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Algorithmic Paradigms

Greedy.  Build up a solution incrementally, myopically optimizing some 

local criterion.

Divide-and-conquer.  Break up a problem into sub-problems, solve each 

sub-problem independently, and combine solution to sub-problems to 

form solution to original problem. 

Dynamic programming. Break up a problem into a series of overlapping 

sub-problems, and build up solutions to larger and larger sub-problems.
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Dynamic Programming Applications

Areas. 

Bioinformatics.

Control theory.

Information theory.

Operations research.

Computer science:  theory, graphics, AI, compilers, systems, ….

Some famous dynamic programming algorithms. 

Unix diff for comparing two files.

Viterbi for hidden Markov models.

Smith-Waterman for genetic sequence alignment.

Bellman-Ford for shortest path routing in networks.

Cocke-Kasami-Younger for parsing context free grammars.
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Weighted Interval Scheduling

Weighted interval scheduling problem.

Job j starts at sj, finishes at fj, and has weight or value vj . 

Two jobs compatible if they don't overlap.

Goal:  find maximum weight subset of mutually compatible jobs.
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Unweighted Interval Scheduling Review

Recall.  Greedy algorithm works if all weights are 1.

Consider jobs in ascending order of finish time.

Add job to subset if it is compatible with previously chosen jobs.

Observation.  Greedy algorithm can fail spectacularly if arbitrary 

weights are allowed.
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1  f2  . . . fn .

Def.  p(j) = largest index i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.
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Dynamic Programming:  Binary Choice

Notation.  OPT(j) = value of optimal solution to the problem consisting 

of job requests 1, 2, ..., j.

Case 1:  OPT selects job j.

– collect profit vj

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j)

Case 2:  OPT does not select job j.

– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1

OPT( j)
0 if  j 0

max v j OPT( p( j)), OPT( j 1) otherwise

optimal substructure

8



Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 f2 ... fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

if (j = 0)

return 0

else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling:  Brute Force

Brute force algorithm.
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Weighted Interval Scheduling:  Brute Force

Observation.  Recursive algorithm fails spectacularly because of 

redundant sub-problems  exponential algorithms.

Ex.  Number of recursive calls for family of "layered" instances grows 

like Fibonacci sequence.
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 f2 ... fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

M[j] = empty

M[0] = 0

M-Compute-Opt(j) {

if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

return M[j]

}

global array

Weighted Interval Scheduling:  Memoization

Memoization.  Store results of each sub-problem in a cache;

lookup as needed.
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Weighted Interval Scheduling:  Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.

Sort by finish time:  O(n log n).

Computing p( ) :  O(n log n) via sorting by start time.

M-Compute-Opt(j):  each invocation takes O(1) time and either

– (i)  returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

Progress measure = # nonempty entries of M[].

– initially = 0,  throughout n. 

– (ii) increases by 1  at most 2n recursive calls.

Overall running time of M-Compute-Opt(n) is O(n).   

Remark.  O(n) if jobs are pre-sorted by start and finish times.
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Weighted Interval Scheduling:  Finding a Solution

Q.  Dynamic programming algorithms computes optimal value.

What if we want the solution itself?

A.  Do some post-processing.

# of recursive calls n  O(n).

Run M-Compute-Opt(n)

Run Find-Solution(n)

Find-Solution(j) {

if (j = 0)

output nothing

else if (vj + M[p(j)] > M[j-1])

print j

Find-Solution(p(j))

else

Find-Solution(j-1)

}
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Weighted Interval Scheduling:  Bottom-Up

Bottom-up dynamic programming.  Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 f2 ... fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])

}
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Segmented Least Squares

Segmented Least Squares

Least squares.

Foundational problem in statistic and numerical analysis.

Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn).

Find a line y = ax + b that minimizes the sum of the squared error: 

Solution.  Calculus  min error is achieved when
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Segmented Least Squares

Segmented least squares.

Points lie roughly on a sequence of several line segments.

Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q.  What's a reasonable choice for f(x) to balance accuracy and 

parsimony?
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Segmented Least Squares

Segmented least squares.

Points lie roughly on a sequence of several line segments.

Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment

– the number of lines L

Tradeoff function:  E + c L, for some constant c > 0.

x

y
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Dynamic Programming:  Multiway Choice

Notation.

OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.

e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

Last segment uses points pi, pi+1 , . . . , pj for some i.

Cost = e(i, j) + c + OPT(i-1).

