Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some

Ch(lp'rel" 6 local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve each
sub-problem independently, and combine solution to sub-problems to
form solution to original problem.

Dynamic Programming

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

“\ JON KLEINBERG - EVA TARDOS

PEARSON Slides by Kevin Wayne.
T e Copyright © 2005 Pearson-Addison Wesley
All rights reserved.

Acknowledgement: This lecture slide is revised and authorized from Prof. Kevin Wayne's Class
The original and official versions are at

Dynamic Programming Applications

Areas. Weighted Interval Scheduling

. Bioinformatics.

. Control theory.

« Information theory.

. Operations research.

. Computer science: theory, graphics, AT, compilers, systems, ...

Some famous dynamic programming algorithms.
. Unix diff for comparing two files.
. Viterbi for hidden Markov models.
. Smith-Waterman for genetic sequence alignment.
. Bellman-Ford for shortest path routing in networks.
. Cocke-Kasami-Younger for parsing context free grammars.

Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at Sj. finishes at fj, and has weight or value vj.
. Two jobs compatible if they don't overlap.
. Goal: find maximum weight subset of mutually compatible jobs.

Time

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
. Consider jobs in ascending order of finish time.
. Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 999 b

weight = 1 a

Time

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

Time

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1,2, .., j.

. Case 1: OPT selects job j.
- collect profit v,
- can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j-1}
- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j) ~

optimal substructure

. Case 2: OPT does not select job j. ’

- must include optimal solution to problem consisting of remaining
compatible jobs 1,2, ..., j-1

: 0 if j=0
OPT(j)—{maX {v,+OPT(p(j)), OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

p(1)=0,p(j) = j-2

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
. Sort by finish time: O(n log n).
. Computing p(-): O(n log n) via sorting by start time.

. M-Compute-Opt (j): each invocation takes O(1) time and either
- (i) returns an existing value (3]
- (ii) fills in one new entry M[3] and makes two recursive calls
. Progress measure ® = # nonempty entries of mM[].
- initially ® = 0, throughout ® <n.
- (i) increases ® by 1 = at most 2n recursive calls.

. Overall running time of M-Compute-0pt (n) is O(n). -

Remark. O(n) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A. Do some post-processing.

. # of recursive calls<n = O(n).

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Segmented Least Squares

Segmented Least Squares

Least squares.
. Foundational problem in statistic and humerical analysis.
. Given n points in the plane: (xq, y1), (X2, ¥2) , ..., (X4 Yn)-
. Find aliney = ax + b that minimizes the sum of the squared error:

- y

Solution. Calculus = min error is achieved when

Segmented Least Squares

Segmented least squares.
. Points lie roughly on a sequence of several line segments.
. Given n points in the plane (x4, y1), (X2, Y2) , (X,, Yn) With
« X1< X< ... < Xy, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

Vhat's 1
paf'?lmony~ goodness of fit

number of lines

Segmented Least Squares

Segmented least squares.
. Points lie roughly on a sequence of several line segments.
. Given n points in the plane (x4, yq), (X2, Y2) , . . ., (X4, Yn) With
« X(< X< ... <Xy, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
« Tradeoff function: E + c L, for some constant ¢ > 0.

Dynamic Programming: Multiway Choice

Notation.
- OPT(j) = minimum cost for points py, pi.y , - . ., p}-
- e(i,J) =minimum sum of squares for points p;, .y, ..., p;

To compute OPT(j):
- Last segment uses points p;, pi.; , - . ., pj for some i.
. Cost =e(i, j) + c + OPT(i-1).

Segmented Least Squares: Algorithm

Running time. O (n3) - can be improved to O(n?) by pre-computing various statistics

. Bottleneck = computing e(i, j) for O(n?) pairs, O(n) per pair using
previous formula.

20

Knapsack Problem

Knapsack Problem

Knapsack problem.
- Given nobjects and a "knapsack."
. Item iweighs w; > O kilograms and has value v; > 0.
. Knapsack has capacity of W kilograms.
.« Goal: fill knapsack so as to maximize total value.

Ex: {3, 4} has value 40.

i i il
e 2 6 2
8 18 5
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy hot optimal.

22

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, .., i.

