedy-MAX

Theorem: An independent system (S, \mathbb{C}) is a matroid if and only if for any cost function $c(\cdot)$, the Greedy-MAX algorithm gives an optimal solution.

Proof. (\Rightarrow) When (*S*, **C**) is a matroid, u(F) = v(F) for any $F \subseteq S$. Therefore, Greedy-MAX gives optimal solution.

Next, we show (\Leftarrow).

Sufficiency

(\Leftarrow) For contradiction, suppose independent system (S, \mathbb{C}) is not a matroid. Then there exists $F \subseteq S$ such that F has two maximal independent sets I and J with |I| < |J|. Define

Greedy-MAX Algorithm

Greedy Algorithm on Matroid

$$c(e) = \begin{cases} 1 + \varepsilon & \text{if } e \in I \\ 1 & \text{if } e \in J \setminus I \\ 0 & \text{if } e \in S \setminus (I \cup J) \end{cases}$$

where ε is a sufficiently small positive number to satisfy c(I) < c(J). Then the Greedy-MAX algorithm will produce *I*, which is not optimal!

36/48

Properties of a Schedule

Given a schedule S, Define:

Early: a task is early in *S* if it finishes before its deadline. **Late**: a task is late in *S* if it finishes after its deadline.

Early-First Form: *S* is in the early-first form if the early tasks precede the late tasks.

Claim: An arbitrary schedule can always be put into *early-first form* without changing its penalty value.

Unit-Time Task Scheduling

Properties of a Schedule (2)

Canonical Form: An arbitrary schedule can always be transformed into *canonical form*, in which the early tasks precede the late tasks and are scheduled in order of monotonically increasing deadlines.

Unit-Time Task Scheduling

Greedy Algorithm and Matroid

First put the schedule into early-first form.

Then swap the position of any consecutive early tasks a_i and a_j if $d_j > d_i$ but a_j appears before a_i .

Matroid Greedy Algorithm on Matroid Task Scheduling Problem Unit-Time Task Scheduling Greedy Approach

Xiaofeng Gao

Reduction

X033533-Algorithm@SJTU

The search for an optimal schedule *S* thus reduces to finding a set *A* of tasks that we assign to be early in the optimal schedule.

To determine A, we can create the actual schedule by listing the elements of A in order of monotonically increasing deadlines, then listing the late tasks (i.e., S - A) in any order, producing a canonical ordering of the optimal schedule.

X033533-Algorithm@SJTU

troid Unit-Time Task Scho Greedy Approach

Independence

Independent: A set of tasks *A* is independent if there exists a schedule for these tasks without penalty.

Clearly, the set of early tasks for a schedule forms an independent set of tasks. Let C denote the set of all independent sets of tasks.

For $t = 0, 1, 2, \cdots, n$, let

 $N_t(A)$ denote the number of tasks in A whose deadline is t or earlier.

Note that $N_0(A) = 0$ for any set A.

X033533-Algorithm@SJTUXiaofeng GaoGreedy Algorithm and Matroid43/48	X033533-Algorithm@SJTUXiaofeng GaoGreedy Algorithm and Matroid44/48
Matroid Greedy Algorithm on Matroid Task Scheduling Problem Greedy Approach	Matroid Greedy Algorithm on Matroid Task Scheduling Problem Greedy Approach
Greedy Approach	Matroid Theorem
Use the previous lemma, we can easily compute whether or not a given set of tasks is independent.	Theorem : Let <i>S</i> be a set of unit-time tasks with deadlines and C the set of all independent tasks of <i>S</i> . Then (S, \mathbf{C}) is a matroid.
The problem of minimizing the sum of the penalties of the late tasks is the same as the problem of maximizing the sum of the penalties of the early tasks.	Proof : (Hereditary): Trivial. (Exchange Property): Consider two independent sets <i>A</i> and <i>B</i> with $ A < B $. Let <i>k</i> be the largest <i>t</i> such that $N_t(A) \ge N_t(B)$. Then $k < n$ and $N_t(A) < N_t(B)$ for $k + 1 \le t \le n$. Choose $x \in \{i \in B \setminus A \mid d_i = k + 1\}$.
Thus if (S, \mathbb{C}) is a matroid, then we can use Greedy-MAX to find an independent set A of tasks with the maximum total penalty, which is	Then, $N_t(A \cup \{x\}) = N_t(A) \le t$, for $1 \le t \le k$,

and $N_t(A \cup \{x\}) = N_t(A) + 1 \le N_t(B) \le t$, for $k + 1 \le t \le n$. Thus $A \cup \{x\} \in \mathbb{C}$.

Lemma

Lemma: For any set of tasks A, the statements (1)-(3) are equivalent.

Greedy Approach

(1). The set A is independent.

(2). For $t = 0, 1, 2, \dots, n, N_t(A) \le t$.

(3). If the tasks in *A* are scheduled in order of monotonically increasing deadlines, then no task is late.

Proof:

(3)

 $\neg(2) \Rightarrow \neg(1)$: if $N_t(A) > t$ for some *t*, then there is no way to make a schedule with no late tasks for set *A*, because more than *t* tasks must finish before time *t*. Therefore, (1) implies (2).

 $(2) \Rightarrow (3)$: there is no way to "get stuck" when scheduling the tasks in order of monotonically increasing deadlines, since (2) implies that the *i*th largest deadline is at least *i*.

$$\Rightarrow$$
 (1): trivial.

proved to be an optimal solution.

45/48

The Algorithm

Implementing Greedy-MAX, for any given set of tasks *S*, we could sort them by penalties and determine the best selections.

Unit-Time Task Scheduling Greedy Approach

Time Complexity: $O(n^2)$.

Sort the tasks takes $O(n \log n)$.

Check whether $A \cup \{x\} \in \mathbb{C}$ takes O(n).

There are totally O(n) iterations of independence check.

Thus the finally complexity is $O(n \log n + n \cdot n) \rightarrow O(n^2)$.

An Example

Given an instance of 7 tasks with deadlines and penalties as follows:

Greedy Approach

a_i	1	2	3	4	5	6	7
d_i	4	2	4	3	1	4	6
Wi	70	60	50	40	30	20	10

Greedy-MAX selects a_1 , a_2 , a_3 , a_4 , then rejects a_5 , a_6 , and finally accepts a_7 .

The final schedule is $\langle a_2, a_4, a_1, a_3, a_7, a_5, a_6 \rangle$.

Task Scheduling Problem

The optimal penalty is $w_5 + w_6 = 50$

X033533-Algorithm@SJTU	Xiaofeng Gao	Greedy Algorithm and Matroid	47/48	X033533-Algorithm@SJTU	1	Xiaofeng Gao	Greedy Algorithm and Matroid	48/48