OPT( j)
0 if  j 0

min
1 i j

e(i, j) c OPT(i 1) otherwise
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Segmented Least Squares:  Algorithm

Running time.  O(n3).

Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using 

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {

M[0] = 0

for j = 1 to n

for i = 1 to j

compute the least square error eij for

the segment pi,…, pj

for j = 1 to n

M[j] = min 1 i j (eij + c + M[i-1])

return M[n]

}

can be improved to O(n2) by pre-computing various statistics
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Knapsack Problem

Knapsack Problem

Knapsack problem.

Given n objects and a "knapsack."

Item i weighs wi  > 0 kilograms and has value vi > 0.

Knapsack has capacity of W kilograms.

Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.

Ex: { 5, 2, 1 } achieves only value = 35  greedy not optimal.
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Dynamic Programming:  False Start

Def.  OPT(i) = max profit subset of items 1, …, i.

Case 1:  OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 } 

Case 2:  OPT selects item i.

– accepting item i does not immediately imply that we will have to 

reject other items

– without knowing what other items were selected before i,

we don't even know if we have enough room for i

Conclusion.  Need more sub-problems!
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Dynamic Programming:  Adding a New Variable

Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

Case 1:  OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 } using weight limit w 

Case 2:  OPT selects item i.

– new weight limit = w – wi

– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

OPT(i,w)

0 if  i 0

OPT(i 1,w) if  wi w

max OPT(i 1,w), vi OPT(i 1,w wi ) otherwise

24



Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 1 to W

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Knapsack Problem:  Bottom-Up

Knapsack.  Fill up an n-by-W array.
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Knapsack Algorithm
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OPT:  { 4, 3 }
value = 22 + 18 = 40
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Knapsack Problem:  Running Time

Running time.  (n W).

Not polynomial in input size!

"Pseudo-polynomial."

Decision version of Knapsack is NP-complete.  [Chapter 8]

Knapsack approximation algorithm.  There exists a poly-time algorithm 

that produces a feasible solution that has value within 0.01% of 

optimum.  [Section 11.8]
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RNA Secondary Structure

RNA.  String B = b1b2 bn over alphabet { A, C, G, U }.

Secondary structure.  RNA is single-stranded so it tends to loop back 

and form base pairs with itself. This structure is essential for 

understanding behavior of molecule.
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Ex:  GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs:  A-U, C-G
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RNA Secondary Structure

Secondary structure.  A set of pairs S = { (bi, bj) } that satisfy:

[Watson-Crick.] S is a matching and each pair in S is a Watson-

Crick complement: A-U, U-A, C-G, or G-C.

[No sharp turns.] The ends of each pair are separated by at least 4 

intervening bases.  If (bi, bj) S, then i < j - 4.

[Non-crossing.] If (bi, bj)  and (bk, bl) are two pairs in S, then we 

cannot have i < k < j < l.

Free energy.  Usual hypothesis is that an RNA molecule will form the 

secondary structure with the optimum total free energy.

Goal.  Given an RNA molecule B = b1b2 bn, find a secondary structure S 

that maximizes the number of base pairs.

approximate by number of base pairs
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RNA Secondary Structure:  Examples

Examples.
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RNA Secondary Structure:  Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary 

structure of the substring  b1b2 bj.

Difficulty. Results in two sub-problems.

Finding secondary structure in: b1b2 bt-1.

Finding secondary structure in: bt+1bt+2 bn-1.

1 t n

match bt and bn

OPT(t-1)

need more sub-problems
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Dynamic Programming Over Intervals

Notation.  OPT(i, j) = maximum number of base pairs in a secondary 

structure of the substring  bibi+1 bj.

Case 1.  If i j - 4.

– OPT(i, j) = 0 by no-sharp turns condition.

Case 2.  Base bj is not involved in a pair.

– OPT(i, j) = OPT(i, j-1)

Case 3.  Base bj pairs with bt for some i t < j - 4.

– non-crossing constraint decouples resulting sub-problems

– OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

Remark.  Same core idea in CKY algorithm to parse context-free grammars.

take max over t such that i t < j-4 and
bt and bj are Watson-Crick complements
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Bottom Up Dynamic Programming Over Intervals

Q.  What order to solve the sub-problems?

A.  Do shortest intervals first.

Running time.  O(n3).

RNA(b1,…,bn) {

for k = 5, 6, …, n-1

for i = 1, 2, …, n-k

j = i + k

Compute M[i, j]

return M[1, n]

}
using recurrence
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Dynamic Programming Summary

Recipe.