. Case 1: OPT does not select item i.
- OPT selects best of {1, 2, ..., i-1}

. Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to
reject other items
- without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

23

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

. Case 1: OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1} using weight limit w

. Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

0 if i=0
OPT(i,w)=9OPT(i—1,w) if w,>w
max{ OPT(i—1,w), v;+ OPT(i—1,w—w;)} otherwise

24

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

25

Knapsack Algorithm

W+1

[l e e sz e @]
o o o0 0 0000 00 0
BECEE EEE SRR R
er 2 e 7777 777 77
Ctzs 016 7 7l M s s s
234 0 16 7 7 1 o2 4 2 2 [

02345 0 1 6 7 7 B 2w 2w

OPT: {4,3}
value = 22 + 18 = 40

26

Knapsack Problem: Running Time

Running time. ©(n W).
« Not polynomial in input size!
. "Pseudo-polynomial."
. Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm

that produces a feasible solution that has value within 0.01% of
optimum. [Section 11.8]

27

RNA Secondary Structure

RNA Secondary Structure

RNA. String B = b,b,...b, over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

RNA Secondary Structure

Secondary structure. A set of pairs S = { (b;, b;) } that satisfy:
. [Watson-Crick.] S is a matching and each pair in S is a Watson-
Crick complement: A-U, U-A, C-G, or G-C.
« [No sharp turns.] The ends of each pair are separated by at least 4
intervening bases. If (b, b)) €S, theni<j-4.
« [Non-crossing.] If (b;, b;) and (by, b)) are two pairs in S, then we

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA 7 N, cannot have i<k <j<l.
N\ /
A-mU 6—c¢
(. / \ o _
e u—A—a 6 Free energy. Usual hypothesis is that an RNA molecule will form the
U 6 AU — U J\ secondary structure with the optimum total free energy.
7 N | I N6~
? ‘I: - CI:’ - f - Lf G approximate by number of base pairs
¢ 6—C—b6—h—6--c , :
N [Goal. Given an RNA molecule B = b,b,...b,, find a secondary structure S
6 - .
A-- LII that maximizes the number of base pairs.
complementary base pairs: A-U, C-6 6
29 30
RNA Secondary Structure: Examples RNA Secondary Structure: Subproblems
Examples. First attempt. OPT(j) = maximum number of base pairs in a secondary
G structure of the substring bib,...b;.
6—6 6—6
/ AN @/ \(:, / AN
C\ /U \ / C\ /U
c---6 c---6 c. v match b; and b,
I (. [><1
A---U A---U A G
[(I [
U---A U---A U---A
s e o o o oo e o o

AUGUGGCCAU AUGGGG CAU AGUUGGCCAU

—<4 —,

ok sharp turn crossing

31

Difficulty. Results in fwo sub-problems.
. Finding secondary structure in: bjb,...b, ;. «— OPT(+-1)
. Finding secondary structure in: b;,ib,,5...b,1. «— need more sub-problems

32

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary
structure of the substring bb.;...b;.

. Casel Ifi>j-4.
- OPT(i, j) = O by no-sharp turns condition.

- Case 2. Base b is not involved in a pair.
- OPT(i, j) = OPT(i, j-1)

- Case 3. Base b; pairs with b; for some i<t<j-4.
- non-crossing constraint decouples resulting sub-problems
- OPT(i, j) = 1+ max, { OPT(i, t-1) + OPT(t++1, j-1) }
\

take max over t such that i <t < j-4 and
b, and b; are Watson-Crick complements

Remark. Same core idea in CKY algorithm fo parse context-free grammars.

33

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

RNA (b,,..,b;) { 4 0
for k =5, 6, .., n-1 3
for i =1, 2, .., n-k ;
j=1i+xk 2
Compute M[i, j] 1

return M[1, n] using recurrence

Running time. O(n3).

\ 6 7 8

34

Dynamic Programming Summary

Recipe.
. Characterize structure of problem.
. Recursively define value of optimal solution.
. Compute value of optimal solution.
. Construct optimal solution from computed information.

Dynamic programming techniques.
. Binary choice: weighted interval scheduling.
. . Viterbi algorithm for HMM also uses
. Multi-way choice: segmented least squares. = P fo optimize a maximun likelinood
. . tradeoff between parsimony and accuracy
. Adding a new variable: knapsack.