Characterize structure of problem.

Recursively define value of optimal solution.

Compute value of optimal solution.

Construct optimal solution from computed information.

Dynamic programming techniques.

Binary choice:  weighted interval scheduling.

Multi-way choice:  segmented least squares.

Adding a new variable:  knapsack.

Dynamic programming over intervals:  RNA secondary structure.

Top-down vs. bottom-up:  different people have different intuitions.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

CKY parsing algorithm for context-free
grammar has similar structure
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String Similarity

How similar are two strings?

ocurrance

occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps
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Applications.

Basis for Unix diff.

Speech recognition.

Computational biology.

Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]

Gap penalty ; mismatch penalty pq.

Cost = sum of gap and mismatch penalties.

2 + CA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

TC + GT + AG+ 2 CA

-

Edit Distance
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Goal:  Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find 

alignment of minimum cost.

Def.  An alignment M is a set of ordered pairs xi-yj such that each item 

occurs in at most one pair and no crossings.

Def.  The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.

Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment



cost(M ) x i y j
(xi , y j ) M

mismatch

  
i : xi  unmatched j : y j  unmatched

gap

  

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6
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Sequence Alignment:  Problem Structure

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

Case 1:  OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings

x1 x2 . . . xi-1 and y1 y2 . . . yj-1

Case 2a:  OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

Case 2b:  OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

OPT (i, j)

j if  i 0

min  

xi y j
OPT (i 1, j 1)

OPT (i 1, j)

OPT (i, j 1)

otherwise

i if  j 0
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Sequence Alignment:  Algorithm

Analysis.  (mn) time and space.

English words or sentences:  m, n  10.

Computational biology:  m = n = 100,000. 10 billions ops OK, but 10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, , ) {

for i = 0 to m

M[i, 0] = i

for j = 0 to n

M[0, j] = j

for i = 1 to m

for j = 1 to n

M[i, j] = min( [xi, yj] + M[i-1, j-1],

+ M[i-1, j],

+ M[i, j-1])

return M[m, n]

}
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Sequence Alignment in Linear Space

Sequence Alignment:  Linear Space

Q.  Can we avoid using quadratic space?

Easy.  Optimal value in O(m + n) space and O(mn) time.

-

No longer a simple way to recover alignment itself.

Theorem.  [Hirschberg 1975] Optimal alignment in O(m + n) space and 

O(mn) time.

Clever combination of divide-and-conquer and dynamic programming.

Inspired by idea of Savitch from complexity theory.
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Edit distance graph.

Let f(i, j) be shortest path from (0,0) to (i, j).

Observation:  f(i, j) = OPT(i, j).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

xiy j
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Edit distance graph.

Let f(i, j) be shortest path from (0,0) to (i, j).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

j
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Edit distance graph.

Let g(i, j) be shortest path from (i, j) to (m, n).

Can compute by reversing the edge orientations and inverting the 

roles of (0, 0) and (m, n)

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

xiy j
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Edit distance graph.

Let g(i, j) be shortest path from (i, j) to (m, n).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

j
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Observation 1.  The cost of the shortest path that uses (i, j) is

f(i, j) + g(i, j). 

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0
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Observation 2.  let q be an index that minimizes f(q, n/2) + g(q, n/2). 

Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

n / 2

q

49

Divide:  find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

Align xq and yn/2.

Conquer:  recursively compute optimal alignment in each piece.

Sequence Alignment:  Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

q

n / 2

m-n
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 

length at most m and n. T(m, n) = O(mn log n).

Remark.  Analysis is not tight because two sub-problems are of size

(q, n/2) and (m - q, n/2).  In next slide, we save log n factor.

Sequence Alignment:  Running Time Analysis Warmup

T (m, n) 2T (m, n /2) O(mn) T (m, n) O(mn logn)
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 

length m and n. T(m, n) = O(mn).

Pf.  (by induction on n)

O(mn) time to compute f(

T(q, n/2) + T(m - q, n/2) time for two recursive calls. 

Choose constant c so that:

Base cases: m = 2 or n = 2. 

Inductive hypothesis:  T(m, n) 2cmn.

Sequence Alignment:  Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT

2

2/)(22/2

)2/,()2/,(),(

T(m, 2) cm

T(2, n) cn

T(m, n) cmn T(q, n /2) T(m q, n /2)
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