. Dynamic programming over intervals: RNA secondary structure.

CKY parsing algorithm for context-free
grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

35

Sequence Alignment

String Similarity

How similar are two strings?

+ coveran - - - DuEnE
= occurrence
- - i - EEE -

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

37

Edit Distance

Applications.

- Basis for Unix diff.

. Speech recognition.

. Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty & mismatch penalty oy,
. Cost = sum of gap and mismatch penalties.

<HEOEE: - » cBl* BcrcarcecracBr
< HEEEc: * » cBr ccrocacflrac Pl

Qe+ OgT+ Oagt 20ca 28+ ocp

38

Sequence Alignment

Goal: Given two strings X = x; X, ... x,and Y =y, y, ...y, find
alignment of minimum cosft.

Def. Analignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and no crossings.

Def. The pair x;-y; and x;-y; cross if i <i', but j>j'.

Xi X, X3 X4 Xs X

EEEEEREE

Y Yo Y3 Ya Y5 Ve

Ex: CTACCG VS. TACATG.
Sol: M = Xp-y1, X372, Xa7Y3, X574, X6 Ye-

39

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x; x, ... x;and y;y, .. .y;
. Case 1: OPT matches x;-y;.
- pay mismatch for x;-y; + min cost of aligning two strings
X1 Xz ... Xipandyrys ... yjg
. Case 2a: OPT leaves x; unmatched.
- pay gap for x; and min cost of aligning x; X, ... xi.pand y;y, ... y;
. Case 2b: OPT leaves y; unmatched.
- pay gap for y; and min cost of aligning x; xz ... x;and y1 v, . .. yjq

40

Sequence Alignment: Algorithm

Analysis. ©(mn) time and space.
English words or sentences: m, n <10.
Computational biology: m = n =100,000. 10 billions ops OK, but 10GB array?

41

Sequence Alignment in Linear Space

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
. Compute OPT(i, +) from OPT(i-1, -).
« No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and
O(mn) time.
. Clever combination of divide-and-conquer and dynamic programming.
. Inspired by idea of Savitch from complexity theory.

43

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
. Observation: f(i, j) = OPT(, j).

X1

X2

X3 .

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
. Can compute f (¢, j) for any j in O(mn) time and O(m + n) space.

€ Y1 Y2 Y3 Ya Y5 Ye

X1 —_—

Xz

. ®

45

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute by reversing the edge orientations and inverting the
roles of (0, 0) and (m, n)

3 Y1 Y2 Y3 Ya Ys Ye

- @

X1

Xz

. ®

46

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute g(*, j) for any j in O(mn) time and O(m + n) space.

€ Y1 Y2 Y3 Ya Y5 Ye

- @
X1

Xz

. —®

47

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is
f(i, J) + 9.).

€ Y1 Y2 Y3 Ya Y5 Yo

XI —

Xz

. —®

48

Sequence Alignment: Linear Space

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

n/2

€ Y1 Y2 Y3 Ya Y5 Ye

X1

Xz

AN

. —®

49

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
. Align x, and y,.
Conquer: recursively compute optimal alignment in each piece.

n/2
- @
Xq @ q

Xz

. ®

50

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on strings of
length at most m and n. T(m, n) = O(mn log n).

T(m,n) < 2T(m, n/2) + O(mn) = T(m,n) = O(mn logn)

Remark. Analysis is not tight because two sub-problems are of size
(g, n/2) and (m - q, n/2). In next slide, we save log n factor.

51

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)
. O(mn) time to compute f(+, n/2)and g (+, n/2) and find index q.
. T(q,n/2) + T(m - q, n/2) time for two recursive calls.
. Choose constant ¢ so that:

T(m, 2) < cm
T2, n) < cn
T(m, n) < cmn+T(q, n/2)+T(m—gq, n/2)

. Basecasessm=2orn=2.

. Inductive hypothesis: T(m, n) < 2cmn.
T(m,n) T(q,n/2)+T(m—q,n/2)+cmn

2cqn/2+2c(m—q)n/2+cmn

I IA A

cqgn+cmn —cqn+cmn
= 2cmn

52

